Skip to content
2000
image of Research Progress on Targeted Inhibition of Ferroptosis and Alzheimer's Disease Treatment

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the formation of senile plaques and neurofibrillary fiber tangles. Studies have shown that increased regional iron loading in the brain, dysregulation of iron homeostasis in the body, oxidative stress, and protein and lipid oxidation are all involved in the pathogenesis of AD. Ferroptosis, an iron-dependent, lipid peroxidation-driven form of regulated cell death, is increasingly implicated in the pathological process of AD, and some new compounds targeting ferroptosis demonstrate therapeutic efficacy in both cellular and animal models of AD. Therefore, this article systematically summarizes recent advances in the role of ferroptosis in AD pathogenesis and highlights progress in targeting ferroptosis for AD treatment, providing insights for future therapeutic and preventive strategies.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575411431251125115235
2026-01-23
2026-01-29
Loading full text...

Full text loading...

References

  1. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  2. Zheng Q. Wang X. Alzheimer’s disease: Insights into pathology, molecular mechanisms, and therapy. Protein Cell 2025 16 2 83 120 10.1093/procel/pwae026 38733347
    [Google Scholar]
  3. Krishnamurthy H.K. Jayaraman V. Krishna K. Wang T. Bei K. Changalath C. Rajasekaran J.J. An overview of the genes and biomarkers in Alzheimer’s disease. Ageing Res. Rev. 2025 104 102599 10.1016/j.arr.2024.102599 39612989
    [Google Scholar]
  4. Twarowski B. Herbet M. Inflammatory processes in Alzheimer’s disease—pathomechanism, diagnosis and treatment: A review. Int. J. Mol. Sci. 2023 24 7 6518 10.3390/ijms24076518 37047492
    [Google Scholar]
  5. Safiri S. Ghaffari Jolfayi A. Fazlollahi A. Morsali S. Sarkesh A. Daei Sorkhabi A. Golabi B. Aletaha R. Motlagh Asghari K. Hamidi S. Mousavi S.E. Jamalkhani S. Karamzad N. Shamekh A. Mohammadinasab R. Sullman M.J.M. Şahin F. Kolahi A.A. Alzheimer’s disease: A comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front. Med. 2024 11 1474043 10.3389/fmed.2024.1474043 39736972
    [Google Scholar]
  6. Perneczky R. Dom G. Chan A. Falkai P. Bassetti C. Anti‐amyloid antibody treatments for Alzheimer’s disease. Eur. J. Neurol. 2024 31 2 e16049 10.1111/ene.16049 37697714
    [Google Scholar]
  7. Ji Q. Chen J. Li Y. Tao E. Zhan Y. Incidence and prevalence of Alzheimer’s disease in China: A systematic review and meta-analysis. Eur. J. Epidemiol. 2024 39 7 701 714 10.1007/s10654‑024‑01144‑2 39088069
    [Google Scholar]
  8. Alzweiri M. Sweidan K. Saleh O. Al-Helo T. Synthesis and evaluation of new 2-oxo-1,2-dihydroquinoline-3-carboxamides as potent inhibitors against acetylcholinesterase enzyme. Med. Chem. Res. 2022 31 9 1448 1460 10.1007/s00044‑022‑02922‑x
    [Google Scholar]
  9. Singh G. Kumar S. Panda S.R. Kumar P. Rai S. Verma H. Singh Y.P. Kumar S. Srikrishna S. Naidu V.G.M. Modi G. Design, synthesis, and biological evaluation of ferulic acid-piperazine derivatives targeting pathological hallmarks of Alzheimer’s disease. ACS Chem. Neurosci. 2024 15 15 2756 2778 10.1021/acschemneuro.4c00130 39076038
    [Google Scholar]
  10. Zhou X.P. Sun L.B. Liu W.H. Zhu W.M. Li L.C. Song X.Y. Xing J.P. Gao S.H. The complex relationship between gut microbiota and Alzheimer’s disease: A systematic review. Ageing Res. Rev. 2025 104 102637 10.1016/j.arr.2024.102637 39662839
    [Google Scholar]
  11. Cheng Q. Fan Y. Zhang P. Liu H. Han J. Yu Q. Wang X. Wu S. Lu Z. Biomarkers of synaptic degeneration in Alzheimer’s disease. Ageing Res. Rev. 2025 104 102642 10.1016/j.arr.2024.102642 39701184
    [Google Scholar]
  12. Rissman R.A. Langford O. Raman R. Donohue M.C. Abdel-Latif S. Meyer M.R. Wente-Roth T. Kirmess K.M. Ngolab J. Winston C.N. Jimenez-Maggiora G. Rafii M.S. Sachdev P. West T. Yarasheski K.E. Braunstein J.B. Irizarry M. Johnson K.A. Aisen P.S. Sperling R.A. Plasma Aβ42/Aβ40 and phospho‐tau217 concentration ratios increase the accuracy of amyloid PET classification in preclinical Alzheimer’s disease. Alzheimers Dement. 2024 20 2 1214 1224 10.1002/alz.13542 37932961
    [Google Scholar]
  13. Bougea A. Gourzis P. Biomarker-based precision therapy for Alzheimer’s disease: Multidimensional evidence leading a new breakthrough in personalized medicine. J. Clin. Med. 2024 13 16 4661 10.3390/jcm13164661 39200803
    [Google Scholar]
  14. Walker J.M. Orr M.E. Orr T.C. Thorn E.L. Christie T.D. Yokoda R.T. Vij M. Ehrenberg A.J. Marx G.A. McKenzie A.T. Kauffman J. Selmanovic E. Wisniewski T. Drummond E. White C.L. Crary J.F. Farrell K. Kautz T.F. Daoud E.V. Richardson T.E. Spatial proteomics of hippocampal subfield‐specific pathology in Alzheimer’s disease and primary age‐related tauopathy. Alzheimers Dement. 2024 20 2 783 797 10.1002/alz.13484 37777848
    [Google Scholar]
  15. Islam T. Hill E. Abrahamson E.E. Servaes S. Smirnov D.S. Zeng X. Sehrawat A. Chen Y. Kac P.R. Kvartsberg H. Olsson M. Sjons E. Gonzalez-Ortiz F. Therriault J. Tissot C. Del Popolo I. Rahmouni N. Richardson A. Mitchell V. Zetterberg H. Pascoal T.A. Lashley T. Wall M.J. Galasko D. Rosa-Neto P. Ikonomovic M.D. Blennow K. Karikari T.K. Phospho-tau serine-262 and serine-356 as biomarkers of pre-tangle soluble tau assemblies in Alzheimer’s disease. Nat. Med. 2025 31 2 574 588 10.1038/s41591‑024‑03400‑0 39930142
    [Google Scholar]
  16. McManus R.M. Komes M.P. Griep A. Santarelli F. Schwartz S. Ramón Perea J. Schlachetzki J.C.M. Bouvier D.S. Khalil M.A. Lauterbach M.A. Heinemann L. Schlüter T. Pour M.S. Lovotti M. Stahl R. Duthie F. Rodríguez-Alcázar J.F. Schmidt S.V. Spitzer J. Noori P. Maillo A. Boettcher A. Herron B. McConville J. Gomez-Cabrero D. Tegnér J. Glass C.K. Hiller K. Latz E. Heneka M.T. NLRP3-mediated glutaminolysis controls microglial phagocytosis to promote Alzheimer’s disease progression. Immunity 2025 58 2 326 343.e11 10.1016/j.immuni.2025.01.007 39904338
    [Google Scholar]
  17. Sun Z. Zhang X. So K.F. Jiang W. Chiu K. Targeting microglia in Alzheimer’s disease: Pathogenesis and potential therapeutic strategies. Biomolecules 2024 14 7 833 10.3390/biom14070833 39062547
    [Google Scholar]
  18. Dhapola R. Beura S.K. Sharma P. Singh S.K. HariKrishnaReddy, D. Oxidative stress in Alzheimer’s disease: Current knowledge of signaling pathways and therapeutics. Mol. Biol. Rep. 2024 51 1 48 10.1007/s11033‑023‑09021‑z 38165499
    [Google Scholar]
  19. Klemmensen M.M. Borrowman S.H. Pearce C. Pyles B. Chandra B. Mitochondrial dysfunction in neurodegenerative disorders. Neurotherapeutics 2024 21 1 e00292 10.1016/j.neurot.2023.10.002 38241161
    [Google Scholar]
  20. D’Alessandro M.C.B. Kanaan S. Geller M. Praticò D. Daher J.P.L. Mitochondrial dysfunction in Alzheimer’s disease. Ageing Res. Rev. 2025 107 102713 10.1016/j.arr.2025.102713 40023293
    [Google Scholar]
  21. Pappolla M.A. Martins R.N. Poeggeler B. Omar R.A. Perry G. Oxidative stress in Alzheimer’s disease: The shortcomings of antioxidant therapies. J. Alzheimers Dis. 2024 101 s1 S155 S178 10.3233/JAD‑240659 39422961
    [Google Scholar]
  22. Mandal P.K. Maroon J.C. Samkaria A. Arora Y. Sharma S. Pandey A. Iron chelators and Alzheimer’s disease clinical trials. J. Alzheimers Dis. 2024 100 s1 S243 S249 10.3233/JAD‑240605 39031369
    [Google Scholar]
  23. Mohammadi S. Ghaderi S. Fatehi F. Iron accumulation/overload and Alzheimer’s disease risk factors in the precuneus region: A comprehensive narrative review. Aging Med. (Milton) 2024 7 5 649 667 10.1002/agm2.12363 39507230
    [Google Scholar]
  24. Rajendran K. Krishnan U.M. Mechanistic insights and emerging therapeutic stratagems for Alzheimer’s disease. Ageing Res. Rev. 2024 97 102309 10.1016/j.arr.2024.102309 38615895
    [Google Scholar]
  25. Mezzanotte M. Stanga S. Brain iron dyshomeostasis and ferroptosis in Alzheimer’s disease pathophysiology: Two faces of the same coin. Aging Dis. 2024 16 5 2615 2640 10.14336/AD.2024.0094 38913042
    [Google Scholar]
  26. Yong Y. Yan L. Wei J. Feng C. Yu L. Wu J. Guo M. Fan D. Yu C. Qin D. Zhou X. Wu A. A novel ferroptosis inhibitor, Thonningianin A, improves Alzheimer’s disease by activating GPX4. Theranostics 2024 14 16 6161 6184 10.7150/thno.98172 39431016
    [Google Scholar]
  27. Tian S. Wang B. Ding Y. Zhang Y. Yu P. Chang Y.Z. Gao G. The role of iron transporters and regulators in Alzheimer’s disease and Parkinson’s disease: Pathophysiological insights and therapeutic prospects. Biomed. Pharmacother. 2024 179 117419 10.1016/j.biopha.2024.117419 39245001
    [Google Scholar]
  28. Ionescu-Tucker A. Cotman C.W. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol. Aging 2021 107 86 95 10.1016/j.neurobiolaging.2021.07.014 34416493
    [Google Scholar]
  29. Sun Y. Chen P. Zhai B. Zhang M. Xiang Y. Fang J. Xu S. Gao Y. Chen X. Sui X. Li G. The emerging role of ferroptosis in inflammation. Biomed. Pharmacother. 2020 127 110108 10.1016/j.biopha.2020.110108 32234642
    [Google Scholar]
  30. Rochette L. Dogon G. Rigal E. Zeller M. Cottin Y. Vergely C. Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int. J. Mol. Sci. 2022 24 1 449 10.3390/ijms24010449 36613888
    [Google Scholar]
  31. Lu C. Zhou X. Zhang L. Phospholipids with two polyunsaturated fatty acyl tails: An important driver of ferroptosis. MedComm 2024 5 7 e606 10.1002/mco2.606 38919333
    [Google Scholar]
  32. Bahado-Singh R.O. Vishweswaraiah S. Turkoglu O. Graham S.F. Radhakrishna U. Alzheimer’s precision neurology: Epigenetics of cytochrome P450 genes in circulating cell-free DNA for disease prediction and mechanism. Int. J. Mol. Sci. 2023 24 3 2876 10.3390/ijms24032876 36769199
    [Google Scholar]
  33. Jiang X. Stockwell B.R. Conrad M. Ferroptosis: Mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 2021 22 4 266 282 10.1038/s41580‑020‑00324‑8 33495651
    [Google Scholar]
  34. Liang D. Minikes A.M. Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022 82 12 2215 2227 10.1016/j.molcel.2022.03.022 35390277
    [Google Scholar]
  35. Liu J. Kang R. Tang D. Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 2022 289 22 7038 7050 10.1111/febs.16059 34092035
    [Google Scholar]
  36. Wu Y.H. Hsieh H.L. Effects of redox homeostasis and mitochondrial damage on Alzheimer’s disease. Antioxidants 2023 12 10 1816 10.3390/antiox12101816 37891895
    [Google Scholar]
  37. Cheignon C. Tomas M. Bonnefont-Rousselot D. Faller P. Hureau C. Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018 14 450 464 10.1016/j.redox.2017.10.014 29080524
    [Google Scholar]
  38. Tiwari S. Atluri V. Kaushik A. Yndart A. Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine 2019 14 5541 5554 10.2147/IJN.S200490 31410002
    [Google Scholar]
  39. Liu E. Zhang Y. Wang J.Z. Updates in Alzheimer’s disease: From basic research to diagnosis and therapies. Transl. Neurodegener. 2024 13 1 45 10.1186/s40035‑024‑00432‑x 39232848
    [Google Scholar]
  40. Ma C. Hong F. Yang S. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions. Molecules 2022 27 4 1210 10.3390/molecules27041210 35209007
    [Google Scholar]
  41. Bao W.D. Pang P. Zhou X.T. Hu F. Xiong W. Chen K. Wang J. Wang F. Xie D. Hu Y.Z. Han Z.T. Zhang H.H. Wang W.X. Nelson P.T. Chen J.G. Lu Y. Man H.Y. Liu D. Zhu L.Q. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death Differ. 2021 28 5 1548 1562 10.1038/s41418‑020‑00685‑9 33398092
    [Google Scholar]
  42. Lee J. Hyun D.H. The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants 2023 12 4 918 10.3390/antiox12040918 37107292
    [Google Scholar]
  43. Maia M.A. Sousa E. BACE-1 and γ-secretase as therapeutic targets for Alzheimer’s disease. Pharmaceuticals 2019 12 1 41 10.3390/ph12010041 30893882
    [Google Scholar]
  44. Félix-Soriano E. Stanford K.I. Exerkines and redox homeostasis. Redox Biol. 2023 63 102748 10.1016/j.redox.2023.102748 37247469
    [Google Scholar]
  45. Reichert C.O. de Freitas F.A. Sampaio-Silva J. Rokita-Rosa L. Barros P.L. Levy D. Bydlowski S.P. Ferroptosis mechanisms involved in neurodegenerative diseases. Int. J. Mol. Sci. 2020 21 22 8765 10.3390/ijms21228765 33233496
    [Google Scholar]
  46. Raza A. Xie W. Kim K.H. Dronamraju V.R. Williams J. Vince R. More S.S. Dipeptide of ψ-GSH inhibits oxidative stress and neuroinflammation in an Alzheimer’s disease mouse model. Antioxidants 2022 11 6 1075 10.3390/antiox11061075 35739972
    [Google Scholar]
  47. Jain S.K. Stevens C.M. Margret J.J. Levine S.N. Alzheimer’s disease: A review of pathology, current treatments, and the potential therapeutic effect of decreasing oxidative stress by combined vitamin D and l-cysteine supplementation. Antioxid. Redox Signal. 2024 40 10-12 663 678 10.1089/ars.2023.0245 37756366
    [Google Scholar]
  48. Luo J Lu Q Sun B Shao N Huang W Hu G Cai B Si W Chrysophanol improves memory impairment and cell injury by reducing the level of ferroptosis in Aβ25-35 treated rat and PC12 cells. 3 Biotech 2023 13 11 348 10.1007/s13205‑023‑03769‑8 37780805
    [Google Scholar]
  49. Costa I. Barbosa D.J. Benfeito S. Silva V. Chavarria D. Borges F. Remião F. Silva R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol. Ther. 2023 244 108373 10.1016/j.pharmthera.2023.108373 36894028
    [Google Scholar]
  50. Wang Y. Lv M. Zhao W. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res. Rev. 2023 91 102035 10.1016/j.arr.2023.102035 37619619
    [Google Scholar]
  51. Shchepinov M.S. Polyunsaturated fatty acid deuteration against neurodegeneration. Trends Pharmacol. Sci. 2020 41 4 236 248 10.1016/j.tips.2020.01.010 32113652
    [Google Scholar]
  52. Qiu B. Zandkarimi F. Bezjian C.T. Reznik E. Soni R.K. Gu W. Jiang X. Stockwell B.R. Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. Cell 2024 187 5 1177 1190.e18 10.1016/j.cell.2024.01.030 38366593
    [Google Scholar]
  53. Bradley-Whitman M.A. Lovell M.A. Biomarkers of lipid peroxidation in Alzheimer disease (AD): An update. Arch. Toxicol. 2015 89 7 1035 1044 10.1007/s00204‑015‑1517‑6 25895140
    [Google Scholar]
  54. Petrovic S. Arsic A. Ristic-Medic D. Cvetkovic Z. Vucic V. Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: A review of human studies. Antioxidants 2020 9 11 1128 10.3390/antiox9111128 33202952
    [Google Scholar]
  55. Dhapola R. Hota S.S. Sarma P. Bhattacharyya A. Medhi B. Reddy D.H. Recent advances in molecular pathways and therapeutic implications targeting neuroinflammation for Alzheimer’s disease. Inflammopharmacology 2021 29 6 1669 1681 10.1007/s10787‑021‑00889‑6 34813026
    [Google Scholar]
  56. Kumar A. Behl T. Jamwal S. Kaur I. Sood A. Kumar P. Exploring the molecular approach of COX and LOX in Alzheimer’s and Parkinson’s disorder. Mol. Biol. Rep. 2020 47 12 9895 9912 10.1007/s11033‑020‑06033‑x 33263931
    [Google Scholar]
  57. Guan L. Mao Z. Yang S. Wu G. Chen Y. Yin L. Qi Y. Han L. Xu L. Dioscin alleviates Alzheimer’s disease through regulating RAGE/NOX4 mediated oxidative stress and inflammation. Biomed. Pharmacother. 2022 152 113248 10.1016/j.biopha.2022.113248 35691153
    [Google Scholar]
  58. Elharram A. Czegledy N.M. Golod M. Milne G.L. Pollock E. Bennett B.M. Shchepinov M.S. Deuterium‐reinforced polyunsaturated fatty acids improve cognition in a mouse model of sporadic Alzheimer’s disease. FEBS J. 2017 284 23 4083 4095 10.1111/febs.14291 29024570
    [Google Scholar]
  59. Xiang Y. Song X. Long D. Ferroptosis regulation through Nrf2 and implications for neurodegenerative diseases. Arch. Toxicol. 2024 98 3 579 615 10.1007/s00204‑023‑03660‑8 38265475
    [Google Scholar]
  60. Ursini F. Maiorino M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med. 2020 152 175 185 10.1016/j.freeradbiomed.2020.02.027 32165281
    [Google Scholar]
  61. Zhang T.C. Lin Y.C. Sun N.N. Liu S. Hu W.Z. Zhao Y. Dong X.H. He X.P. Icariin, astragaloside a and puerarin mixture attenuates cognitive impairment in APP/PS1 mice via inhibition of ferroptosis-lipid peroxidation. Neurochem. Int. 2024 175 105705 10.1016/j.neuint.2024.105705 38412923
    [Google Scholar]
  62. Yang Y. Wang X. Xiao A. Han J. Wang Z. Wen M. Ketogenic diet prevents chronic sleep deprivation-induced Alzheimer’s disease by inhibiting iron dyshomeostasis and promoting repair via Sirt1/Nrf2 pathway. Front. Aging Neurosci. 2022 14 998292 10.3389/fnagi.2022.998292 36118706
    [Google Scholar]
  63. Niu T.T. Yin H. Xu B.L. Yang T.T. Li H.Q. Sun Y. Liu G.Z. Protective effects of ginkgolide on a cellular model of Alzheimer’s disease via suppression of the NF-κB signaling pathway. Appl. Biochem. Biotechnol. 2022 194 6 2448 2464 10.1007/s12010‑022‑03828‑5 35129804
    [Google Scholar]
  64. Wang Y. Wu S. Li Q. Sun H. Wang H. Pharmacological inhibition of ferroptosis as a therapeutic target for neurodegenerative diseases and strokes. Adv. Sci. 2023 10 24 2300325 10.1002/advs.202300325 37341302
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575411431251125115235
Loading
/content/journals/mrmc/10.2174/0113895575411431251125115235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test