Skip to content
2000
image of A Comprehensive Update on the Anti-cancer and Anti-microbial Potential of Marine Organisms Derived Natural Products

Abstract

Marine organisms produce a diverse array of secondary metabolites with significant pharmacological potential, particularly in the development of anti-cancer, anti-microbial, anti-fungal, and anti-viral therapies. Despite challenges in isolation and cultivation, marine-derived compounds, such as Didemnin B, Psammaplin A, and Dolastatin, have shown promise in cancer treatment, while other metabolites exhibit potent activity against drug-resistant bacteria, fungi, and viruses. These compounds have excellent potential for treating various infections, for example, MRSA (eicosapentaenoic acid and fridamycin), (aurantoside K), and HIV-1 and HIV-2 (sulfoquinovosyl diacylglycerol). These unique compounds offer new avenues in drug discovery, addressing current limitations in traditional therapies. This review provides an overview of the pharmacological potential of marine organisms, focusing on their applications in overcoming drug resistance and developing novel treatments for cancer, infections, and viral diseases. Sustainable approaches for harvesting these compounds are essential for future research.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575422078251105111842
2026-01-26
2026-01-31
Loading full text...

Full text loading...

References

  1. Mehbub M.F. Yang Q. Cheng Y. Franco C.M.M. Zhang W. Marine sponge-derived natural products: Trends and opportunities for the decade of 2011-2020. Front. Mar. Sci. 2024 11 1462825 10.3389/fmars.2024.1462825
    [Google Scholar]
  2. Chen J. Jia Y. Sun Y. Liu K. Zhou C. Liu C. Li D. Liu G. Zhang C. Yang T. Huang L. Zhuang Y. Wang D. Xu D. Zhong Q. Guo Y. Li A. Seim I. Jiang L. Wang L. Lee S.M.Y. Liu Y. Wang D. Zhang G. Liu S. Wei X. Yue Z. Zheng S. Shen X. Wang S. Qi C. Chen J. Ye C. Zhao F. Wang J. Fan J. Li B. Sun J. Jia X. Xia Z. Zhang H. Liu J. Zheng Y. Liu X. Wang J. Yang H. Kristiansen K. Xu X. Mock T. Li S. Zhang W. Fan G. Global marine microbial diversity and its potential in bioprospecting. Nature 2024 633 8029 371 379 10.1038/s41586‑024‑07891‑2 39232160
    [Google Scholar]
  3. Yang G. Lin M. Kaliaperumal K. Lu Y. Qi X. Jiang X. Xu X. Gao C. Liu Y. Luo X. Recent advances in anti-inflammatory compounds from marine microorganisms. Mar. Drugs 2024 22 9 424 10.3390/md22090424 39330305
    [Google Scholar]
  4. Pardo-Esté C. Cortés J. Castro-Severyn J. Pérez V. Henriquez-Aedo K. Cuadros F. Yañez C. Cuadros-Orellana S. Dorador C. Molina V. Eissler Y. Paquis P. Jeffrey W.H. Pozo P. Pérez P.A. Hengst M.B. Secondary metabolites with antimicrobial activity produced by thermophilic bacteria from a high-altitude hydrothermal system. Front. Microbiol. 2024 15 1477458 10.3389/fmicb.2024.1477458 39411441
    [Google Scholar]
  5. Okechukwu Q. Adepoju F. Kanwugu O. Adadi P. Serrano-Aroca Á. Uversky V. Okpala C. Marine-derived bioactive metabolites as a potential therapeutic intervention in managing viral diseases: Insights from the SARS-CoV-2 in silico and pre-clinical studies. Pharmaceuticals 2024 17 3 328 10.3390/ph17030328 38543114
    [Google Scholar]
  6. Hang S. Lu H. Jiang Y. Marine-derived metabolites act as promising antifungal agents. Mar. Drugs 2024 22 4 180 10.3390/md22040180 38667797
    [Google Scholar]
  7. Bharathi D. Lee J. Recent advances in marine-derived compounds as potent antibacterial and antifungal agents: A comprehensive review. Mar. Drugs 2024 22 8 348 10.3390/md22080348 39195465
    [Google Scholar]
  8. Fenical W. Marine microbial natural products: The evolution of a new field of science. J. Antibiot. 2020 73 8 481 487 10.1038/s41429‑020‑0331‑4 32713942
    [Google Scholar]
  9. Khan S. Wang T. Arifeen M.Z.U. Huang S. Exploring the bioactive potential of deep-sea microorganisms: A review of recent discoveries. Bioorg. Chem. 2025 161 108521 10.1016/j.bioorg.2025.108521 40373561
    [Google Scholar]
  10. Zhang Y. Lin M. Qin Y. Lu H. Xu X. Gao C. Liu Y. Luo W. Luo X. Anti-Vibrio potential of natural products from marine microorganisms. Eur. J. Med. Chem. 2023 252 115330 10.1016/j.ejmech.2023.115330 37011553
    [Google Scholar]
  11. Kim H.J. Park J.G. Moon K.S. Jung S.B. Kwon Y.M. Kang N.S. Kim J.H. Nam S.J. Choi G. Baek Y.B. Park S.I. Identification and characterization of a marine bacterium extract from Mameliella sp. M20D2D8 with antiviral effects against influenza A and B viruses. Arch. Virol. 2024 169 3 41 10.1007/s00705‑024‑05979‑8 38326489
    [Google Scholar]
  12. Santaniello G. Nebbioso A. Altucci L. Conte M. Recent advancement in anticancer compounds from marine organisms: Approval, use and bioinformatic approaches to predict new targets. Mar. Drugs 2022 21 1 24 10.3390/md21010024 36662197
    [Google Scholar]
  13. Alvariño R. Alfonso A. Tabudravu J.N. González-Jartín J. Al Maqbali K.S. Elhariry M. Vieytes M.R. Botana L.M. Psammaplin a and its analogs attenuate oxidative stress in neuronal cells through peroxisome proliferator-activated receptor γ activation. J. Nat. Prod. 2024 87 4 1187 1196 10.1021/acs.jnatprod.4c00153 38632902
    [Google Scholar]
  14. Gomes N. Dasari R. Chandra S. Kiss R. Kornienko A. Marine invertebrate metabolites with anticancer activities: Solutions to the “supply problem”. Mar. Drugs 2016 14 5 98 10.3390/md14050098 27213412
    [Google Scholar]
  15. Miyake R. Yamanaka S. Matsubara S. Mabuchi S. Preclinical activity of plitidepsin against clear cell carcinoma of the ovary. Anticancer Res. 2021 41 9 4277 4285 10.21873/anticanres.15232 34475047
    [Google Scholar]
  16. Le Tourneau C. Faivre S. Ciruelos E. Domínguez M.J. López-Martín J.A. Izquierdo M.A. Jimeno J. Raymond E. Reports of clinical benefit of plitidepsin (Aplidine), a new marine-derived anticancer agent, in patients with advanced medullary thyroid carcinoma. Am. J. Clin. Oncol. 2010 33 2 132 136 10.1097/COC.0b013e318199fb6e 19687728
    [Google Scholar]
  17. Lichota A. Gwozdzinski K. Anticancer activity of natural compounds from plant and marine environment. Int. J. Mol. Sci. 2018 19 11 3533 10.3390/ijms19113533 30423952
    [Google Scholar]
  18. Zhao M. Zhou X. Chen Y. A highly sensitive and miniature optical fiber sensor for electromagnetic pulse fields. Sensors 2021 21 23 8137 10.3390/s21238137 34884141
    [Google Scholar]
  19. Gao G. Wang Y. Hua H. Li D. Tang C. Marine antitumor peptide dolastatin 10: Biological activity, structural modification and synthetic chemistry. Mar. Drugs 2021 19 7 363 10.3390/md19070363 34202685
    [Google Scholar]
  20. Barreca M. Spanò V. Montalbano A. Cueto M. Díaz Marrero A.R. Deniz I. Erdoğan A. Lukić Bilela L. Moulin C. Taffin-de-Givenchy E. Spriano F. Perale G. Mehiri M. Rotter A. P Thomas O. Barraja P. Gaudêncio S.P. Bertoni F. Marine anticancer agents: An overview with a particular focus on their chemical classes. Mar. Drugs 2020 18 12 619 10.3390/md18120619 33291602
    [Google Scholar]
  21. Lembacher-Fadum C. Gissing S. Pour G. Breinbauer R. Total synthesis of the isoquinolinium metabolite ETM-204 of Trabectidin. Monatshefte für Chemie – (Monthly journal for Chemisry) 2023 154 12 1327 1337 10.1007/s00706‑021‑02844‑1
    [Google Scholar]
  22. Dou X. Dong B. Origins and bioactivities of natural compounds derived from marine ascidians and their symbionts. Mar. Drugs 2019 17 12 670 10.3390/md17120670 31795141
    [Google Scholar]
  23. Lima R. Fernandes C. Pinto M.M.M. Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality 2022 34 9 1166 1190 10.1002/chir.23477 35699356
    [Google Scholar]
  24. Dahiya R. Rampersad S. Ramnanansingh T.G. Kaur K. Kaur R. Mourya R. Chennupati S.V. Fairman R. Jalsa N.K. Sharma A. Fuloria S. Fuloria N.K. Synthesis and bioactivity of a cyclopolypeptide from caribbean marine sponge. Iran. J. Pharm. Res. 2020 19 3 156 170 10.22037/ijpr.2020.15405.13075 33680019
    [Google Scholar]
  25. Zhang S. Croppi G. Hu H. Li Y. Zhu C. Wu F. Zhang F. Li Z. Bacillamide F, extracted from marine Bacillus atrophaeus C89, preliminary effects on leukemia cell lines. Biology 2022 11 12 1712 10.3390/biology11121712 36552221
    [Google Scholar]
  26. Shin D. Byun W.S. Moon K. Kwon Y. Bae M. Um S. Lee S.K. Oh D.C. Coculture of marine Streptomyces sp. with Bacillus sp. produces a new piperazic acid-bearing cyclic peptide. Front Chem. 2018 6 498 10.3389/fchem.2018.00498 30406080
    [Google Scholar]
  27. Bae S.Y. Liao L. Park S.H. Kim W.K. Shin J. Lee S.K. Antitumor activity of asperphenin a, a lipopeptidyl benzophenone from marine-derived Aspergillus sp. fungus, by inhibiting tubulin polymerization in colon cancer cells. Mar. Drugs 2020 18 2 110 10.3390/md18020110 32069904
    [Google Scholar]
  28. Dhaneesha M. Hasin O. Sivakumar K.C. Ravinesh R. Naman C.B. Carmeli S. Sajeevan T.P. DNA binding and molecular dynamic studies of polycyclic tetramate macrolactams (ptm) with potential anticancer activity isolated from a sponge-associated streptomyces zhaozhouensis subsp. mycale subsp. nov. Mar. Biotechnol. 2019 21 1 124 137 10.1007/s10126‑018‑9866‑9 30542952
    [Google Scholar]
  29. Potts M.B. McMillan E.A. Rosales T.I. Kim H.S. Ou Y.H. Toombs J.E. Brekken R.A. Minden M.D. MacMillan J.B. White M.A. Mode of action and pharmacogenomic biomarkers for exceptional responders to didemnin B. Nat. Chem. Biol. 2015 11 6 401 408 10.1038/nchembio.1797 25867045
    [Google Scholar]
  30. Charkie J. Psammaplin A. Psammaplin A: A putative adjuvant for DNA damaging therapies. J. Cancer Sci. Ther. 2014 6 12 10.4172/1948‑5956.1000315
    [Google Scholar]
  31. García J. Franci G. Pereira R. Benedetti R. Nebbioso A. Rodríguez-Barrios F. Gronemeyer H. Altucci L. Lera A.R. Epigenetic profiling of the antitumor natural product psammaplin A and its analogues. Bioorg. Med. Chem. 2011 19 12 3637 3649 10.1016/j.bmc.2010.12.026 21215647
    [Google Scholar]
  32. Takai N. Narahara H. Preclinical studies of chemotherapy using histone deacetylase inhibitors in endometrial cancer. Obstet. Gynecol. Int. 2010 2010 1 923824 10.1155/2010/923824 20169171
    [Google Scholar]
  33. Tarsis E.M. Rastelli E.J. Wengryniuk S.E. Coltart D.M. The apratoxin marine natural products: Isolation, structure determination, and asymmetric total synthesis. Tetrahedron 2015 71 31 5029 5044 10.1016/j.tet.2015.05.047
    [Google Scholar]
  34. Reys L.L. Silva S.S. Oliveira C. Lopez‐Cebral R. Neves N.M. Martins A. Marine‐origin polysaccharides for tissue engineering and regenerative medicine: Chitosan and fucoidan as illustrative examples. Encyclopedia of Marine Biotechnology. 1st ed Kim S. Hoboken, New Jersey Wiley Online Library 2020 2619 2650 10.1002/9781119143802.ch118
    [Google Scholar]
  35. Afzal S. Yadav A.K. Poonia A.K. Choure K. Yadav A.N. Pandey A. Antimicrobial therapeutics isolated from algal source: Retrospect and prospect. Biologia 2022 78 2 291 305 10.1007/s11756‑022‑01207‑3 36159744
    [Google Scholar]
  36. Pradhan J. Das B.K. Sahu S. Evaluation of antibacterial and haemolytic activity of phytochemicals from freshwater microalga, euglena viridis (EHREN). Int. J. Pharm. Pharm. Sci. 2018 10 9 98 10.22159/ijpps.2018v10i9.28324
    [Google Scholar]
  37. Bashir K.M.I. Lee J.H. Petermann M.J. Shah A.A. Jeong S.J. Kim M.S. Park N-G. Cho M-G. Estimation of antibacterial properties of chlorophyta, rhodophyta and haptophyta microalgae species. Han’guk Misaengmul, Saengmyong Konghakhoe Chi, (Microbiology and Biotechnology Letters (MBL)). 2018 46 3 225 233 10.4014/mbl.1802.02015
    [Google Scholar]
  38. Jafari S. Mobasher M.A. Najafipour S. Ghasemi Y. Mohkam M. Ebrahimi M.A. Mobasher N. Antibacterial potential of chlorella vulgaris and dunaliella salina extracts against streptococcus mutans. Jundishapur J. Nat. Pharm. Prod. 2018 13 2 10.5812/jjnpp.13226
    [Google Scholar]
  39. Pradhan B. Patra S. Dash S.R. Nayak R. Behera C. Jena M. Evaluation of the anti-bacterial activity of methanolic extract of Chlorella vulgaris Beyerinck [Beijerinck] with special reference to antioxidant modulation. Fut. J. Pharm. Sci. 2021 7 1 17 10.1186/s43094‑020‑00172‑5
    [Google Scholar]
  40. Meng L.H. Li X.M. Liu Y. Wang B.G. Polyoxygenated dihydropyrano[2,3-c]pyrrole-4,5-dione derivatives from the marine mangrove-derived endophytic fungus Penicillium brocae MA-231 and their antimicrobial activity. Chin. Chem. Lett. 2015 26 5 610 612 10.1016/j.cclet.2015.01.024
    [Google Scholar]
  41. Yan L.H. Du F.Y. Li X.M. Yang S.Q. Wang B.G. Li X. Antibacterial indole diketopiperazine alkaloids from the deep-sea cold seep-derived fungus Aspergillus chevalieri. Mar. Drugs 2023 21 3 195 10.3390/md21030195 36976244
    [Google Scholar]
  42. Du F.Y. Li X. Li X.M. Zhu L.W. Wang B.G. Indolediketopiperazine alkaloids from eurotium cristatum EN-220, an endophytic fungus isolated from the marine alga Sargassum thunbergii. Mar. Drugs 2017 15 2 24 10.3390/md15020024 28125012
    [Google Scholar]
  43. Li D. Xu Y. Shao C.L. Yang R.Y. Zheng C.J. Chen Y.Y. Fu X.M. Qian P.Y. She Z.G. Voogd N.J. Wang C.Y. Antibacterial bisabolane-type sesquiterpenoids from the sponge-derived fungus Aspergillus sp. Mar. Drugs 2012 10 1 234 241 10.3390/md10010234 22363233
    [Google Scholar]
  44. Uzlaşır T. Selli S. Kelebek H. Spirulina platensis and Phaeodactylum tricornutum as sustainable sources of bioactive compounds: Health implications and applications in the food industry. Future Postharvest and Food 2024 1 1 34 46 10.1002/fpf2.12008
    [Google Scholar]
  45. Tounsi L. Ben Hlima H. Elhadef K. Hentati O. Blavignac C. Fendri I. Smaoui S. Michaud P. Abdelkafi S. B-phycoerythrin of Porphyridium cruentum UTEX 161: A multifunctional active molecule for the development of biodegradable films. Eur. Polym. J. 2024 208 112851 10.1016/j.eurpolymj.2024.112851
    [Google Scholar]
  46. Alsenani F. Tupally K.R. Chua E.T. Eltanahy E. Alsufyani H. Parekh H.S. Schenk P.M. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm. J. 2020 28 12 1834 1841 10.1016/j.jsps.2020.11.010 33424272
    [Google Scholar]
  47. El-Demerdash A. Atanasov A.G. Horbanczuk O.K. Tammam M.A. Abdel-Mogib M. Hooper J.N.A. Sekeroglu N. Al-Mourabit A. Kijjoa A. Chemical diversity and biological activities of marine sponges of the genus Suberea: A systematic review. Mar. Drugs 2019 17 2 115 10.3390/md17020115 30759850
    [Google Scholar]
  48. Mayer A. Rodríguez A. Taglialatela-Scafati O. Fusetani N. Marine pharmacology in 2012–2013: Marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar. Drugs 2017 15 9 273 10.3390/md15090273 28850074
    [Google Scholar]
  49. Sabido E.M. Tenebro C.P. Suarez A.F.L. Ong S.D.C. Trono D.J.V.L. Amago D.S. Evangelista J.E. Jr Reynoso A.M.Q. Villalobos I.G.M. Alit L.D.D. Surigao C.F. Villanueva C.A. Saludes J.P. Dalisay D.S. Marine sediment-derived Streptomyces strain produces angucycline antibiotics against multidrug-resistant Staphylococcus aureus Harboring SCCmec Type 1 Gene. J. Mar. Sci. Eng. 2020 8 10 734 10.3390/jmse8100734
    [Google Scholar]
  50. Xu Y. Song Y. Ning Y. Li S. Qu Y. Jiao B. Lu X. Macrolactin XY, a macrolactin antibiotic from marine-derived Bacillus subtilis sp. 18. Mar. Drugs 2024 22 8 331 10.3390/md22080331 39195447
    [Google Scholar]
  51. Maadane A. Merghoub N. El Mernissi N. Ainane T. Amzazi S. Wahby I. Bakri Y. Antimicrobial activity of marine microalgae isolated from moroccan coastlines. J. Microbiol. Biotechnol. Food Sci. 2017 6 6 1257 1260 10.15414/jmbfs.2017.6.6.1257‑1260
    [Google Scholar]
  52. Karpiński T.M. Ożarowski M. Alam R. Łochyńska M. Stasiewicz M. What Do We Know about Antimicrobial Activity of Astaxanthin and Fucoxanthin? Mar. Drugs 2021 20 1 36 10.3390/md20010036 35049891
    [Google Scholar]
  53. Moloney M.G. Natural products as a source for novel antibiotics. Trends Pharmacol. Sci. 2016 37 8 689 701 10.1016/j.tips.2016.05.001 27267698
    [Google Scholar]
  54. Willems T. De Mol M.L. De Bruycker A. De Maeseneire S.L. Soetaert W.K. Alkaloids from marine fungi: Promising antimicrobials. Antibiotic 2020 9 6 340 10.3390/antibiotics9060340 32570899
    [Google Scholar]
  55. Panizai Z.U.R. Khan Y. Ahmed B. Marine alkaloid: Current status and future prospects in drug discovery. Pakistan Science Bulletin 2022 1 100 105
    [Google Scholar]
  56. Ab Rashid S. Leong C.R. Taher M.A. Rosman N.R.A. Che Harun N.F. Mohd Nor Hamin N.S. Shades of endophytic fungi: Exceptional plant inhabitants with de facto therapeutic promises. Asia-Pac. J. Mol. Biol. Biotechnol. 2021 29 3 85 104 10.35118/apjmbb.2021.029.3.10
    [Google Scholar]
  57. Li X. Zhao H. Chen X. Screening of marine bioactive antimicrobial compounds for plant pathogens. Mar. Drugs 2021 19 2 69 10.3390/md19020069 33525648
    [Google Scholar]
  58. Deng J. Li Y. Yuan Y. Yin F. Chao J. Huang J. Secondary metabolites from the Genus Eurotium and their biological activities. Foods. 2023 12 24 4452 10.3390/foods12244452
    [Google Scholar]
  59. Martignago C.C.S. Soares-Silva B. Parisi J.R. Silva L.C.S. Granito R.N. Ribeiro A.M. Renno A.C.M. de Sousa L.R.F. Aguiar A.C.C. Terpenes extracted from marine sponges with antioxidant activity: A systematic review. Nat. Prod. Bioprospect. 2023 13 1 23 10.1007/s13659‑023‑00387‑y 37553481
    [Google Scholar]
  60. Elkhawas Y.A. Elissawy A.M. Elnaggar M.S. Mostafa N.M. Al-Sayed E. Bishr M.M. Singab A.N.B. Salama O.M. Chemical diversity in species belonging to soft coral genus Sacrophyton and its impact on biological activity: A review. Mar. Drugs 2020 18 1 41 10.3390/md18010041 31935862
    [Google Scholar]
  61. Sun Y. Shi X. Xing Y. Ren X.X. Zhang D.Y. Li X. Xiu Z.L. Dong Y.S. Co-culture of Aspergillus sydowii and Bacillus subtilis induces the production of antibacterial metabolites. Fungal Biol. 2022 126 4 320 332 10.1016/j.funbio.2022.01.002 35314063
    [Google Scholar]
  62. Liu N. Peng S. Yang J. Cong Z. Lin X. Liao S. Yang B. Zhou X. Zhou X. Liu Y. Wang J. Structurally diverse sesquiterpenoids and polyketides from a sponge-associated fungus Aspergillus sydowii SCSIO41301. Fitoterapia 2019 135 27 32 10.1016/j.fitote.2019.03.031 30946944
    [Google Scholar]
  63. Xu M. Davis R.A. Feng Y. Sykes M.L. Shelper T. Avery V.M. Camp D. Quinn R.J. Ianthelliformisamines A-C, antibacterial bromotyrosine-derived metabolites from the marine sponge Suberea ianthelliformis. J. Nat. Prod. 2012 75 5 1001 1005 10.1021/np300147d 22515429
    [Google Scholar]
  64. Cabral E.M. Oliveira M. Mondala J.R.M. Curtin J. Tiwari B.K. Garcia-Vaquero M. Antimicrobials from seaweeds for food applications. Mar. Drugs 2021 19 4 211 10.3390/md19040211 33920329
    [Google Scholar]
  65. Rodrigues D. Alves C. Horta A. Pinteus S. Silva J. Culioli G. Thomas O. Pedrosa R. Antitumor and antimicrobial potential of bromoditerpenes isolated from the red alga, Sphaerococcus coronopifolius. Mar. Drugs 2015 13 2 713 726 10.3390/md13020713 25629386
    [Google Scholar]
  66. Zarena A.S. Exploring the potential bioactive properties of marine natural products. Curr. Bioact. Compd. 2019 15 5 524 539 10.2174/1573407214666180727092555
    [Google Scholar]
  67. Cardoso J. Nakayama D.G. Sousa E. Pinto E. Marine-derived compounds and prospects for their antifungal application. Molecules 2020 25 24 5856 10.3390/molecules25245856 33322412
    [Google Scholar]
  68. Wu S. Liu G. Zhou S. Sha Z. Sun C. Characterization of antifungal lipopeptide biosurfactants produced by marine bacterium Bacillus sp. CS30. Mar. Drugs 2019 17 4 199 10.3390/md17040199 30934847
    [Google Scholar]
  69. Veluchamy C. Palaniswamy R. A review on marine algae and its applications. Asian J. Pharm. Clin. Res. 2020 21 27 10.22159/ajpcr.2020.v13i3.36130
    [Google Scholar]
  70. Dewi I.C. Falaise C. Hellio C. Bourgougnon N. Mouget J-L. Anticancer, antiviral, antibacterial, and antifungal properties in microalgae. Microalgae in Health and Disease Prevention. Amsterdam, Netherlands Elsevier 2018 235 261 10.1016/B978‑0‑12‑811405‑6.00012‑8
    [Google Scholar]
  71. Tripathi S.K. Feng Q. Liu L. Levin D.E. Roy K.K. Doerksen R.J. Baerson S.R. Shi X. Pan X. Xu W.H. Li X.C. Clark A.M. Agarwal A.K. Puupehenone, a marine-sponge-derived sesquiterpene quinone, potentiates the antifungal drug caspofungin by disrupting hsp90 activity and the cell wall integrity pathway. MSphere 2020 5 1 e00818-19 10.1128/mSphere.00818‑19 31915228
    [Google Scholar]
  72. Ding L. Xu P. Li T. Liao X. He S. Xu S. Asperfurandiones A and B, two antifungal furandione analogs from a marine-derived fungus Aspergillus versicolor. Nat. Prod. Res. 2019 33 23 3404 3408 10.1080/14786419.2018.1480622 29806501
    [Google Scholar]
  73. Kim H. Hwang J.Y. Chung B. Cho E. Bae S. Shin J. Oh K.B. 2-Alkyl-4-hydroxyquinolines from a marine-derived Streptomyces sp. inhibit hyphal growth induction in Candida albicans. Mar. Drugs 2019 17 2 133 10.3390/md17020133 30813382
    [Google Scholar]
  74. Martínez K.A. Lauritano C. Druka D. Romano G. Grohmann T. Jaspars M. Martín J. Díaz C. Cautain B. de la Cruz M. Ianora A. Reyes F. Amphidinol 22, a New Cytotoxic and Antifungal Amphidinol from the Dinoflagellate Amphidinium carterae. Mar. Drugs 2019 17 7 385 10.3390/md17070385 31252576
    [Google Scholar]
  75. Bratchkova A. D. Kroumov A. Microalgae as Producers of Biologically Active Compounds with Antibacterial, Antiviral, Antifungal, Antialgal, Antiprotozoal, Antiparasitic and Anticancer Activity. Environmental Science, Medicine. Biology 2020
    [Google Scholar]
  76. Pradhan B. Ki J.S. Phytoplankton toxins and their potential therapeutic applications: A journey toward the quest for potent pharmaceuticals. Mar. Drugs 2022 20 4 271 10.3390/md20040271 35447944
    [Google Scholar]
  77. Wang P. Liu S. Yang Q. Liu Z. Zhang S. Functional characterization of thyrostimulin in amphioxus suggests an ancestral origin of the th signaling pathway. Endocrinology 2018 159 10 3536 3548 10.1210/en.2018‑00550 30192937
    [Google Scholar]
  78. Tamadoni Jahromi S. Barzkar N. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int. J. Biol. Macromol. 2018 120 Pt B 2147 2154 10.1016/j.ijbiomac.2018.09.083 30223053
    [Google Scholar]
  79. Xu B-H Ye Z-W Zheng Q-W Wei T Lin J-F Guo L-Q Isolation and characterization of cyclic lipopeptides with broad-spectrum antimicrobial activity from Bacillus siamensis JFL15. 3 Biotech. 2018 8 10 444 10.1007/s13205‑018‑1443‑4
    [Google Scholar]
  80. Jin P. Wang H. Liu W. Fan Y. Miao W. A new cyclic lipopeptide isolated from Bacillus amyloliquefaciens HAB-2 and safety evaluation. Pestic. Biochem. Physiol. 2018 147 40 45 10.1016/j.pestbp.2017.08.015 29933991
    [Google Scholar]
  81. Elgoud Said A.A. Mahmoud B.K. Attia E.Z. Abdelmohsen U.R. Fouad M.A. Bioactive natural products from marine sponges belonging to family Hymedesmiidae. RSC Advances 2021 11 27 16179 16191 10.1039/D1RA00228G 35479127
    [Google Scholar]
  82. Carroll A.R. Copp B.R. Davis R.A. Keyzers R.A. Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2020 37 2 175 223 10.1039/C9NP00069K 32025684
    [Google Scholar]
  83. Kurhekar J.V. Antimicrobial lead compounds from marine plants. Phytochemicals as Lead Compounds for New Drug Discovery. Amsterdam, Netherlands Elsevier 2020 257 274 10.1016/B978‑0‑12‑817890‑4.00017‑2
    [Google Scholar]
  84. Ganeshkumar A. Gonçale J.C. Rajaram R. Junqueira J.C. Anti-candidal marine natural products: A review. J. Fungi 2023 9 8 800 10.3390/jof9080800 37623571
    [Google Scholar]
  85. Negara B.F.S.P. Sohn J.H. Kim J.S. Choi J.S. Antifungal and larvicidal activities of phlorotannins from brown seaweeds. Mar. Drugs 2021 19 4 223 10.3390/md19040223 33923448
    [Google Scholar]
  86. Xu B.L. Wang Y.Y. Dong C.M. Study on marine actinomycetes and analysis of their secondary metabolites. Life Research 2023 6 4 18 10.53388/LR20230018
    [Google Scholar]
  87. Kim D.G. Moon K. Kim S.H. Park S.H. Park S. Lee S.K. Oh K.B. Shin J. Oh D.C. Bahamaolides A and B, antifungal polyene polyol macrolides from the marine actinomycete Streptomyces sp. J. Nat. Prod. 2012 75 5 959 967 10.1021/np3001915 22574670
    [Google Scholar]
  88. Kim S-K. Karadeniz F. Anti-HIV activity of extracts and compounds from marine algae. Advances in Food and Nutrition Research. Amsterdam, Netherlands Elsevier 2011 64 255 265 10.1016/B978‑0‑12‑387669‑0.00020‑X
    [Google Scholar]
  89. Abdelmohsen U.R. Balasubramanian S. Oelschlaeger T.A. Grkovic T. Pham N.B. Quinn R.J. Hentschel U. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. Lancet Infect. Dis. 2017 17 2 e30 e41 10.1016/S1473‑3099(16)30323‑1 27979695
    [Google Scholar]
  90. Gnanavel V. Roopan S.M. Rajeshkumar S. Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture 2019 507 1 6 10.1016/j.aquaculture.2019.04.004
    [Google Scholar]
  91. Deshmane J. Hajare S. Patil H. Chaudhari P. Ghode DrSP, Chatur MrsVM. Marine pharmaceuticals: A review. Int. J. Pharm. Sci. Med. 2021 5 1 13
    [Google Scholar]
  92. Liu D. Li Y. Guo X. Ji W. Lin W. Chartarlactams Q−T, dimeric phenylspirodrimanes with antibacterial and antiviral activities. Chem. Biodivers. 2020 17 6 2000170 10.1002/cbdv.202000170 32289204
    [Google Scholar]
  93. Tan S. Yang B. Liu J. Xun T. Liu Y. Zhou X. Penicillixanthone A, a marine-derived dual-coreceptor antagonist as anti-HIV-1 agent. Nat. Prod. Res. 2019 33 10 1467 1471 10.1080/14786419.2017.1416376 29258357
    [Google Scholar]
  94. Li B. Li L. Peng Z. Liu D. Si L. Wang J. Yuan B. Huang J. Proksch P. Lin W. Harzianoic acids A and B, new natural scaffolds with inhibitory effects against hepatitis C virus. Bioorg. Med. Chem. 2019 27 3 560 567 10.1016/j.bmc.2018.12.038 30606673
    [Google Scholar]
  95. Zhang J. Li B. Qin Y. Karthik L. Zhu G. Hou C. Jiang L. Liu M. Ye X. Liu M. Hsiang T. Dai H. Zhang L. Liu X. A new abyssomicin polyketide with anti-influenza A virus activity from a marine-derived Verrucosispora sp. MS100137. Appl. Microbiol. Biotechnol. 2020 104 4 1533 1543 10.1007/s00253‑019‑10217‑2 31894364
    [Google Scholar]
  96. Chaisuwan W. Phimolsiripol Y. Chaiyaso T. Techapun C. Leksawasdi N. Jantanasakulwong K. Rachtanapun P. Wangtueai S. Sommano S.R. You S. Regenstein J.M. Barba F.J. Seesuriyachan P. The antiviral activity of bacterial, fungal, and algal polysaccharides as bioactive ingredients: Potential uses for enhancing immune systems and preventing viruses. Front. Nutr. 2021 8 772033 10.3389/fnut.2021.772033 34805253
    [Google Scholar]
  97. Riccio G. Ruocco N. Mutalipassi M. Costantini M. Zupo V. Coppola D. de Pascale D. Lauritano C. Ten-year research update review: Antiviral activities from marine organisms. Biomolecules 2020 10 7 1007 10.3390/biom10071007 32645994
    [Google Scholar]
  98. Carbone D.A. Pellone P. Lubritto C. Ciniglia C. Evaluation of microalgae antiviral activity and their bioactive compounds. Antibiotics 2021 10 6 746 10.3390/antibiotics10060746 34202941
    [Google Scholar]
  99. Liu J. Obaidi I. Nagar S. Scalabrino G. Sheridan H. The antiviral potential of algal-derived macromolecules. Curr. Res. Biotech. 2021 3 120 134 10.1016/j.crbiot.2021.04.003
    [Google Scholar]
  100. Ismail M.M. Diab M.H. Elkomy R.G. Algal Bioactive Compounds and Their biological activities. Int. J. Pharm. Res. 2021 13 2 1440 1450 10.31838/ijpr/2021.13.02.198
    [Google Scholar]
  101. Musale AS Marine algae as a natural source for antiviral compounds. AJPS Preprints 2023 10.21467/preprints.38
    [Google Scholar]
  102. Guncheva M. Raynova Y. Idakieva K. Todinova S. Yancheva D. Synthesis and stability of a rapana thomasiana hemocyanin conjugated with vitamin B9. J. Chem. Tech. Metall. 2020 55 277 283
    [Google Scholar]
  103. Yang Y. Chen F. Chen H.Y. Peng H. Hao H. Wang K.J. A novel antimicrobial peptide scyreprocin from mud crab Scylla paramamosain showing potent antifungal and anti-biofilm activity. Front. Microbiol. 2020 11 1589 10.3389/fmicb.2020.01589 32849331
    [Google Scholar]
  104. Liu Z. Niu F. Xie Y. Xie S. Liu Y. Yang Y. Zhou C. Wan X. A review: Natural polysaccharides from medicinal plants and microorganisms and their anti-herpetic mechanism. Biomed. Pharmacother. 2020 129 110469 10.1016/j.biopha.2020.110469 32768956
    [Google Scholar]
  105. Yermak I. Anastyuk S. Kravchenko A. Helbert W. Glazunov V. Shulgin A. Spirin P. Prassolov V. New insights into the structure of kappa/beta-carrageenan: A novel potential inhibitor of HIV-1. Int. J. Mol. Sci. 2021 22 23 12905 10.3390/ijms222312905 34884718
    [Google Scholar]
  106. Treml J. Gazdová M. Šmejkal K. Šudomová M. Kubatka P. Hassan S.T.S. Natural products-derived chemicals: Breaking barriers to novel Anti-HSV drug development. Viruses 2020 12 2 154 10.3390/v12020154 32013134
    [Google Scholar]
  107. Mulford D. Feasibility of Outpatient Daily High Dose Cytarabine as Consolidation Therapy for Older Patients With Acute Myeloid Leukemia. NCT Patent 02101983 2018
  108. Pilitsis J. phase 4, Prospective Study of Conservative Ziconotide Dosing as a First-Line Intrathecal Drug Therapy for Neuropathic Pain. NCT Patent 03321955 2018
  109. An Open-label, multicenter, phase 2 study to evaluate the efficacy and safety of eribulin mesylate in previously treated subjects with advanced or metastatic soft tissue sarcoma. NCT Patent 01458249 2016
  110. A randomized, open-label crossover study to compare the relative bioavailability, efficacy, and safety of epanova® and lovaza® in men and women with a history of pancreatitis. NCT Patent 02189252 2016
  111. Preusser M. A phase 2 study evaluating Trabectedin for recurrent grade II or III meningioma: A randomized phase II study of the EORTC Brain Tumor Group. NCT Patent 02234050 2025
  112. Sing A. A Phase I/II multi-dose study of sgn-30 in patients with refractory or recurrent CD30+ hematologic malignancies. NCT Patent 00051597 2011
  113. A Study of Aplid(Plitidepsin) in Subjects With Advanced Prostate Cancer. NCT Patent 00780975 2020
  114. Phase I study of bryostatin-1 (NSC 339555) and cisplatin in advanced malignancies. NCT Patent 00003132 2012
  115. Mayer A.M.S. Glaser K.B. Cuevas C. Jacobs R.S. Kem W. Little R.D. McIntosh J.M. Newman D.J. Potts B.C. Shuster D.E. The odyssey of marine pharmaceuticals: A current pipeline perspective. Trends Pharmacol. Sci. 2010 31 6 255 265 10.1016/j.tips.2010.02.005 20363514
    [Google Scholar]
  116. Montaser R. Luesch H. Marine natural products: A new wave of drugs? Future Med. Chem. 2011 3 12 1475 1489 10.4155/fmc.11.118 21882941
    [Google Scholar]
  117. Dyshlovoy S.A. Honecker F. Marine compounds and cancer: Updates 2020. Mar. Drugs 2020 18 12 643 10.3390/md18120643 33333876
    [Google Scholar]
  118. Kang H. Choi M.C. Seo C. Park Y. Therapeutic properties and biological benefits of marine-derived anticancer peptides. Int. J. Mol. Sci. 2018 19 3 919 10.3390/ijms19030919 29558431
    [Google Scholar]
  119. Martins A. Vieira H. Gaspar H. Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Mar. Drugs 2014 12 2 1066 1101 10.3390/md12021066 24549205
    [Google Scholar]
  120. Dyshlovoy S. Honecker F. Marine compounds and cancer: 2017 updates. Mar. Drugs 2018 16 2 41 10.3390/md16020041 29364147
    [Google Scholar]
  121. Markham A. Lurbinectedin: First approval. Drugs 2020 80 13 1345 1353 10.1007/s40265‑020‑01374‑0 32816202
    [Google Scholar]
  122. Patel S. Petty W.J. Sands J.M. An overview of lurbinectedin as a new second-line treatment option for small cell lung cancer. Ther. Adv. Med. Oncol. 2021 13 17588359211020529 10.1177/17588359211020529 34104228
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575422078251105111842
Loading
/content/journals/mrmc/10.2174/0113895575422078251105111842
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Marine compounds ; antifungal ; anticancer ; enzymes ; antibacterial ; antiviral
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test