Mini Reviews in Medicinal Chemistry - Volume 21, Issue 5, 2021
Volume 21, Issue 5, 2021
-
-
Novel Hybrid Molecules Based on triazole-β-lactam as Potential Biological Agents
More LessTriazole ring is a cyclic scaffold containing three heteroatoms of nitrogen. They display a broad variety of biological activities. The uncatalyzed/catalyzed 1,3-dipolar cycloadditions are a chemical reaction between a 1,3-dipole and a dipolarophile to achieve 1,2,3-triazoles. The hybrid approach is an innovative and powerful synthetic tool for the synthesis of two or more distinct entities in one molecule with novel biological activities. Owing to the high potential of β-lactams to display noticeable biological properties, these compounds have been one of the important ingredients in hybrid molecules. The four-membered lactams have been recognized as a part of penicillin. There are various synthetic protocols for the synthesis of β-lactams. Staudinger reaction of the Schiff bases with diphenylketenes is a successful and famous strategy for the synthesis of these products. Even though, the number of heterocyclic compounds is limited, plenty of hybrids based on heterocyclic compounds can be designed and prepared. The synthesis of hybrid products of triazole-β-lactam has proved to be highly challenging. The current review article outlines the diversity and creativity in the elegant synthesis of triazole-β-lactam hybrids as potential biological agents. Molecules including isatin, ferrocene, bile acid, chalcone, and etc were attached to β-lactam with triazole linker, as well.
-
-
-
Rhein Derivatives, A Promising Pivot?
Authors: Rui Pei, Yueping Jiang, Guanghua Lei, Jingjing Chen, Manhua Liu and Shao LiuRhein, an anthraquinone derivative, has been employed widely, especially for the treatment of intractable diseases like diabetic nephropathy, arthritis, and cancer in a unique action mechanism. In the last decades, considerable efforts have been made in structural modification of rhein. This paper reviewed patents on pharmacological activity and therapeutic application of rhein and its derivatives from 1978 to 2018. Particularly, an analysis of patents was made, with the top 10 most valuable patents presented, and the interpretation of the legal status of patents was given. Given the properties of superior pharmacological activity, rich resources, cheap price, low toxicity, and mature extraction process, it is believed that an in-depth investigation on rhein and its derivatives is worth trying.
-
-
-
Plant Polyphenols: Natural and Potent UV-Protective Agents for the Prevention and Treatment of Skin Disorders
Nowadays, destructive and immunosuppressive effects from long-term exposure to UV radiation have been fully investigated and documented in the literature. UV radiation is known as the main cause of skin aging and carcinogenesis. Hence, skin protection against anti-oxidative and immunosuppressive processes is highly in demand. Now, plant polyphenols have been found as a versatile and natural tool for the prevention and treatment of various skin diseases. The presence of a large number of hydroxyl groups in the cyclic structure of polyphenols has induced valuable biological activities. Among them, their UV protective activity has attracted lots of attention due to promising efficacy and simple instruction to use.
-
-
-
1,8-Naphthyridine Derivatives: A Privileged Scaffold for Versatile Biological Activities
Authors: Madhwi Ojha, Divya Yadav, Avinash Kumar, Suman Dasgupta and Rakesh Yadav1, 8- Naphthyridine nucleus belongs to significant nitrogen-containing heterocyclic compounds which has garnered the interest of researchers due to its versatile biological activities. It is known to be used as an antimicrobial, anti-psychotic, anti-depressant, anti-convulsant, anti- Alzheimer’s, anti-cancer, analgesic, anti-inflammatory, antioxidant, anti-viral, anti-hypertensive, antimalarial, pesticides, anti-platelets, and CB2 receptor agonist, etc. The present review highlights the framework of biological properties of synthesized 1, 8-naphthyridine derivatives developed by various research groups across the globe.
-
-
-
An Updated Review of Secondary Metabolites from Marine Fungi
Authors: Syed Shabana, K. R. Lakshmi and A. Krishna SatyaMarine fungi are valuable and richest sources of novel natural products for medicinal and pharmaceutical industries. Nutrient depletion, competition or any other type of metabolic stress which limits marine fungal growth promotes the formation and secretion of secondary metabolites. Generally secondary metabolites can be produced by many different metabolic pathways and include antibiotics, cytotoxic and cyto-stimulatory compounds. Marine fungi produce many different types of secondary metabolites that are of commercial importance. This review paper deals with around 187 novel compounds and 212 other known compounds with anticancer and antibacterial activities with a special focus on the period from 2011-2019. Furthermore, this review highlights the sources of organisms, chemical classes and biological activities (anticancer and antibacterial) of metabolites, that were isolated and structurally elucidated from marine fungi to throw a helping hand for novel drug development.
-
-
-
Current Insights into the Chemistry and Antitubercular Potential of Benzimidazole and Imidazole Derivatives
Tuberculosis is a disease caused by Mycobacterium tuberculosis (Mtb), affecting millions of people worldwide. The emergence of drug resistance is a major problem in the successful treatment of tuberculosis. Due to the commencement of MDR-TB (multi-drug resistance) and XDR-TB (extensively drug resistance), there is a crucial need for the development of novel anti-tubercular agents with improved characteristics such as low toxicity, enhanced inhibitory activity and short duration of treatment. In this direction, various heterocyclic compounds have been synthesized and screened against Mycobacterium tuberculosis. Among them, benzimidazole and imidazole containing derivatives have been found to have potential anti-tubercular activity. The present review focuses on various imidazole and benzimidazole derivatives (from 2015-2019) with their structure-activity relationships in the treatment of tuberculosis.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
