Skip to content
2000
Volume 25, Issue 17
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Breast cancer is a heterogeneous disease consisting of several molecular subtypes, such as Hormone Receptor-positive (HR+), Human Epidermal Growth Factor Receptor 2-positive (HER2+), and Triple-Negative Breast Cancer (TNBC). Although a lot of success has been realized in targeted agents, there still remain significant problems, including resistance to drugs, toxicity related to treatment, and few therapeutic possibilities for aggressive subtypes. Confronting such limitations requires complementary treatment approaches with better efficacy and safety profiles. Phytoconstituents from natural sources have emerged as potential therapeutic agents due to their multitargeting activity, good safety profile, and capacity to evade drug resistance. These bioactive molecules, such as flavonoids, alkaloids, terpenoids, and saponins, possess various mechanisms of action, including modulation of cell cycle regulators, induction of apoptosis, inhibition of angiogenesis, suppression of metastasis, and regulation of critical oncogenic signaling pathways. Their interference with several cancer pathways gives them a holistic strategy for breast cancer therapy. This review offers an in-depth examination of new phytoconstituents that target the molecular basis of various subtypes of breast cancer. It also highlights their scope for integration into traditional paradigms either as monotherapy or in combination with current therapies to increase therapeutic impact with the least adverse effects. Through the clarification of their mechanisms of action and therapeutic advantages, this review promotes the ongoing pursuit of phytoconstituents as potential contenders in contemporary oncology, providing novel targets for the control of breast cancer and enhanced patient care.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575417244250905072102
2025-09-17
2025-12-20
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  2. ThakurC. QiuY. FuY. BiZ. ZhangW. JiH. ChenF. Epigenetics and environment in breast cancer: New paradigms for anti-cancer therapies.Front. Oncol.20221297128810.3389/fonc.2022.971288 36185256
    [Google Scholar]
  3. LiC.I. UribeD.J. DalingJ.R. Clinical characteristics of different histologic types of breast cancer.Br. J. Cancer20059391046105210.1038/sj.bjc.6602787 16175185
    [Google Scholar]
  4. HowladerN. CroninK.A. KurianA.W. AndridgeR. Differences in breast cancer survival by molecular subtypes in the United States.Cancer Epidemiol. Biomarkers Prev.201827661962610.1158/1055‑9965.EPI‑17‑0627 29593010
    [Google Scholar]
  5. BursteinH.J. Unmet challenges in systemic therapy for early stage breast cancer.Breast202262Suppl. 1S67S6910.1016/j.breast.2021.12.009 34924252
    [Google Scholar]
  6. MazurakovaA. KoklesovaL. SamecM. KudelaE. KajoK. SkuciovaV. CsizmárS.H. MestanovaV. PecM. AdamkovM. Al-IshaqR.K. SmejkalK. GiordanoF.A. BüsselbergD. BiringerK. GolubnitschajaO. KubatkaP. Anti-breast cancer effects of phytochemicals: Primary, secondary, and tertiary care.EPMA J.202213231533410.1007/s13167‑022‑00277‑2 35437454
    [Google Scholar]
  7. SarhadiV.K. ArmengolG. Molecular biomarkers in cancer.Biomolecules2022128102110.3390/biom12081021 35892331
    [Google Scholar]
  8. CserniG. SejbenA. Grading ductal carcinoma in situ (DCIS) of the breast–what’s wrong with it?Pathol. Oncol. Res.202026266567110.1007/s12253‑019‑00760‑8 31776839
    [Google Scholar]
  9. TabárL. DeanP.B. TuckerF.L. YenA.M.F. ChenS.L.S. LinA.T.Y. HsuC.Y. MunpolsriP. WuW.Y.Y. SmithR.A. DuffyS.W. ChenT.H.H. TarjánM. VörösA. Imaging biomarkers are underutilised but highly predictive prognostic factors for the more fatal breast cancer subtypes.Eur. J. Radiol.202316611102110.1016/j.ejrad.2023.111021 37542814
    [Google Scholar]
  10. AlyS.H. ElbadryA.M.M. DoghishA.S. El-NasharH.A.S. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: An updated review.Naunyn Schmiedebergs Arch. Pharmacol.202439785571559610.1007/s00210‑024‑03054‑2 38563878
    [Google Scholar]
  11. BanerjeeS. DowsettM. AshworthA. MartinL.A. Mechanisms of disease: Angiogenesis and the management of breast cancer.Nat. Clin. Pract. Oncol.20074953655010.1038/ncponc0905 17728712
    [Google Scholar]
  12. LiuZ.L. ChenH.H. ZhengL.L. SunL.P. ShiL. Angiogenic signaling pathways and anti-angiogenic therapy for cancer.Signal Transduct. Target. Ther.20238119810.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  13. AyoubN.M. JaradatS.K. Al-ShamiK.M. AlkhalifaA.E. Targeting angiogenesis in breast cancer: Current evidence and future perspectives of novel anti-angiogenic approaches.Front. Pharmacol.20221383813310.3389/fphar.2022.838133 35281942
    [Google Scholar]
  14. WangL. ZhangS. WangX. The metabolic mechanisms of breast cancer metastasis.Front. Oncol.20211060241610.3389/fonc.2020.602416 33489906
    [Google Scholar]
  15. BarriereG. FiciP. GalleraniG. FabbriF. ZoliW. RigaudM. Circulating tumor cells and epithelial, mesenchymal and stemness markers: Characterization of cell subpopulations.Ann. Transl. Med.201421110910.3978/j.issn.2305‑5839.2014.10.04 25489583
    [Google Scholar]
  16. DesgrosellierJ.S. ChereshD.A. Integrins in cancer: Biological implications and therapeutic opportunities.Nat. Rev. Cancer201010192210.1038/nrc2748 20029421
    [Google Scholar]
  17. PellegrinoB. HlavataZ. MigaliC. De SilvaP. AielloM. Willard-GalloK. MusolinoA. SolinasC. Luminal breast cancer: Risk of recurrence and tumor-associated immune suppression.Mol. Diagn. Ther.202125440942410.1007/s40291‑021‑00525‑7 33974235
    [Google Scholar]
  18. DouT. LiJ. ZhangY. PeiW. ZhangB. WangB. WangY. JiaH. The cellular composition of the tumor microenvironment is an important marker for predicting therapeutic efficacy in breast cancer.Front. Immunol.202415136868710.3389/fimmu.2024.1368687 38487526
    [Google Scholar]
  19. SalemmeV. CentonzeG. CavalloF. DefilippiP. ContiL. The crosstalk between tumor cells and the immune microenvironment in breast cancer: Implications for immunotherapy.Front. Oncol.20211161030310.3389/fonc.2021.610303 33777750
    [Google Scholar]
  20. BoyleS.T. RISING STARS: Hormonal regulation of the breast cancer microenvironment.J. Mol. Endocrinol.202370322017410.1530/JME‑22‑0174 36629385
    [Google Scholar]
  21. NascimentoC. FerreiraF. Tumor microenvironment of human breast cancer, and feline mammary carcinoma as a potential study model.Biochim. Biophys. Acta Rev. Cancer20211876118858710.1016/j.bbcan.2021.188587 34237352
    [Google Scholar]
  22. BarrigaV. KuolN. NurgaliK. ApostolopoulosV. The complex interaction between the tumor micro-environment and immune checkpoints in breast cancer.Cancers2019118120510.3390/cancers11081205 31430935
    [Google Scholar]
  23. BrufskyA.M. DicklerM.N. Estrogen receptor-positive breast cancer: Exploiting signaling pathways implicated in endocrine resistance.Oncologist201823552853910.1634/theoncologist.2017‑0423 29352052
    [Google Scholar]
  24. TrabertB. ShermanM.E. KannanN. StanczykF.Z. Progesterone and breast cancer.Endocr. Rev.202041232034410.1210/endrev/bnz001 31512725
    [Google Scholar]
  25. ChenP. LiB. Ou-YangL. Role of estrogen receptors in health and disease.Front. Endocrinol.20221383900510.3389/fendo.2022.839005 36060947
    [Google Scholar]
  26. IgnatiadisM. SotiriouC. Luminal breast cancer: From biology to treatment.Nat. Rev. Clin. Oncol.201310949450610.1038/nrclinonc.2013.124 23881035
    [Google Scholar]
  27. TsangJ.Y.S. TseG.M. Molecular classification of breast cancer.Adv. Anat. Pathol.2020271273510.1097/PAP.0000000000000232 31045583
    [Google Scholar]
  28. TranB. BedardP.L. Luminal-B breast cancer and novel therapeutic targets.Breast Cancer Res.201113622110.1186/bcr2904 22217398
    [Google Scholar]
  29. ColleoniM. RotmenszN. MaisonneuveP. MastropasquaM.G. LuiniA. VeronesiP. IntraM. MontagnaE. CancelloG. CardilloA. MazzaM. PerriG. IorfidaM. PruneriG. GoldhirschA. VialeG. Outcome of special types of luminal breast cancer.Ann. Oncol.20122361428143610.1093/annonc/mdr461 22039080
    [Google Scholar]
  30. YaşarP. AyazG. UserS.D. GüpürG. MuyanM. Molecular mechanism of estrogen–estrogen receptor signaling.Reprod. Med. Biol.201716142010.1002/rmb2.12006 29259445
    [Google Scholar]
  31. YueW. WangJ.P. LiY. FanP. LiuG. ZhangN. ConawayM. WangH. KorachK.S. BocchinfusoW. SantenR. Effects of estrogen on breast cancer development: Role of estrogen receptor independent mechanisms.Int. J. Cancer201012781748175710.1002/ijc.25207 20104523
    [Google Scholar]
  32. LiZ. WeiH. LiS. WuP. MaoX. The role of progesterone receptors in breast cancer.Drug Des. Devel. Ther.20221630531410.2147/DDDT.S336643 35115765
    [Google Scholar]
  33. ZhouY. LiuX. The role of estrogen receptor beta in breast cancer.Biomark. Res.2020813910.1186/s40364‑020‑00223‑2 32944243
    [Google Scholar]
  34. LambC.A. FabrisV.T. LanariC. Progesterone and breast.Best Pract. Res. Clin. Obstet. Gynaecol.202069859410.1016/j.bpobgyn.2020.04.001 32349923
    [Google Scholar]
  35. KimN. LukongK.E. Treating ER-positive breast cancer: A review of the current FDA-approved SERMs and SERDs and their mechanisms of action.Oncol. Rev.202519156464210.3389/or.2025.1564642 40275985
    [Google Scholar]
  36. PatelH.K. BihaniT. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment.Pharmacol. Ther.201818612410.1016/j.pharmthera.2017.12.012 29289555
    [Google Scholar]
  37. CarpenterR. MillerW.R. Role of aromatase inhibitors in breast cancer.Br. J. Cancer200593S1S1S510.1038/sj.bjc.6602688 16100519
    [Google Scholar]
  38. ZhangM.H. ManH.T. ZhaoX.D. DongN. MaS.L. Estrogen receptor-positive breast cancer molecular signatures and therapeutic potentials(Review).Biomed. Rep.201421415210.3892/br.2013.187 24649067
    [Google Scholar]
  39. AaltonenK.E. RosendahlA.H. OlssonH. MalmströmP. HartmanL. FernöM. Association between insulin-like growth factor-1 receptor (IGF1R) negativity and poor prognosis in a cohort of women with primary breast cancer.BMC Cancer201414179410.1186/1471‑2407‑14‑794 25362932
    [Google Scholar]
  40. O’ReganR. Paplomata, New and emerging treatments for estrogen receptor-positive breast cancer: Focus on everolimus.Ther. Clin. Risk Manag.20139273610.2147/TCRM.S30349 23345981
    [Google Scholar]
  41. BrowneI.M. OkinesA.F.C. Resistance to targeted inhibitors of the PI3K/AKT/mTOR pathway in advanced oestrogen-receptor-positive breast cancer.Cancers20241612225910.3390/cancers16122259 38927964
    [Google Scholar]
  42. PedrozaD.A. SubramaniR. LakshmanaswamyR. Classical and non-classical progesterone signaling in breast cancers.Cancers2020129244010.3390/cancers12092440 32867363
    [Google Scholar]
  43. ProssnitzE.R. BartonM. The G-protein-coupled estrogen receptor GPER in health and disease.Nat. Rev. Endocrinol.201171271572610.1038/nrendo.2011.122 21844907
    [Google Scholar]
  44. ChenW. WeiW. YuL. YeZ. HuangF. ZhangL. HuS. CaiC. Mammary development and breast cancer: A notch perspective.J. Mammary Gland Biol. Neoplasia202126330932010.1007/s10911‑021‑09496‑1 34374886
    [Google Scholar]
  45. ChiecL. ShahA.N. Risk-based approaches for optimizing treatment in her2 positive early stage breast cancer.Semin. Oncol.202047524925810.1053/j.seminoncol.2020.07.007
    [Google Scholar]
  46. LvQ. MengZ. YuY. JiangF. GuanD. LiangC. ZhouJ. LuA. ZhangG. Molecular mechanisms and translational therapies for human epidermal receptor 2 positive breast cancer.Int. J. Mol. Sci.20161712209510.3390/ijms17122095 27983617
    [Google Scholar]
  47. ArteagaC.L. SliwkowskiM.X. OsborneC.K. PerezE.A. PuglisiF. GianniL. Treatment of HER2-positive breast cancer: Current status and future perspectives.Nat. Rev. Clin. Oncol.201291163210.1038/nrclinonc.2011.177 22124364
    [Google Scholar]
  48. ChengX. A comprehensive review of HER2 in cancer biology and therapeutics.Genes202415790310.3390/genes15070903 39062682
    [Google Scholar]
  49. SchlamI. SwainS.M. HER2-positive breast cancer and tyrosine kinase inhibitors: The time is now.NPJ Breast Cancer2021715610.1038/s41523‑021‑00265‑1 34016991
    [Google Scholar]
  50. SwainS.M. ShastryM. HamiltonE. Targeting HER2-positive breast cancer: Advances and future directions.Nat. Rev. Drug Discov.202322210112610.1038/s41573‑022‑00579‑0 36344672
    [Google Scholar]
  51. PegramM. JackischC. JohnstonS.R.D. Estrogen/HER2 receptor crosstalk in breast cancer: Combination therapies to improve outcomes for patients with hormone receptor-positive/HER2-positive breast cancer.NPJ Breast Cancer2023914510.1038/s41523‑023‑00533‑2 37258523
    [Google Scholar]
  52. KrishnamurtiU. SilvermanJ.F. HER2 in breast cancer: A review and update.Adv. Anat. Pathol.201421210010710.1097/PAP.0000000000000015 24508693
    [Google Scholar]
  53. MahmoudR. Ordóñez-MoránP. AllegrucciC. Challenges for triple negative breast cancer treatment: Defeating heterogeneity and cancer stemness.Cancers20221417428010.3390/cancers14174280 36077812
    [Google Scholar]
  54. KumarH. GuptaN.V. JainR. MadhunapantulaS.V. BabuC.S. KesharwaniS.S. DeyS. JainV. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer.J. Adv. Res.20235427129210.1016/j.jare.2023.02.005 36791960
    [Google Scholar]
  55. DassS.A. TanK.L. Selva RajanR. MokhtarN.F. Mohd AdzmiE.R. Wan Abdul RahmanW.F. Tengku DinT.A.D.A.A. BalakrishnanV. Triple negative breast cancer: A review of present and future diagnostic modalities.Medicina20215716210.3390/medicina57010062 33445543
    [Google Scholar]
  56. NdongweT. ZhouA.A. GangaN.P. MatawoN. SibandaU. ChidziwaT.V. WitikaB.A. KrauseR.W.M. MatlouG.G. Siwe-NoundouX. The use of nanomaterials as drug delivery systems and anticancer agents in the treatment of triple-negative breast cancer: An updated review (year 2005 to date).Discov. Nano202419113810.1186/s11671‑024‑04089‑3 39225730
    [Google Scholar]
  57. LiY. ZhangH. MerkherY. ChenL. LiuN. LeonovS. ChenY. Recent advances in therapeutic strategies for triple-negative breast cancer.J. Hematol. Oncol.202215112110.1186/s13045‑022‑01341‑0 36038913
    [Google Scholar]
  58. WangC. FanP. WangQ. Evolving therapeutics and ensuing cardiotoxicities in triple-negative breast cancer.Cancer Treat. Rev.202413010281910.1016/j.ctrv.2024.102819 39216183
    [Google Scholar]
  59. MarraA. TrapaniD. VialeG. CriscitielloC. CuriglianoG. Practical classification of triple-negative breast cancer: Intratumoral heterogeneity, mechanisms of drug resistance, and novel therapies.NPJ Breast Cancer2020615410.1038/s41523‑020‑00197‑2 33088912
    [Google Scholar]
  60. PietriE. ConteducaV. AndreisD. MassaI. MelegariE. SartiS. CecconettoL. SchironeA. BravacciniS. SerraP. FedeliA. MaltoniR. AmadoriD. De GiorgiU. RoccaA. Androgen receptor signaling pathways as a target for breast cancer treatment.Endocr. Relat. Cancer20162310R485R49810.1530/ERC‑16‑0190 27528625
    [Google Scholar]
  61. BrumecM. SobočanM. TakačI. ArkoD. Clinical implications of androgen-positive triple-negative breast cancer.Cancers2021137164210.3390/cancers13071642 33915941
    [Google Scholar]
  62. RunaF. Ortiz-SotoG. de BarrosN.R. KelberJ.A. Targeting SMAD-dependent signaling: Considerations in epithelial and mesenchymal solid tumors.Pharmaceuticals202417332610.3390/ph17030326 38543112
    [Google Scholar]
  63. NathA. MitraS. MistryT. PalR. NasareV.D. Molecular targets and therapeutics in chemoresistance of triple-negative breast cancer.Med. Oncol.20223911410.1007/s12032‑021‑01610‑x 34812991
    [Google Scholar]
  64. MerikhianP. EisavandM.R. FarahmandL. Triple-negative breast cancer: Understanding Wnt signaling in drug resistance.Cancer Cell Int.202121141910.1186/s12935‑021‑02107‑3 34376211
    [Google Scholar]
  65. MedinaM.A. OzaG. SharmaA. ArriagaL.G. Hernández HernándezJ.M. RotelloV.M. RamirezJ.T. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies.Int. J. Environ. Res. Public Health2020176207810.3390/ijerph17062078 32245065
    [Google Scholar]
  66. LongL. FeiX. ChenL. YaoL. LeiX. Potential therapeutic targets of the JAK2/STAT3 signaling pathway in triple-negative breast cancer.Front. Oncol.202414138125110.3389/fonc.2024.1381251 38699644
    [Google Scholar]
  67. LiuR. YuY. WangQ. ZhaoQ. YaoY. SunM. ZhuangJ. SunC. QiY. Interactions between hedgehog signaling pathway and the complex tumor microenvironment in breast cancer: Current knowledge and therapeutic promises.Cell Commun. Signal.202422143210.1186/s12964‑024‑01812‑6 39252010
    [Google Scholar]
  68. MustafaM. AbbasK. AlamM. AhmadW. Moinuddin; Usmani, N.; Siddiqui, S.A.; Habib, S. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC).Mol. Cell. Biochem.2024479489591310.1007/s11010‑023‑04772‑6 37247161
    [Google Scholar]
  69. LiM. QianM. JiangQ. TanB. YinY. HanX. Evidence of flavonoids on disease prevention.Antioxidants202312252710.3390/antiox12020527 36830086
    [Google Scholar]
  70. AbotalebM. SamuelS. VargheseE. VargheseS. KubatkaP. LiskovaA. BüsselbergD. Flavonoids in cancer and apoptosis.Cancers20181112810.3390/cancers11010028 30597838
    [Google Scholar]
  71. SantellR.C. KieuN. HelferichW.G. Genistein inhibits growth of estrogen-independent human breast cancer cells in culture but not in athymic mice.J. Nutr.200013071665166910.1093/jn/130.7.1665 10867033
    [Google Scholar]
  72. WangB. XuH. HuX. MaW. ZhangJ. LiY. YuM. ZhangY. LiX. YeX. Synergetic inhibition of daidzein and regular exercise on breast cancer in bearing-4T1 mice by regulating NK cells and apoptosis pathway.Life Sci.202024511738710.1016/j.lfs.2020.117387 32007575
    [Google Scholar]
  73. SehdevV. LaiJ.C.K. BhushanA. Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in HER‐2‐positive breast cancer cells.J. Oncol.20092009111010.1155/2009/121458 20169097
    [Google Scholar]
  74. BasuP. MaierC. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives.Biomed. Pharmacother.20181071648166610.1016/j.biopha.2018.08.100 30257383
    [Google Scholar]
  75. AdelM. ZahmatkeshanM. AkbarzadehA. RabieeN. AhmadiS. KeyhanvarP. RezayatS.M. SeifalianA.M. Chemotherapeutic effects of Apigenin in breast cancer: Preclinical evidence and molecular mechanisms; enhanced bioavailability by nanoparticles.Biotechnol. Rep.2022340073010.1016/j.btre.2022.e00730 35686000
    [Google Scholar]
  76. ZhuJ. ZhangH. LanH. BiB. PengX. LiD. WangH. ZhuK. ShaoF. YinM. Enhancing breast cancer treatment: Mesoporous dopamine nanoparticles in synergy with chrysin for photothermal therapy.Front. Oncol.202414142785810.3389/fonc.2024.1427858 39045563
    [Google Scholar]
  77. ZhuL. XueL. Kaempferol suppresses proliferation and induces cell cycle arrest, apoptosis, and DNA damage in breast cancer cells.Oncol. Res.201927662963410.3727/096504018X15228018559434 29739490
    [Google Scholar]
  78. IqbalM.A. ChattopadhyayS. SiddiquiF.A. Ur RehmanA. SiddiquiS. PrakasamG. KhanA. SultanaS. BamezaiR.N.K. Silibinin induces metabolic crisis in triple-negative breast cancer cells by modulating EGFR-MYC-TXNIP axis: Potential therapeutic implications.FEBS J.2021288247148510.1111/febs.15353 32356386
    [Google Scholar]
  79. ShakibaE. BaziA. GhasemiH. Eshaghi-GorjiR. MehdipourS.A. NikfarB. RashidiM. MirzaeiS. Hesperidin suppressed metastasis, angiogenesis and tumour growth in Balb/c mice model of breast cancer.J. Cell. Mol. Med.202327182756276910.1111/jcmm.17902 37581480
    [Google Scholar]
  80. ElsoriD. PandeyP. RamniwasS. KumarR. LakhanpalS. RabS.O. SiddiquiS. SinghA. SaeedM. KhanF. Naringenin as potent anticancer phytocompound in breast carcinoma: From mechanistic approach to nanoformulations based therapeutics.Front. Pharmacol.202415140661910.3389/fphar.2024.1406619 38957397
    [Google Scholar]
  81. LiangF. ZhangH. GaoH. ChengD. ZhangN. DuJ. YueJ. DuP. ZhaoB. YinL. Liquiritigenin decreases tumorigenesis by inhibiting DNMT activity and increasing BRCA1 transcriptional activity in triple-negative breast cancer.Exp. Biol. Med.2021246445946610.1177/1535370220957255 32938226
    [Google Scholar]
  82. DasA. BhattacharyaB. GayenS. RoyS. Unraveling the chemotherapeutic potential of taxifolin ruthenium-p-cymene complex in breast carcinoma: Insights into AhR signaling pathway in vitro and in vivo.Transl. Oncol.20244910210710.1016/j.tranon.2024.102107 39181115
    [Google Scholar]
  83. ZengJ.L. LanJ.X. DaiW. LiuS.L. HuangH. ShuG.Z. HuangL.J. KangS.S. ChenB. HouW. A review of bavachinin and its derivatives as multi-therapeutic agents.Chem. Biodivers.202522620240276210.1002/cbdv.202402762 39874061
    [Google Scholar]
  84. SajediN. HomayounM. MohammadiF. SoleimaniM. Myricetin exerts its apoptotic effects on MCF-7 breast cancer cells through evoking the BRCA1-GADD45 pathway.Asian Pac. J. Cancer Prev.202021123461346810.31557/APJCP.2020.21.12.3461 33369440
    [Google Scholar]
  85. SunX. MaX. LiQ. YangY. XuX. SunJ. YuM. CaoK. YangL. YangG. ZhangG. WangX. Anti cancer effects of fisetin on mammary carcinoma cells via regulation of the PI3K/Akt/mTOR pathway: In vitro and in vivo studies.Int. J. Mol. Med.201842281182010.3892/ijmm.2018.3654 29749427
    [Google Scholar]
  86. JinH. LeeW.S. EunS.Y. JungJ.H. ParkH.S. KimG. ChoiY.H. RyuC.H. JungJ.M. HongS.C. ShinS.C. KimH.J. Morin, a flavonoid from Moraceae, suppresses growth and invasion of the highly metastatic breast cancer cell line MDA-MB-231 partly through suppression of the Akt pathway.Int. J. Oncol.20144541629163710.3892/ijo.2014.2535 24993541
    [Google Scholar]
  87. LiuY. YangH. XiongJ. ZhaoJ. GuoM. ChenJ. ZhaoX. ChenC. HeZ. ZhouY. XuL. Icariin as an emerging candidate drug for anticancer treatment: Current status and perspective.Biomed. Pharmacother.202315711399110.1016/j.biopha.2022.113991 36370524
    [Google Scholar]
  88. SunZ. ZhouC. LiuF. ZhangW. ChenJ. PanY. MaL. LiuQ. DuY. YangJ. WangQ. Inhibition of breast cancer cell survival by Xanthohumol via modulation of the Notch signaling pathway in vivo and in vitro.Oncol. Lett.201715190891610.3892/ol.2017.7434 29422966
    [Google Scholar]
  89. WuK.H. HoC.T. ChenZ.F. ChenL.C. Whang-PengJ. LinT.N. HoY.S. The apple polyphenol phloretin inhibits breast cancer cell migration and proliferation via inhibition of signals by type 2 glucose transporter.J. Food Drug Anal.201826122123110.1016/j.jfda.2017.03.009
    [Google Scholar]
  90. GongS. MaegawaS. YangY. GopalakrishnanV. ZhengG. ChengD. Licochalcone A is a natural selective inhibitor of arginine methyltransferase 6.Biochem. J.2021478238940610.1042/BCJ20200411 33245113
    [Google Scholar]
  91. MahajanM. SuryavanshiS. BhowmickS. AlasmaryF.A. AlmutairiT.M. IslamM.A. Kaul-GhanekarR. Matairesinol, an active constituent of HC9 polyherbal formulation, exhibits HDAC8 inhibitory and anticancer activity.Biophys. Chem.202127310658810.1016/j.bpc.2021.106588 33848944
    [Google Scholar]
  92. AbarzuaS. SerikawaT. SzewczykM. RichterD.U. PiechullaB. BrieseV. Antiproliferative activity of lignans against the breast carcinoma cell lines MCF 7 and BT 20.Arch. Gynecol. Obstet.201228541145115110.1007/s00404‑011‑2120‑6 22037685
    [Google Scholar]
  93. Sandoval-AcuñaC. Fuentes-RetamalS. Guzmán-RiveraD. Peredo-SilvaL. Madrid-RojasM. RebolledoS. Castro-CastilloV. PavaniM. CatalánM. MayaJ.D. JaraJ.A. ParraE. CalafG.M. SpeiskyH. FerreiraJ. Destabilization of mitochondrial functions as a target against breast cancer progression: Role of TPP + -linked-polyhydroxybenzoates.Toxicol. Appl. Pharmacol.201630921410.1016/j.taap.2016.08.018 27554043
    [Google Scholar]
  94. Raj PreethD. ShairamM. SuganyaN. HootanR. KartikR. PierreK. SuvroC. RajalakshmiS. Green synthesis of copper oxide nanoparticles using sinapic acid: An underpinning step towards antiangiogenic therapy for breast cancer.J. Biol. Inorg. Chem.201924563364510.1007/s00775‑019‑01676‑z 31230130
    [Google Scholar]
  95. YinM.C. LinC.C. WuH.C. TsaoS.M. HsuC.K. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: Potential mechanisms of action.J. Agric. Food Chem.200957146468647310.1021/jf9004466 19601677
    [Google Scholar]
  96. RosendahlA.H. PerksC.M. ZengL. MarkkulaA. SimonssonM. RoseC. IngvarC. HollyJ.M.P. JernströmH. Caffeine and caffeic acid inhibit growth and modify estrogen receptor and insulin-like growth factor I receptor levels in human breast cancer.Clin. Cancer Res.20152181877188710.1158/1078‑0432.CCR‑14‑1748 25691730
    [Google Scholar]
  97. AdamskiZ. BlytheL.L. MilellaL. BufoS.A. Biological activities of alkaloids: From toxicology to pharmacology.Toxins202012421010.3390/toxins12040210 32224853
    [Google Scholar]
  98. ZhangX. WangX. WuT. LiB. LiuT. WangR. LiuQ. LiuZ. GongY. ShaoC. Isoliensinine induces apoptosis in triple-negative human breast cancer cells through ROS generation and p38 MAPK/JNK activation.Sci. Rep.2015511257910.1038/srep12579 26219228
    [Google Scholar]
  99. WeiT. XiaojunX. PeilongC. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast cancer cells via inducing apoptosis and autophagy through AKT/mTOR and p38 signaling pathways.Biomed. Pharmacother.202012110913910.1016/j.biopha.2019.109139 31707337
    [Google Scholar]
  100. LuL. HuangR. WuY. JinJ.M. ChenH.Z. ZhangL.J. LuanX. Brucine: A review of phytochemistry, pharmacology, and toxicology.Front. Pharmacol.20201137710.3389/fphar.2020.00377 32308621
    [Google Scholar]
  101. GaoS. LiX. DingX. QiW. YangQ. Cepharanthine induces autophagy, apoptosis and cell cycle arrest in breast cancer cells.Cell. Physiol. Biochem.20174141633164810.1159/000471234 28359054
    [Google Scholar]
  102. SuchaL. HrochM. RezacovaM. RudolfE. HavelekR. SisperaL. CmielovaJ. KohlerovaR. BezroukA. TomsikP. The cytotoxic effect of α-tomatine in MCF-7 human adenocarcinoma breast cancer cells depends on its interaction with cholesterol in incubation media and does not involve apoptosis induction.Oncol. Rep.20133062593260210.3892/or.2013.2778 24100733
    [Google Scholar]
  103. XuH. MaY. LiH. SongX. LiuY. MierzhakenmuZ. YanK. XuR. ZhaoZ. YuanH. DongC. Role of harmaline in inhibiting c myc, altering molecular typing, and promoting apoptosis in triple negative breast cancer.Breast Cancer: Targets and Therapy20241685586610.2147/BCTT.S487070
    [Google Scholar]
  104. MajeeC. AtriyaA. MazumderR. ChoudharyA.N. Salahuddin; Mazumder, A.; Dahiya, A.; Priya, N. Insight into the various approaches for the enhancement of bioavailability and pharmacological potency of terpenoids: A review.Curr. Pharm. Biotechnol.202324101228124410.2174/1389201024666221130163116 36453488
    [Google Scholar]
  105. ChenT.C. ChoH.Y. WangW. BarathM. SharmaN. HofmanF.M. SchönthalA.H. A novel temozolomide-perillyl alcohol conjugate exhibits superior activity against breast cancer cells in vitro and intracranial triple-negative tumor growth in vivo.Mol. Cancer Ther.20141351181119310.1158/1535‑7163.MCT‑13‑0882 24623736
    [Google Scholar]
  106. MotieF.M. Soltani HowyzehM. GhanbariasadA. Synergic effects of DL-limonene, R-limonene, and cisplatin on AKT, PI3K, and mTOR gene expression in MDA-MB-231 and 5637 cell lines.Int. J. Biol. Macromol.2024280Pt 413621610.1016/j.ijbiomac.2024.136216 39362430
    [Google Scholar]
  107. ZhuW.Y. JonesC.S. KissA. MatsukumaK. AminS. De LucaL.M. Retinoic acid inhibition of cell cycle progression in MCF-7 human breast cancer cells.Exp. Cell Res.1997234229329910.1006/excr.1997.3589 9260897
    [Google Scholar]
  108. MorrowM. Pre-cancerous breast lesions: Implications for breast cancer prevention trials.Int. J. Radiat. Oncol. Biol. Phys.19922351071107810.1016/0360‑3016(92)90915‑5
    [Google Scholar]
  109. HsuY.L. KuoP.L. LinL.T. LinC.C. Asiatic acid, a triterpene, induces apoptosis and cell cycle arrest through activation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in human breast cancer cells.J. Pharmacol. Exp. Ther.2005313133334410.1124/jpet.104.078808 15626723
    [Google Scholar]
  110. LiuX. JutooruI. LeiP. KimK. LeeS. BrentsL.K. PratherP.L. SafeS. Betulinic acid targets YY1 and ErbB2 through cannabinoid receptor-dependent disruption of microRNA-27a:ZBTB10 in breast cancer.Mol. Cancer Ther.20121171421143110.1158/1535‑7163.MCT‑12‑0026 22553354
    [Google Scholar]
  111. ElekofehintiO.O. IwaloyeO. OlawaleF. AriyoE.O. Saponins in cancer treatment: Current progress and future prospects.Pathophysiology202128225027210.3390/pathophysiology28020017 35366261
    [Google Scholar]
  112. LiX. WangD. SuiC. MengF. SunS. ZhengJ. JiangY. Oleandrin induces apoptosis via activating endoplasmic reticulum stress in breast cancer cells.Biomed. Pharmacother.202012410985210.1016/j.biopha.2020.109852 31972357
    [Google Scholar]
  113. LeeM.S. ChanJ.Y-W. KongS.K. YuB. Eng-ChoonV.O. Nai-ChingH.W. Mak Chung-WaiT. FungK.P. Effects of polyphyllin D, a steroidal saponin in Paris Polyphylla, in growth inhibition of human breast cancer cells and in xenograft.Cancer Biol. Ther.20054111248125410.4161/cbt.4.11.2136 16258257
    [Google Scholar]
  114. AumeeruddyM.Z. MahomoodallyM.F. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone.Cancer2019125101600161110.1002/cncr.32022 30811596
    [Google Scholar]
  115. ŞakalarÇ. İzgiK. İskenderB. SezenS. AksuH. ÇakırM. KurtB. TuranA. CanatanH. The combination of thymoquinone and paclitaxel shows anti-tumor activity through the interplay with apoptosis network in triple-negative breast cancer.Tumour Biol.20163744467447710.1007/s13277‑015‑4307‑0 26500095
    [Google Scholar]
  116. KimS.H. ParkH.J. MoonD.O. Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway.Oncol. Lett.20171364427443210.3892/ol.2017.5950 28599444
    [Google Scholar]
  117. BoseC. AwasthiS. SharmaR. BenešH. Hauer-JensenM. BoermaM. SinghS.P. Sulforaphane potentiates anticancer effects of doxorubicin and attenuates its cardiotoxicity in a breast cancer model.PLoS One2018133019391810.1371/journal.pone.0193918 29518137
    [Google Scholar]
  118. KhamisA.A. AliE.M.M. SalimE.I. El-MoneimM.A.A. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats.Sci. Rep.2024141151010.1038/s41598‑023‑50729‑6 38233443
    [Google Scholar]
  119. KakaralaM. BrennerD.E. KorkayaH. ChengC. TaziK. GinestierC. LiuS. DontuG. WichaM.S. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine.Breast Cancer Res. Treat.2010122377778510.1007/s10549‑009‑0612‑x 19898931
    [Google Scholar]
  120. TalibW. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone.Sci. Pharm.20178532710.3390/scipharm85030027 28671634
    [Google Scholar]
  121. AlobaediO.H. TalibW.H. BashetiI.A. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer.Asian Pac. J. Trop. Med.201710440040810.1016/j.apjtm.2017.03.026 28552110
    [Google Scholar]
  122. RoystonK. UdayakumarN. LewisK. TollefsbolT. A novel combination of withaferin A and sulforaphane inhibits epigenetic machinery, cellular viability and induces apoptosis of breast cancer cells.Int. J. Mol. Sci.2017185109210.3390/ijms18051092 28534825
    [Google Scholar]
  123. Somers-EdgarT.J. ScandlynM.J. StuartE.C. Le NedelecM.J. ValentineS.P. RosengrenR.J. The combination of epigallocatechin gallate and curcumin suppresses ERα‐breast cancer cell growth in vitro and in vivo.Int. J. Cancer200812291966197110.1002/ijc.23328 18098290
    [Google Scholar]
  124. GuoJ. LiW. ShiH. XieX. LiL. TangH. WuM. KongY. YangL. GaoJ. LiuP. WeiW. XieX. Synergistic effects of curcumin with emodin against the proliferation and invasion of breast cancer cells through upregulation of miR-34a.Mol. Cell. Biochem.20133821-210311110.1007/s11010‑013‑1723‑6 23771315
    [Google Scholar]
  125. TalibW.H. Consumption of garlic and lemon aqueous extracts combination reduces tumor burden by angiogenesis inhibition, apoptosis induction, and immune system modulation.Nutrition201743-44899710.1016/j.nut.2017.06.015 28935151
    [Google Scholar]
  126. ShiG. LiX. WangW. HouL. YinL. WangL. Allicin overcomes doxorubicin resistance of breast cancer cells by targeting the Nrf2 pathway.Cell Biochem. Biophys.202482265966710.1007/s12013‑024‑01215‑x 38411783
    [Google Scholar]
  127. MaguraJ. MoodleyR. MackrajI. The effect of hesperidin and luteolin isolated from Eriocephalus africanus on apoptosis, cell cycle and miRNA expression in MCF-7.J. Biomol. Struct. Dyn.20224041791180010.1080/07391102.2020.1833757 33050842
    [Google Scholar]
  128. ChakrabortyS. SharmaG. KarmakarS. BanerjeeS. Multi-OMICS approaches in cancer biology: New era in cancer therapy.Biochim. Biophys. Acta Mol. Basis Dis.20241870516712010.1016/j.bbadis.2024.167120 38484941
    [Google Scholar]
  129. KafleU. AgrawalS. DashA.K. Injectable nano drug delivery systems for the treatment of breast cancer.Pharmaceutics20221412278310.3390/pharmaceutics14122783 36559276
    [Google Scholar]
  130. SiddiquiJ. SinghA. ChagtooM. SinghN. GodboleM. ChakravartiB. Phytochemicals for breast cancer therapy: Current status and future implications.Curr. Cancer Drug Targets201515211613510.2174/1568009615666141229152256 25544650
    [Google Scholar]
  131. ChiaJ.L.L. HeG.S. NgiamK.Y. HartmanM. NgQ.X. GohS.S.N. Harnessing artificial intelligence to enhance global breast cancer care: A scoping review of applications, outcomes, and challenges.Cancers202517219710.3390/cancers17020197 39857979
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575417244250905072102
Loading
/content/journals/mrmc/10.2174/0113895575417244250905072102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test