Skip to content
2000
image of Exploring the Potential of Coumarin as a Potent Antitubercular Agent

Abstract

Introduction

Tuberculosis (TB), caused by the complex, affects nearly 10 million people annually and remains the second-deadliest infectious disease after HIV/AIDS. The rise of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains has reduced the efficacy of existing therapies, underscoring the urgent need for novel therapeutic scaffolds. Coumarins, naturally occurring oxygenated heterocycles with diverse pharmacological activities, have emerged as promising candidates for anti-TB drug discovery due to their structural versatility.

Methods

A systematic search was conducted in Scopus, Web of Science, PubMed, Google Scholar, Scielo, and ScienceDirect using terms such as “coumarin anti-tuberculosis,” “coumarin MIC,” and “coumarin derivatives .” Eligible studies included natural, semi-synthetic, and synthetic coumarin derivatives with structural characterization, drug-likeness, and ADME-Tox compliance. studies focused on standard and resistant strains, while data were included from healthy animal models under ethical conditions. Clinical studies were considered for adults with confirmed pulmonary TB. Exclusion criteria encompassed unstable, toxic, and poorly soluble compounds, non-compliant animal models, and patients with significant comorbidities or treatment non-adherence.

Results

Natural coumarins such as scopoletin (MIC: 42 μg/mL) and indicanine B (MIC: 18.5 μg/mL) demonstrated moderate inhibition, while ferulenol and murralonginol derivatives showed weaker activity. Semi-synthetic modifications produced moderate improvements in potency, whereas synthetic conjugates exhibited the strongest effects. Coumarin–oxime (MIC: 0.04 μg/mL), pyrimidine (0.05 μg/mL), and thiazoline derivatives (0.09 μg/mL) surpassed isoniazid . Structural features such as oxime groups, triazole linkages, and halogen or methyl substitutions were associated with enhanced efficacy.

Discussion

These findings highlight coumarins as valuable scaffolds for novel anti-TB agents. SAR insights provide a roadmap for rational drug design, although limited and clinical evidence necessitates further validation.

Conclusion

Coumarin derivatives, particularly synthetically optimized conjugates, exhibit potent anti-TB activity and represent a promising platform for combating MDR- and XDR-TB.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575407145251126055745
2026-01-07
2026-02-22
Loading full text...

Full text loading...

References

  1. Xiao W. Chen J. Rao L. Xiao X. Zheng X. Wu Z. Shen X. Treatment outcomes and key factors contributing to unfavourable outcomes among isoniazid-resistant pulmonary tuberculosis patients in Shanghai, China. J. Glob. Antimicrob. Resist. 2025 42 177 186 10.1016/j.jgar.2025.02.003
    [Google Scholar]
  2. Howard S.T. Byrd T.F. The rapidly growing mycobacteria: Saprophytes and parasites. Microbes Infect. 2000 2 15 1845 1853 10.1016/S1286‑4579(00)01338‑1 11165929
    [Google Scholar]
  3. Alexander K.A. Sanderson C.E. Larsen M.H. Robbe-Austerman S. Williams M.C. Palmer M.V. Emerging tuberculosis pathogen hijacks social communication behavior in the group-living banded mongoose (Mungos mungo). MBio 2016 7 3 e00281 e16 10.1128/mBio.00281‑16 27165798
    [Google Scholar]
  4. Gutierrez M.C. Brisse S. Brosch R. Fabre M. Omaïs B. Marmiesse M. Supply P. Vincent V. Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog. 2005 1 1 e5 10.1371/journal.ppat.0010005 16201017
    [Google Scholar]
  5. Gutacker M.M. Smoot J.C. Migliaccio C.A.L. Ricklefs S.M. Hua S. Cousins D.V. Graviss E.A. Shashkina E. Kreiswirth B.N. Musser J.M. Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics 2002 162 4 1533 1543 10.1093/genetics/162.4.1533 12524330
    [Google Scholar]
  6. Sreevatsan S. Pan X. Stockbauer K.E. Connell N.D. Kreiswirth B.N. Whittam T.S. Musser J.M. Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc. Natl. Acad. Sci. USA 1997 94 18 9869 9874 10.1073/pnas.94.18.9869 9275218
    [Google Scholar]
  7. Romanowski K. Chiang S.S. Land S.A. van der Zalm M.M. Campbell J.R. Tuberculosis-associated respiratory impairment and disability in children and adolescents: a systematic review. EClinicalMedicine 2025 81 103107 10.1016/j.eclinm.2025.103107 40034569
    [Google Scholar]
  8. 2025 https://www.cdc.gov/tb/causes/index.html
  9. Alene K.A. Wangdi K. Colquhoun S. Chani K. Islam T. Rahevar K. Morishita F. Byrne A. Clark J. Viney K. Tuberculosis related disability: A systematic review and meta-analysis. BMC Med. 2021 19 1 203 10.1186/s12916‑021‑02063‑9 34496845
    [Google Scholar]
  10. Wang Y. Li M. Xu Z. Wang Y. Zhang J. Hao Z. Jia X. Hou D. Alterations of white matter integrity in patients with intracranial tuberculosis: A tract-based spatial statistics study. Neuroscience 2025 572 11 20 10.1016/j.neuroscience.2025.02.051 40015507
    [Google Scholar]
  11. Tuberculosis: Multidrug-resistant (MDR-TB) or rifampicinresistant TB (RR-TB). 2024 Available from: https://www.who.int/news-room/questions-and-answers/item/tuberculosis-multidrug-resistant-tuberculosis-(mdr-tb)
  12. Seung K.J. Keshavjee S. Rich M.L. Multidrug-resistant tuberculosis and extensively drug-resistant Tuberculosis. Cold Spring Harb. Perspect. Med. 2015 5 9 a017863 10.1101/cshperspect.a017863 25918181
    [Google Scholar]
  13. Singh K. Mujeeb S. Yogi B. Ansari V. Sinha S. A review on coumarin derivatives as potent anti-tuberculosis agents. Mini Rev. Med. Chem. 2022 22 7 1064 1080 10.2174/1389557521666210927124511 34579635
    [Google Scholar]
  14. Matos M.J. Santana L. Uriarte E. Abreu O.A. Molina E. Yordi E.G. Coumarins—an important class of phytochemicals with medicinal applications. Phytochem. Rev. 2015 14 1 19 32 10.1007/s11101‑013‑9336‑0
    [Google Scholar]
  15. Lončar M. Jakovljević M. Šubarić D. Pavlić M. Buzjak Služek V. Cindrić I. Molnar M. Coumarins in food and methods of their determination. Foods 2020 9 5 645 10.3390/foods9050645 32443406
    [Google Scholar]
  16. Flores-Morales V. Villasana-Ruíz A.P. Garza-Veloz I. González-Delgado S. Martinez-Fierro M.L. Therapeutic effects of coumarins with different substitution patterns. Molecules 2023 28 5 2413 10.3390/molecules28052413 36903660
    [Google Scholar]
  17. Saadati F. Modarresi Chahardehi A. Jamshidi N. Jamshidi N. Ghasemi D. Coumarin: A natural solution for alleviating inflammatory disorders. Curr. Res. Pharmacol. Drug Discov. 2024 7 100202 10.1016/j.crphar.2024.100202 39398983
    [Google Scholar]
  18. Alsayed S.S.R. Gunosewoyo H. Tuberculosis: Pathogenesis, current treatment regimens and new drug targets. Int. J. Mol. Sci. 2023 24 6 5202 10.3390/ijms24065202 36982277
    [Google Scholar]
  19. Mycobacteria: Tuberculosis (TB). 2025 Available from: https://www.msdmanuals.com/professional/infectiousdiseases/mycobacteria/tuberculosis-tb#Epidemiology_v1010704
  20. Global T.B. Transmission and pathogenesis of TB. 2025 Available from: https://globaltb.njms.rutgers.edu/educationalmaterials/calendar/2023/TB%20101/Session%201/Transmission%20and%20Pathogensis%20of%20TB%20-%20FParvez.pdf
  21. Tomioka H. Namba K. Development of antituberculous drugs: Current status and future prospects. Kekkaku 2006 81 12 753 774 17240921
    [Google Scholar]
  22. Rahlwes K.C. Dias B.R.S. Campos P.C. Alvarez-Arguedas S. Shiloh M.U. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023 14 1 2150449 10.1080/21505594.2022.2150449 36419223
    [Google Scholar]
  23. Glickman M.S. Jacobs W.R. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell 2001 104 4 477 485 10.1016/S0092‑8674(01)00236‑7 11239406
    [Google Scholar]
  24. Luies L. du Preez I. The echo of pulmonary tuberculosis: Mechanisms of clinical symptoms and other disease-induced systemic complications. Clin. Microbiol. Rev. 2020 33 4 e00036 e20 10.1128/CMR.00036‑20 32611585
    [Google Scholar]
  25. Schluger N.W. The pathogenesis of tuberculosis: The first one hundred (and twenty-three) years. Am. J. Respir. Cell Mol. Biol. 2005 32 4 251 256 10.1165/rcmb.F293 15778414
    [Google Scholar]
  26. Russell D.G. Cardona P.J. Kim M.J. Allain S. Altare F. Foamy macrophages and the progression of the human tuberculosis granuloma. Nat. Immunol. 2009 10 9 943 948 10.1038/ni.1781 19692995
    [Google Scholar]
  27. Huszár S. Chibale K. Singh V. The quest for the holy grail: New antitubercular chemical entities, targets and strategies. Drug Discov. Today 2020 25 4 772 780 10.1016/j.drudis.2020.02.003 32062007
    [Google Scholar]
  28. Chai Q. Zhang Y. Liu C.H. Mycobacterium tuberculosis: An adaptable pathogen associated with multiple human diseases. Front. Cell. Infect. Microbiol. 2018 8 158 10.3389/fcimb.2018.00158 29868514
    [Google Scholar]
  29. Marrakchi H. Lanéelle M.A. Daffé M. Mycolic acids: structures, biosynthesis, and beyond. Chem. Biol. 2014 21 1 67 85 10.1016/j.chembiol.2013.11.011 24374164
    [Google Scholar]
  30. Peyron P. Vaubourgeix J. Poquet Y. Levillain F. Botanch C. Bardou F. Daffé M. Emile J.F. Marchou B. Cardona P.J. de Chastellier C. Altare F. Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathog. 2008 4 11 e1000204 10.1371/journal.ppat.1000204 19002241
    [Google Scholar]
  31. Grosset J. Mycobacterium tuberculosis in the extracellular compartment: An underestimated adversary. Antimicrob. Agents Chemother. 2003 47 3 833 836 10.1128/AAC.47.3.833‑836.2003 12604509
    [Google Scholar]
  32. Pai M. Behr M.A. Dowdy D. Dheda K. Divangahi M. Boehme C.C. Ginsberg A. Swaminathan S. Spigelman M. Getahun H. Menzies D. Raviglione M. Tuberculosis. Nat. Rev. Dis. Primers 2016 2 1 16076 10.1038/nrdp.2016.76 27784885
    [Google Scholar]
  33. Yang J. Zhang L. Qiao W. Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm 2023 4 5 e353 10.1002/mco2.353 37674971
    [Google Scholar]
  34. Patil S.M. Martiz R.M. Satish A.M. Shbeer A.M. Ageel M. Al-Ghorbani M. Ranganatha L. Parameswaran S. Ramu R. Discovery of novel coumarin derivatives as potential dual inhibitors against α-glucosidase and α-amylase for the management of post-prandial hyperglycemia via molecular modelling approaches. Molecules 2022 27 12 3888 10.3390/molecules27123888 35745030
    [Google Scholar]
  35. Zaheen S. Nainwal L.M. Alam O. Alam M.S. Coumarin-based hybrids as novel therapeutic agents for tuberculosis: Design, synthesis, molecular docking, and biological evaluation. Arch. Pharm. 2023 356 e2300003 10.1002/ardp.202300003
    [Google Scholar]
  36. Cardoso S.H. Barreto M.B. Lourenço M.C.S. Henriques M.G.M.O. Candéa A.L.P. Kaiser C.R. de Souza M.V.N. Antitubercular activity of new coumarins. Chem. Biol. Drug Des. 2011 77 6 489 493 10.1111/j.1747‑0285.2011.01120.x 21414146
    [Google Scholar]
  37. Singh H. Singh J.V. Bhagat K. Gulati H.K. Sanduja M. Kumar N. Kinarivala N. Sharma S. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. Bioorg. Med. Chem. 2019 27 16 3477 3510 10.1016/j.bmc.2019.06.033 31255497
    [Google Scholar]
  38. Stanley S.A. Kawate T. Iwase N. Shimizu M. Clatworthy A.E. Kazyanskaya E. Sacchettini J.C. Ioerger T.R. Siddiqi N.A. Minami S. Aquadro J.A. Grant S.S. Rubin E.J. Hung D.T. Diarylcoumarins inhibit mycolic acid biosynthesis and kill Mycobacterium tuberculosis by targeting FadD32. Proc. Natl. Acad. Sci. USA 2013 110 28 11565 11570 10.1073/pnas.1302114110 23798446
    [Google Scholar]
  39. Hroboňová K. Brokešová E. Comparison of different types of sorbents for extraction of coumarins. Food Chem. 2020 332 127404 10.1016/j.foodchem.2020.127404 32623127
    [Google Scholar]
  40. Era B. Delogu G.L. Pintus F. Fais A. Gatto G. Uriarte E. Borges F. Kumar A. Matos M.J. Looking for new xanthine oxidase inhibitors: 3-Phenylcoumarins versus 2-phenylbenzofurans. Int. J. Biol. Macromol. 2020 162 774 780 10.1016/j.ijbiomac.2020.06.152 32574739
    [Google Scholar]
  41. Mathavan S. Kannan K. Yamajala R.B.R.D. Thiamine hydrochloride as a recyclable organocatalyst for the synthesis of bis(indolyl)methanes, tris(indolyl)methanes, 3,3-di(indol-3-yl)indolin-2-ones and biscoumarins. Org. Biomol. Chem. 2019 17 44 9620 9626 10.1039/C9OB02090J 31664290
    [Google Scholar]
  42. Appendino G. Bianchi F. Bader A. Campagnuolo C. Fattorusso E. Taglialatela-Scafati O. Blanco-Molina M. Macho A. Fiebich B.L. Bremner P. Heinrich M. Ballero M. Muñoz E. Coumarins from Opopanax chironium. New dihydrofuranocoumarins and differential induction of apoptosis by imperatorin and heraclenin. J. Nat. Prod. 2004 67 4 532 536 10.1021/np0340652 15104479
    [Google Scholar]
  43. Ren Q.C. Gao C. Xu Z. Feng L.S. Liu M.L. Wu X. Zhao F. Bis-coumarin derivatives and their biological activities. Curr. Top. Med. Chem. 2018 18 2 101 113 10.2174/1568026618666180221114515 29473509
    [Google Scholar]
  44. Sharma M. Vyas V.K. Bhatt S. Ghate M.D. Therapeutic potential of 4-substituted coumarins: A conspectus. Eur. J. Med. Chem. Rep. 2022 6 100086 10.1016/j.ejmcr.2022.100086
    [Google Scholar]
  45. Hassan M. Alsayari A. Osman H. Ali M. Muhsinah A. Ahsan M. Synthesis and evaluation of coumarin hybrids as antimycobacterial agents. Acta Pol. Pharm. 2019 76 6 1029 1036 10.32383/appdr/112406
    [Google Scholar]
  46. Shaikh F. Shastri S.L. Naik N.S. Kulkarni R. Madar J.M. Shastri L.A. Joshi S.D. Sunagar V. Synthesis, antitubercular and antimicrobial activity of 1,2,4-triazolidine-3-thione functionalized coumarin and phenyl derivatives and molecular docking studies. ChemistrySelect 2019 4 1 105 115 10.1002/slct.201802395
    [Google Scholar]
  47. Osman H. Yusufzai S.K. Khan M.S. Abd Razik B.M. Sulaiman O. Mohamad S. Gansau J.A. Ezzat M.O. Parumasivam T. Hassan M.Z. New thiazolyl-coumarin hybrids: Design, synthesis, characterization, X-ray crystal structure, antibacterial and antiviral evaluation. J. Mol. Struct. 2018 1166 147 154 10.1016/j.molstruc.2018.04.031
    [Google Scholar]
  48. Mali H.M. Sabale S.S. Degani M.S. Borkute R. Choudhari A.S. Sarkar D. Krishna V.S. Sriram D. Rational design of coumarin derivatives as antituberculosis agents. Future Med. Chem. 2018 10 20 2431 2444 10.4155/fmc‑2018‑0015 30325198
    [Google Scholar]
  49. Ashok D. Gundu S. Aamate V.K. Devulapally M.G. Bathini R. Manga V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct. 2018 1157 312 321 10.1016/j.molstruc.2017.12.080
    [Google Scholar]
  50. Danne A.B. Choudhari A.S. Sarkar D. Sangshetti J.N. Khedkar V.M. Shingate B.B. Synthesis and biological evaluation of novel triazole-biscoumarin conjugates as potential antitubercular and anti-oxidant agents. Res. Chem. Intermed. 2018 44 10 6283 6310 10.1007/s11164‑018‑3490‑1
    [Google Scholar]
  51. Madar J.M. Shastri L.A. Shastri S.L. Holiyachi M. Naik N.S. Shaikh F. Sungar V.A. Joshi S.D. Synthesis and characterization of coumarin-4-thiazolidinone scaffolds as new class of anti-tuberculosis and antibacterial agents. OSR J. Appl. Chem. 2018 11 7 77 101 10.9790/5736‑11070277101
    [Google Scholar]
  52. Khan G.A. Naikoo G.A. War J.A. Sheikh I.A. Pandit U.J. Khan I. Harit A.K. Das R. An efficient green synthesis of some functionalized spirochromene based scaffolds as potential antitubercular agents. J. Heterocycl. Chem. 2018 55 3 699 708 10.1002/jhet.3091
    [Google Scholar]
  53. Godge R. Kunkulol R. Synthesis of Coumarin heterocyclic deri vatives with in vitro anti-tubercular activity. J. Drug Deliv. Ther. 2018 8 5 217 223 10.22270/jddt.v8i5.1859
    [Google Scholar]
  54. Gao T. Zeng Z. Wang G. Sun S. Liu Y. Synthesis of ethylene tethered isatin coumarin hybrids and evaluation of their in vitro antimycobacterial activities. J. Heterocycl. Chem. 2018 55 6 1484 1488 10.1002/jhet.3161
    [Google Scholar]
  55. Liu B. Hu G. Tang X. Wang G. Xu Z. 1H-1,2,3-triazole tethered isatin–coumarin hybrids: design, synthesis and in vitro antimycobacterial evaluation. J. Heterocycl. Chem. 2018 55 3 775 780 10.1002/jhet.3093
    [Google Scholar]
  56. Kapp E. Visser H. Sampson S. Malan S. Streicher E. Foka G. Warner D. Omoruyi S. Enogieru A. Ekpo O. Zindo F. Joubert J. Versatility of 7-substituted coumarin molecules as antimycobacterial agents, neuronal enzyme inhibitors and neuroprotective agents. Molecules 2017 22 10 1644 10.3390/molecules22101644 28973990
    [Google Scholar]
  57. Huang G.C. Xu Y. Xu Z. Lv Z.S. Zhang J. Guo H.Y. Hu Y.Q. Liu M.L. Guan J. Lu Y. Propylene-1H-1,2,3-triazole-4-methylene-tethered isatin-coumarin hybrids: Design, synthesis, and in vitro anti-tubercular evaluation. J. Heterocycl. Chem. 2018 55 4 830 835 10.1002/jhet.3106
    [Google Scholar]
  58. Pattanashetty H.S. Kallappa M.H. Satapute P. Joshi D.S. Obelannavar K. Discovery of new drugs and computational studies of coumarin-carprofen scaffolds as a novel class of anti-tubercular, anti-inflammatory and anti-bacterial agents. Eur. J. Pharm. Sci. 2017 4 11 486 498
    [Google Scholar]
  59. Rathod A.S. Godipurge S.S. Biradar J.S. Jaiprakash. Synthesis of indole, coumarinyl and pyridinyl derivatives of isoniazid as potent antitubercular and antimicrobial agents and their molecular docking studies. Int. J. Pharm. Pharm. Sci. 2017 9 12 233 240 10.22159/ijpps.2017v9i12.21970
    [Google Scholar]
  60. Angelova V.T. Valcheva V. Vassilev N.G. Buyukliev R. Momekov G. Dimitrov I. Saso L. Djukic M. Shivachev B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2 H -chromene and coumarin scaffold. Bioorg. Med. Chem. Lett. 2017 27 2 223 227 10.1016/j.bmcl.2016.11.071 27914798
    [Google Scholar]
  61. Shaikh M.H. Subhedar D.D. Shingate B.B. Kalam Khan F.A. Sangshetti J.N. Khedkar V.M. Nawale L. Sarkar D. Navale G.R. Shinde S.S. Synthesis, biological evaluation and molecular docking of novel coumarin incorporated triazoles as antitubercular, antioxidant and antimicrobial agents. Med. Chem. Res. 2016 25 4 790 804 10.1007/s00044‑016‑1519‑9
    [Google Scholar]
  62. Bhila V.G. Patel C.V. Patel N.H. Brahmbhatt D.I. One pot synthesis of some novel coumarins containing 5-(substituted-2-hydroxybenzoyl) pyridine as a new class of antimicrobial and antituberculosis agents. Med. Chem. Res. 2013 22 9 4338 4346 10.1007/s00044‑012‑0437‑8
    [Google Scholar]
  63. Rezayan A.H. Azerang P. Sardari S. Sarvary A. Synthesis and biological evaluation of coumarin derivatives as inhibitors of Mycobacterium bovis (BCG). Chem. Biol. Drug Des. 2011 77 2 96 101 10.1111/j.1747‑0285.2010.01067 22943459
    [Google Scholar]
  64. Patel R.V. Kumari P. Rajani D.P. Chikhalia K.H. Synthesis of coumarin-based 1,3,4-oxadiazol-2ylthio-N-phenyl/benzothiazolyl acetamides as antimicrobial and antituberculosis agents. Med. Chem. Res. 2013 22 1 195 210 10.1007/s00044‑012‑0026‑x
    [Google Scholar]
  65. Hosamani K.M. Shingalapur R.V. Keri R.S. Hugar M.H. Synthesis of novel benzo-coumarin-benzothiazepine derivatives as potential anti-tubercular and antimicrobial agents. Eur. J. Med. Chem. 2009 44 6 2474 2480 10.1016/j.ejmech.2008.11.021
    [Google Scholar]
  66. Reddy D.S. Hosamani K.M. Devarajegowda H.C. Design, synthesis of benzocoumarin-pyrimidine hybrids as novel class of antitubercular agents, their DNA cleavage and X-ray studies. Eur. J. Med. Chem. 2015 101 705 715 10.1016/j.ejmech.2015.06.056 26210508
    [Google Scholar]
  67. Pires C.T.A. Scodro R.B.L. Cortez D.A.G. Brenzan M.A. Siqueira V.L.D. Caleffi-Ferracioli K.R. Vieira L.C.C. Monteiro J.L. Corrêa A.G. Cardoso R.F. Structure-activity relationship of natural and synthetic coumarin derivatives against Mycobacterium tuberculosis. Future Med. Chem. 2020 12 17 1533 1546 10.4155/fmc‑2018‑0281 32820960
    [Google Scholar]
  68. Giria L. Pires C.T.A. da Silva R.S. Alves R.J.C. Guimarães E.F. Bastos J.K. Modified-pyridine substituted coumarins as a new class of antimicrobial and antitubercular agents. Med. Chem. Res. 2015 24 5 1703 1714 10.1007/s00044‑015‑1305‑z
    [Google Scholar]
  69. Basanagouda M. Jambagi V.B. Barigidad N.N. Laxmeshwar S.S. Devaru V. Narayanachar. Synthesis, structure–activity relationship of iodinated-4-aryloxymethyl-coumarins as potential anti-cancer and anti-mycobacterial agents. Eur. J. Med. Chem. 2014 74 225 233 10.1016/j.ejmech.2013.12.061 24463645
    [Google Scholar]
  70. Xu Y. Lv Z. Wen J. Zhao S. Xu Z. Isatin-(thio)semicarbazide/oxime-1H-1,2,3-triazole-coumarin conjugates: Synthesis and antimycobacterial evaluation against Mycobacterium tuberculosis H37Rv and MDR-TB. Pharmaceutics 2018 15 3 272 10.3390/pharmaceutics15030272
    [Google Scholar]
  71. Venugopala K.N. Rashmi V. Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int. 2013 2013 1 14 10.1155/2013/963248 23586066
    [Google Scholar]
  72. Reddy D.S. Kongot M. Singh V. Siddiquee M.A. Patel R. Singhal N.K. Avecilla F. Kumar A. Biscoumarin–pyrimidine conjugates as potent anticancer agents and binding mechanism of hit candidate with human serum albumin. Arch. Pharm. (Weinheim) 2021 354 1 2000181 10.1002/ardp.202000181 32945576
    [Google Scholar]
  73. Mane S.G. Reddy D.S. Katagi K.S. Kumar A. Munnolli R.S. Kadam N.S. Akki M.C. Joshi S.D. Nagarajaiah H.J. Molecular structure study of coumarin derivatives. J. Mol. Struct. 2020 129530 10.1016/j.molstruc.2020.129530
    [Google Scholar]
  74. Keri R.S. Sasidhar B.S. Nagaraja B.M. Santos M.A. Recent progress in the drug development of coumarin derivatives as potent antituberculosis agents. Eur. J. Med. Chem. 2015 100 257 269 10.1016/j.ejmech.2015.06.017 26112067
    [Google Scholar]
  75. Soine T.O. Naturally occurring coumarins and related physiological activities. J. Pharm. Sci. 1964 53 3 231 264 10.1002/jps.2600530302 14191429
    [Google Scholar]
  76. Iranshahi M. Askari M. Sahebkar A. Hadjipavlou-Litina D. Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. Daru 2009 17 99 103
    [Google Scholar]
  77. Chiang C.C. Cheng M.J. Peng C.F. Huang H.Y. Chen I.S. A novel dimeric coumarin analog and antimycobacterial constituents from Fatoua pilosa. Chem. Biodivers. 2010 7 7 1728 1736 10.1002/cbdv.200900326 20658660
    [Google Scholar]
  78. Murray R.D.H. Mendez J. Brown S.A. The Natural Coumarins (1): Occurrence, Chemistry and Biochemistry. New York John Wiley & Sons 1982 35 38
    [Google Scholar]
  79. Appendino G. Mercalli E. Fuzzati N. Arnoldi L. Stavri M. Gibbons S. Ballero M. Maxia A. Antimycobacterial coumarins from the sardinian giant fennel (Ferula communis). J. Nat. Prod. 2004 67 12 2108 2110 10.1021/np049706n 15620264
    [Google Scholar]
  80. Sunthitikawinsakul A. Kongkathip N. Kongkathip B. Phonnakhu S. Daly J.W. Spande T.F. Nimit Y. Rochanaruangrai S. Coumarins and carbazoles from Clausena excavata exhibited antimycobacterial and antifungal activities. Planta Med. 2003 69 2 155 157 10.1055/s‑2003‑37716 12624822
    [Google Scholar]
  81. Sakat S.S. Juvekar A.R. Comparative study of Erythrina indica Lam. (Febaceae) leaves extracts for antioxidant activity. J. Young Pharm. 2010 2 1 63 67 10.4103/0975‑1483.62216 21331194
    [Google Scholar]
  82. Waffo A.K. Azebaze G.A. Nkengfack A.E. Fomum Z.T. Meyer M. Bodo B. van Heerden F.R. Indicanines B and C, two isoflavonoid derivatives from the root bark of Erythrina indica. Phytochemistry 2000 53 8 981 985 10.1016/S0031‑9422(99)00615‑9 10820816
    [Google Scholar]
  83. Lekphrom R. Kanokmedhakul S. Kukongviriyapan V. Kanokmedhakul K. C-7 oxygenated coumarins from the fruits of Micromelum minutum. Arch. Pharm. Res. 2011 34 4 527 531 10.1007/s12272‑011‑0402‑y 21544717
    [Google Scholar]
  84. Stelitano G. Sammartino J.C. Chiarelli L.R. Multitargeting compounds: A promising strategy to overcome multi-drug-resistant tuberculosis. Molecules 2020 25 5 1239 10.3390/molecules25051239 32182964
    [Google Scholar]
  85. Zellweger J.P. Screening migrants for tuberculosis and latent TB infection: the reward will come later. Eur. Respir. J. 2019 54 4 1901719 10.1183/13993003.01719‑2019 31672908
    [Google Scholar]
  86. Huaman M.A. Sterling T.R. Treatment of latent tuberculosis infection—an update. Clin. Chest Med. 2019 40 4 839 848 10.1016/j.ccm.2019.07.008 31731988
    [Google Scholar]
  87. Anand P. Chandra N. Characterizing the pocketome of Mycobacterium tuberculosis and application in rationalizing polypharmacological target selection. Sci. Rep. 2014 4 1 6356 10.1038/srep06356 25220818
    [Google Scholar]
  88. Zumla A. Nahid P. Cole S.T. Advances in the development of new tuberculosis drugs and treatment regimens. Nat. Rev. Drug Discov. 2013 12 5 388 404 10.1038/nrd4001 23629506
    [Google Scholar]
  89. Paoli-Lombardo R. Primas N. Vanelle P. DprE1 and Ddn as promising therapeutic targets in the development of novel anti-tuberculosis nitroaromatic drugs. Eur. J. Med. Chem. 2024 274 116559 10.1016/j.ejmech.2024.116559 38850856
    [Google Scholar]
  90. Louw G.E. Warren R.M. Gey van Pittius N.C. McEvoy C.R.E. Van Helden P.D. Victor T.C. A balancing act: Efflux/influx in mycobacterial drug resistance. Antimicrob. Agents Chemother. 2009 53 8 3181 3189 10.1128/AAC.01577‑08 19451293
    [Google Scholar]
  91. Viveiros M. Martins M. Rodrigues L. Machado D. Couto I. Ainsa J. Amaral L. Inhibitors of mycobacterial efflux pumps as potential boosters for anti-tubercular drugs. Expert Rev. Anti Infect. Ther. 2012 10 9 983 998 10.1586/eri.12.89 23106274
    [Google Scholar]
  92. Almeida Da Silva P.E. Palomino J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J. Antimicrob. Chemother. 2011 66 7 1417 1430 10.1093/jac/dkr173 21558086
    [Google Scholar]
  93. Kassem A.F. Sabt A. Korycka-Machala M. Shaldam M.A. Kawka M. Dziadek B. Kuzioła M. Dziadek J. Batran R.Z. New coumarin linked thiazole derivatives as antimycobacterial agents: Design, synthesis, enoyl acyl carrier protein reductase (InhA) inhibition and molecular modeling. Bioorg. Chem. 2024 150 107511 10.1016/j.bioorg.2024.107511 38870705
    [Google Scholar]
  94. Reddy D.S. Sinha A. Kurjogi M.M. Shanavaz H. Kumar A. Design, synthesis, molecular docking, and biological evaluation of coumarin‐thymidine analogs as potent anti‐TB agents. Arch. Pharm. (Weinheim) 2023 356 5 2200633 10.1002/ardp.202200633 36634969
    [Google Scholar]
  95. Alghamdi S. Rehman S.U. Shesha N.T. Faidah H. Khurram M. Rehman S.U. Promising lead compounds in the development of potential clinical drug candidate for drug-resistant tuberculosis. Molecules 2020 25 23 5685 10.3390/molecules25235685 33276545
    [Google Scholar]
  96. Shao Z. Tam K.K.G. Achalla V.P.K. Woon E.C.Y. Mason A.J. Chow S.F. Yam W.C. Lam J.K.W. Synergistic combination of antimicrobial peptide and isoniazid as inhalable dry powder formulation against multi-drug resistant tuberculosis. Int. J. Pharm. 2024 654 123960 10.1016/j.ijpharm.2024.123960 38447778
    [Google Scholar]
  97. Shao Z. Chow M.Y.T. Chow S.F. Lam J.K.W. Co-delivery of D-LAK antimicrobial peptide and capreomycin as inhaled powder formulation to combat drug-resistant tuberculosis. Pharm. Res. 2023 40 5 1073 1086 10.1007/s11095‑023‑03488‑y 36869245
    [Google Scholar]
  98. Pitner R.A. Durham P.G. Stewart I.E. Reed S.G. Cassell G.H. Hickey A.J. Carter D. A spray-dried combination of capreomycin and CPZEN-45 for inhaled tuberculosis therapy. J. Pharm. Sci. 2019 108 10 3302 3311 10.1016/j.xphs.2019.05.024 31152746
    [Google Scholar]
  99. Wayne L.G. Sohaskey C.D. Nonreplicating persistence of Mycobacterium tuberculosis. Annu. Rev. Microbiol. 2001 55 1 139 163 10.1146/annurev.micro.55.1.139 11544352
    [Google Scholar]
  100. Rustad T.R. Harrell M.I. Liao R. Sherman D.R. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 2008 3 1 e1502 10.1371/journal.pone.0001502 18231589
    [Google Scholar]
  101. Cardona P-J. Ruiz-Manzano J. On the nature of Mycobacterium tuberculosis -latent bacilli. Eur. Respir. J. 2004 24 6 1044 1051 10.1183/09031936.04.00072604 15572551
    [Google Scholar]
  102. Terlain B. Thomas J.P. (Structure of griselimycin, polypeptide antibiotic extracted from streptomyces cultures. II. Structure of griselimycin). Bull. Soc. Chim. Fr. 1971 6 2357 2362 5568643
    [Google Scholar]
  103. Lata M. Sharma D. Deo N. Tiwari P.K. Bisht D. Venkatesan K. Proteomic analysis of ofloxacin-mono resistant Mycobacterium tuberculosis isolates. J. Proteomics 2015 127 Pt A 114 121 10.1016/j.jprot.2015.07.031 26238929
    [Google Scholar]
  104. Wei X. Yue L. Zhao B. Jiang N. Lei H. Zhai X. Recent advances and challenges of revolutionizing drug-resistant tuberculosis treatment. Eur. J. Med. Chem. 2024 277 116785 10.1016/j.ejmech.2024.116785 39191032
    [Google Scholar]
  105. García A. Bocanegra-García V. Palma-Nicolás J.P. Rivera G. Recent advances in antitubercular natural products. Eur. J. Med. Chem. 2012 49 1 23 10.1016/j.ejmech.2011.12.029 22280816
    [Google Scholar]
  106. Dhameliya T.M. Bhakhar K.A. Gajjar N.D. Patel K.A. Devani A.A. Hirani R.V. Recent advancements and developments in search of anti-tuberculosis agents: A quinquennial update and future directions. J. Mol. Struct. 2022 1248 131473 10.1016/j.molstruc.2021.131473
    [Google Scholar]
  107. Singh V. Chibale K. Strategies to combat multi-drug resistance in tuberculosis. Acc. Chem. Res. 2021 54 10 2361 2376 10.1021/acs.accounts.0c00878 33886255
    [Google Scholar]
  108. Batran R.Z. Sabt A. Almalki F. Shaldam M.A. Abutaha N. Al-Karmalawy A.A. Coumarin-based drugs targeting Mycobacterium tuberculosis proteins: Synthesis, in vitro anti-tubercular evaluation, and molecular docking studies. Bioorg. Chem. 2023 132 106248 10.1016/j.bioorg.2023.106248
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575407145251126055745
Loading
/content/journals/mrmc/10.2174/0113895575407145251126055745
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test