Mini Reviews in Medicinal Chemistry - Volume 19, Issue 14, 2019
Volume 19, Issue 14, 2019
-
-
Exploring Signaling Pathways and Pancreatic Cancer Treatment Approaches Using Genetic Models
Authors: Shorooq Khader, Anita Thyagarajan and Ravi P. SahuDespite available treatment options, the overall survival rates of pancreatic cancer patients remain dismal. Multiple counter-regulatory pathways have been identified and shown to be involved in interfering with the efficacy of therapeutic agents. In addition, various known genetic alterations in the cellular signaling pathways have been implicated in affecting the growth and progression of pancreatic cancer. Nevertheless, the significance of other unknown pathways is yet to be explored, which provides the rationale for the intervention of new approaches. Several experimental genetic models have been explored to define the impact of key signaling cascades, and their mechanisms in the pathophysiology as well as treatment approaches of pancreatic cancer. The current review highlights the recent updates, and significance of such genetic models in the therapeutic efficacy of anti-tumor agents including the standard chemotherapeutic agents, natural products, cell signaling inhibitors, immunebased therapies and the combination of these approaches in pancreatic cancer.
-
-
-
Antidotes Against Methanol Poisoning: A Review
More LessMethanol is the simplest alcohol. Compared to ethanol that is fully detoxified by metabolism. Methanol gets activated in toxic products by the enzymes, alcohol dehydrogenase and aldehyde dehydrogenase. Paradoxically, the same enzymes convert ethanol to harmless acetic acid. This review is focused on a discussion and overview of the literature devoted to methanol toxicology and antidotal therapy. Regarding the antidotal therapy, three main approaches are presented in the text: 1) ethanol as a competitive inhibitor in alcohol dehydrogenase; 2) use of drugs like fomepizole inhibiting alcohol dehydrogenase; 3) tetrahydrofolic acid and its analogues reacting with the formate as a final product of methanol metabolism. All the types of antidotal therapies are described and how they protect from toxic sequelae of methanol is explained.
-
-
-
Protective Role of Natural Products in Cisplatin-Induced Nephrotoxicity
Cisplatin is a widely used antineoplastic agent for the treatment of metastatic tumors, advanced bladder cancer and many other solid tumors. However, at higher doses, toxicities such as nephrotoxicity may appear. Cisplatin leads to DNA damage and subsequently renal cell death. Besides that, oxidative stress is also implicated as one of the main causes of nephrotoxicity. Several studies showed that numerous natural products: ginseng, curcumin, licorice, honey and pomegranate were able to reduce the oxidative stress by restoring the levels of antioxidant enzymes and also at the same time act as an anti-inflammatory agent. Furthermore, pre-treatment with vitamin supplementation, such as vitamin C, E and riboflavin markedly decreased serum urea and increased the levels of antioxidant enzymes in the kidney even after cisplatin induction in cancer patients. These natural products possess potent antioxidant and anti-inflammatory medicinal properties, and they can be safely used as a supplementary regime or combination therapy against cisplatin-induced nephrotoxicity. The present review focused on the protective role of a few natural products which is widely used in folk medicines in cisplatin-induced nephrotoxicity.
-
-
-
Malaria Hybrids: A Chronological Evolution
Authors: Akranth Marella, Garima Verma, Md. Shaquiquzzaman, Md. F. Khan, Wasim Akhtar and Md. Mumtaz AlamMalaria, an upsetting malaise caused by a diverse class of Plasmodium species affects about 40% of the world’s population. The distress associated with it has reached colossal scales owing to the development of resistance to most of the clinically available agents. Hence, the search for newer molecules for malaria treatment and cure is an incessant process. After the era of a single molecule for malaria treatment ended, there was an advent of combination therapy. However, lately there had been reports of the development of resistance to many of these agents as well. Subsequently, at present most of the peer groups working on malaria treatment aim to develop novel molecules, which may act on more than one biological processes of the parasite life cycle, and these scaffolds have been aptly termed as Hybrid Molecules or Double Drugs. These molecules may hold the key to hitherto unknown ways of showing a detrimental effect on the parasite. This review enlists a few of the recent advances made in malaria treatment by these hybrid molecules in a sequential manner.
-
-
-
Novel Benzylidenehydrazide-1,2,3-Triazole Conjugates as Antitubercular Agents: Synthesis and Molecular Docking
Background & Objective: Novel 1,2,3-triazole based benzylidenehydrazide derivatives were synthesized and evaluated for antitubercular activity against Mycobacterium tuberculosis (MTB) H37Ra, M. bovis BCG and cytotoxic activity. Most of the derivatives exhibited promising in vitro potency against MTB characterized by lower MIC values. Methods: Among all the synthesized derivatives, compound 6a and 6j were the most active against active and dormant MTB H37Ra, respectively. Compound 6d was significantly active against dormant and active M. bovis BCG. Results: The structure activity relationship has been explored on the basis of anti-tubercular activity data. The active compounds were also tested against THP-1, A549 and Panc-1 cell lines and showed no significant cytotoxicity. Further, the synthesized compounds were found to have potential antioxidant with IC50 range = 11.19-56.64 μg/mL. The molecular docking study of synthesized compounds was performed against DprE1 enzyme of MTB to understand the binding interactions. Conclusion: Furthermore, synthesized compounds were also analysed for ADME properties and the potency of compounds indicated that, this series can be considered as a starting point for the developement of novel and more potent anti-tubercular agents in future.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
