Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Inflammation is a fundamental biological reaction to harmful stimuli, which is crucial in the initiation and advancement of different diseases, including rheumatoid arthritis, cardiovascular conditions, neurological disorders such as Alzheimer's and Parkinson’s, and multiple cancer types. Chronic inflammation, in particular, contributes to irreversible tissue damage and the progression of disease. Thus, the suppression of key inflammatory mediators has become a promising therapeutic approach. Thromboxane A (TxA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) are among the mediators that have been thoroughly investigated for their roles in regulating immune responses and sustaining inflammation; therefore, targeting these mediators offers substantial therapeutic potential. In recent years, significant attention has been focused on heterocyclic compounds, especially pyridazine and pyridazinone derivatives, owing to their structural diversity and extensive biological activity. These scaffolds have shown significant effectiveness in regulating inflammatory pathways by limiting TxA production, reducing TNF-α release, and disrupting IL-6 signaling. This review presents a comprehensive overview of pyridazine and pyridazinone-based compounds as potential anti-inflammatory agents. It highlights both traditional and current synthetic strategies used in their development and explores their mechanisms of action with respect to key inflammatory targets. Additionally, the study examines recent pharmacological assessments and preclinical results, offering insights into the medicinal uses of these substances. A brief perspective on future research directions is also included, emphasizing the need for further structural optimization, validation, and clinical translation. Collectively, these results highlight the potential of pyridazine and pyridazinone derivatives in the development of advanced anti-inflammatory pharmaceuticals.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575404189250811070603
2025-08-13
2025-12-29
Loading full text...

Full text loading...

References

  1. PtaschinskiC. LukacsN.W. acute and chronic inflammation induces disease pathogenesis. In: Molecular Pathology; ElsevierElsevier2009355010.1016/B978‑0‑12‑374419‑7.00002‑0
    [Google Scholar]
  2. FurmanD. CampisiJ. VerdinE. Carrera-BastosP. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑0
    [Google Scholar]
  3. SinghY.P. PrasadS. KumarH. A comprehensive analysis on galantamine based hybrids for the management of Alzheimer’s disease.Chem. Biol. Drug Des.202410457000410.1111/cbdd.70004
    [Google Scholar]
  4. SerhanC.N. Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms.FASEB J.20173141273128810.1096/fj.201601222R
    [Google Scholar]
  5. MajnoG. JorisI. Cells, tissues, and disease: Principles of general pathology.Oxford University Press2004307330
    [Google Scholar]
  6. KumarV. AbbasA.K. AsterJ.C. Robbins basic pathology.Elsevier Health Sciences20175796
    [Google Scholar]
  7. BuzzettiR. MaddaloniE. GagliaJ. LeslieR.D. WongF.S. BoehmB.O. Adult-onset autoimmune diabetes.Nat. Rev. Dis. Primers2022816310.1038/s41572‑022‑00390‑6 36138034
    [Google Scholar]
  8. BatoolS. AbbasianN. BurtonJ.O. StoverC. Microparticles and their roles in inflammation: A review.Open Imm J.2013611410.2174/1874226201306010001
    [Google Scholar]
  9. PlachaD. JampilekJ. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems.Pharmaceutics20211316410.3390/pharmaceutics13010064
    [Google Scholar]
  10. YuuiK. KudoR. KasudaS. Arterial thromboxane A2-induced transient contraction after IL-1β exposure.Eur. J. Inflamm.20222010.1177/1721727X221077946
    [Google Scholar]
  11. TaguchiS. AzushimaK. YamajiT. UrateS. SuzukiT. AbeE. TanakaS. TsukamotoS. KamimuraD. KinguchiS. YamashitaA. WakuiH. TamuraK. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy.Sci. Rep.20211112358710.1038/s41598‑021‑02864‑1
    [Google Scholar]
  12. HiranoT. IL-6 in inflammation, autoimmunity and cancer.Int. Immunol.202133312714810.1093/intimm/dxaa078
    [Google Scholar]
  13. YamaguchiA. BottaE. HolinstatM. Eicosanoids in inflammation in the blood and the vessel.Front. Pharmacol.20221399740310.3389/fphar.2022.997403
    [Google Scholar]
  14. FlorescuD.N. BoldeanuM.V. ȘerbanR.E. FlorescuL.M. SerbanescuM.S. IonescuM. StrebaL. ConstantinC. VereC.C. Correlation of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, inflammatory markers, and tumor markers with the diagnosis and prognosis of colorectal cancer.Life20231312226110.3390/life13122261
    [Google Scholar]
  15. MustafaG. MahroshH.S. ArifR. In silico characterization of growth differentiation factors as inhibitors of TNF‐alpha and IL‐6 in immune‐mediated inflammatory disease rheumatoid arthritis.BioMed Res. Int.202120211553853510.1155/2021/5538535
    [Google Scholar]
  16. OsmanE.O. KhalilN.A. MagdyA. El-DashY. Pyridazine and pyridazinone derivatives: Synthesis and in vitro investigation of their anti‐inflammatory potential in LPS‐induced RAW264.7 macrophages.Drug Dev. Res.20248522217310.1002/ddr.22173
    [Google Scholar]
  17. AlsaiariA.A. AlmehmadiM.M. AsifM. Diverse pharmacological potential of pyridazine analogs against various diseases.Med. Chem.202420324526710.2174/1573406419666230913102835
    [Google Scholar]
  18. FarghalyA-R.A. Pyridazino[4,5-b]indoles II. Reactions and its biological importance.ARKIVOC2023202310.24820/ark.5550190.p012.084
    [Google Scholar]
  19. FrancavillaF. IntranuovoF. La SpadaG. LacivitaE. CattoM. GrapsE.A. AltomareC.D. Inflammaging and immunosenescence in the post‐COVID era: Small molecules, big challenges.ChemMedChem2025206e20240067210.1002/cmdc.202400672 39651728
    [Google Scholar]
  20. CantiniN. SchepetkinI.A. DanilenkoN.V. KhlebnikovA.I. CrocettiL. GiovannoniM.P. KirpotinaL.N. QuinnM.T. Pyridazinones and structurally related derivatives with anti-inflammatory activity.Molecules20222712374910.3390/molecules27123749
    [Google Scholar]
  21. MeanwellN.A. The pyridazine heterocycle in molecular recognition and drug discovery.Med. Chem. Res.20233291853192110.1007/s00044‑023‑03035‑9
    [Google Scholar]
  22. BoukharsaY. KarrouchiK. AttjiouiH. AnsarM.H. An overview of pyridazinone analogs: Chemical and pharmacological potential.Mini Rev. Med. Chem.202525132610.2174/0113895575287746240528072330
    [Google Scholar]
  23. RibeiroE. ValeN. Understanding the clinical use of levosimendan and perspectives on its future in oncology.Biomolecules2023139129610.3390/biom13091296
    [Google Scholar]
  24. AbdallahA.E. ElkadyH. ElwanA. RashedM. HammadA. ElkadyM.A. ElsakkaE.G.E. AlesawyM.S. New vatalanib analogs: Design, synthesis, in silico study and biological evaluation for anticancer activity.J. Mol. Struct.2025132214059510.1016/j.molstruc.2024.140595
    [Google Scholar]
  25. JeongG.H. LeeH. WooS.Y. LeeH.K. ChungB.Y. BaiH.W. Novel aminopyridazine derivative of minaprine modified by radiolysis presents potent anti-inflammatory effects in LPS-stimulated RAW 264.7 and DH82 macrophage cells.Sci. Rep.20231311088710.1038/s41598‑023‑37812‑8
    [Google Scholar]
  26. GarridoB. Afonso RibeiroJ. PalavraF. Branaplam as a promising splicing modulator: From spinal muscular atrophy to Huntington’s disease.Sinapse2023232829110.46531/sinapse/AR/230005/2023
    [Google Scholar]
  27. ÖzdemirZ. AlagözM.A. ArslanG. ÖzçelikA.B. Pharmacologically active molecules bearing the pyridazinone ring as main scaffold. J. Gazi Univ Health.Sci. Institut2022426179
    [Google Scholar]
  28. AsifM. AlghamdiS. A mini-review on pyridazine analogs: Chemical and pharmacological potentials.Mini Rev. Org. Chem.202320210012310.2174/1570193X19666220329155551
    [Google Scholar]
  29. SinghJ. KumarV. SilakariP. KumarS. Pyridazinones: A versatile scaffold in the development of potential target‐based novel anticancer agents.J. Heterocycl. Chem.202360692994910.1002/jhet.4589
    [Google Scholar]
  30. Costas-LagoM.C. BesadaP. MosqueraR. CanoE. TeránC. Stilbene-pyridazinone hybrids: Design, synthesis and in vitro antiplatelet activity screening.Bioorg. Chem.202415010761510.1016/j.bioorg.2024.107615
    [Google Scholar]
  31. Allart-SimonI. MoniotA. BisiN. Ponce-VargasM. AudonnetS. Laronze-CochardM. SapiJ. HénonE. VelardF. GérardS. Pyridazinone derivatives as potential anti inflammatory agents: Synthesis and biological evaluation as PDE4 inhibitors.RSC Medical Chemistry202112458459210.1039/D0MD00423E
    [Google Scholar]
  32. YusufM. AbdulazizO. AljuaidA. AllahyaniM. AlmehmadiM. AlzahraniA.Y.A. VermaS. AsifM. Molecular docking studies of synthesized pyridazinone scaffolds as non-nucleoside reverse transcriptase inhibitors (NNRTIs).Polycycl. Aromat. Compd.20242114
    [Google Scholar]
  33. KumarR. KhanM.I. PanwarA. VashistB. RaiS.K. KumarA. PDE4 inhibitors and their potential combinations for the treatment of chronic obstructive pulmonary disease: A narrative review.Open Respir. Med. J.20241811874306434041810.2174/0118743064340418241021095046
    [Google Scholar]
  34. HassanM.S.A. AhmedE.M. El-MalahA.A. KassabA.E. Anti‐inflammatory activity of pyridazinones: A review.Arch. Pharm.20223558220006710.1002/ardp.202200067
    [Google Scholar]
  35. FischerE. Indole aus phenylhydrazin.Justus Liebigs Ann. Chem.1886236147149
    [Google Scholar]
  36. TäüberE. Pyridazin (o‐Pyrazin).Ber. Dtsch. Chem. Ges.189528145145510.1002/cber.189502801111
    [Google Scholar]
  37. RubinsteinH. SkarbekJ.E. FeverH. Reactions of 3-carboxyacryloylhydrazines and the formation of meleimides, isomaleimides, and pyridazinones.J. Org. Chem.197136223372337610.1021/jo00821a023
    [Google Scholar]
  38. CoudertP. CouqueletJ. TroncheP. A new synthetic route to 4,6‐diarylpyridazinones and some of their derivatives.J. Heterocycl. Chem.198825379980210.1002/jhet.5570250318
    [Google Scholar]
  39. WermuthC.G. SchlewerG. BourguignonJ.J. MaghiorosG. BouchetM.J. MoireC. KanJ.P. WormsP. BiziereK. 3-Aminopyridazine derivatives with atypical antidepressant, serotonergic and dopaminergic activities.J. Med. Chem.198932352853710.1021/jm00123a004
    [Google Scholar]
  40. KhalifaF.A. Benzil in heterocyclic synthesis: Synthesis and reactions of 3,4-diphenyl-5-cyano-pyridazine-6-thione.Phosphorus Sulfur Silicon Relat. Elem.1991561-4818610.1080/10426509108038069
    [Google Scholar]
  41. Aly NadaA. Ragab MohamedN. Mohamed MahranA. Wahba ErianA. The utility of phosphonium ylides in heterocyclic synthesis: Synthesis of pyridazinone and tetrahydrocinnolinone derivatives.J. Chem. Res. Synop.19977723623710.1039/a700368d
    [Google Scholar]
  42. HovakimyanS.A. BabakhanyanA.V. VoskanyanV.S. KarapetianV.E. PanosyanG.A. KocharianS.T. Synthesis of pyridazinone derivatives.Chem. Heterocycl. Compd.20044081047105110.1023/B:COHC.0000046696.37815.62
    [Google Scholar]
  43. AbouzidK. BekhitS.A. Novel anti-inflammatory agents based on pyridazinone scaffold; design, synthesis and in vivo activity.Bioorg. Med. Chem.200816105547555610.1016/j.bmc.2008.04.007
    [Google Scholar]
  44. HumphriesP.S. OliverR.M. Facile synthesis of 4,5-disubstituted-3(2H)-pyridazinones.Tetrahedron Lett.200950222682268410.1016/j.tetlet.2009.03.144
    [Google Scholar]
  45. Ünsal-TanO. ÖzdenK. RaukA. BalkanA. Synthesis and cyclooxygenase inhibitory activities of some N-acylhydrazone derivatives of isoxazolo[4,5-d]pyridazin-4(5H)-ones.Eur. J. Med. Chem.20104562345235210.1016/j.ejmech.2010.02.012
    [Google Scholar]
  46. SiddiquiA.A. MishraR. ShaharyarM. Synthesis, characterization and antihypertensive activity of pyridazinone derivatives.Eur. J. Med. Chem.20104562283229010.1016/j.ejmech.2010.02.003
    [Google Scholar]
  47. AhmadS. RathishI.G. BanoS. AlamM.S. JavedK. Synthesis and biological evaluation of some novel 6-aryl-2-(p-sulfamylphenyl)-4,5-dihydropyridazin-3(2H)-ones as anti-cancer, antimicrobial, and anti-inflammatory agents.J. Enzyme Inhib. Med. Chem.201025226627110.3109/14756360903155781
    [Google Scholar]
  48. BashirR. YaseenS. OvaisS. AhmadS. HamidH. AlamM.S. SamimM. JavedK. Synthesis and biological evaluation of some novel sulfamoylphenyl-pyridazinone as anti-inflammatory agents (Part-II).J. Enzyme Inhib. Med. Chem.2012271929610.3109/14756366.2011.577036
    [Google Scholar]
  49. RathishI.G. JavedK. AhmadS. BanoS. AlamM.S. AkhterM. PillaiK.K. OvaisS. SamimM. Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3(2H)-ones.Eur. J. Med. Chem.20124930430910.1016/j.ejmech.2012.01.026
    [Google Scholar]
  50. PokhodyloN.T. ShyykaO.Y. New cascade reaction of azides with malononitrile dimer to polyfunctional [1,2,3]triazolo[4,5-b]pyridine.Synth. Commun.201747111096110110.1080/00397911.2017.1313427
    [Google Scholar]
  51. SinghJ. SainiV. KumarA. BansalR. Synthesis, molecular docking and biological evaluation of some newer 2-substituted-4-(benzo[d][1,3]dioxol-5-yl)-6-phenylpyridazin-3(2H)-ones as potential anti-inflammatory and analgesic agents.Bioorg. Chem.20177120121010.1016/j.bioorg.2017.02.006
    [Google Scholar]
  52. KrasavinM. ShetnevA. BaykovS. KalininS. NocentiniA. SharoykoV. PoliG. TuccinardiT. KorsakovM. TennikovaT.B. SupuranC.T. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines.Eur. J. Med. Chem.201916830131410.1016/j.ejmech.2019.02.044
    [Google Scholar]
  53. AhmedE.M. KassabA.E. El-MalahA.A. HassanM.S.A. Synthesis and biological evaluation of pyridazinone derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents.Eur. J. Med. Chem.2019171253710.1016/j.ejmech.2019.03.036
    [Google Scholar]
  54. AhmedE.M. HassanM.S.A. El-MalahA.A. KassabA.E. New pyridazine derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents; design, synthesis and biological evaluation.Bioorg. Chem.20209510349710.1016/j.bioorg.2019.103497
    [Google Scholar]
  55. KhanA. DiwanA. ThabetH.K. ImranM. BakhtM.A. Discovery of novel pyridazine-based cyclooxygenase-2 inhibitors with a promising gastric safety profile.Molecules2020259200210.3390/molecules25092002
    [Google Scholar]
  56. KodamaT. SasakiI. SugimuraH. Synthesis of pyridazine derivatives via aza-diels–alder reactions of 1, 2, 3-triazine derivatives and 1-propynylamines.J. Org. Chem.202186138926893210.1021/acs.joc.1c00851
    [Google Scholar]
  57. Abd El-HameedR.H. MahgoubS. El-ShanbakyH.M. MohamedM.S. AliS.A. Utility of novel 2-furanones in synthesis of other heterocyclic compounds having anti-inflammatory activity with dual COX2/LOX inhibition.J. Enzyme Inhib. Med. Chem.202136197798610.1080/14756366.2021.1908277
    [Google Scholar]
  58. ZhengY. MüllerJ. KunzS. SideriusM. MaesL. CaljonG. MüllerN. HemphillA. SterkG.J. LeursR. 3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity.Int. J. Parasitol. Drugs Drug Resist.202219475510.1016/j.ijpddr.2022.05.004
    [Google Scholar]
  59. FangZ. TengY. YangH. LiR. LiQ. YouY. WengZ. Synthesis of 4-trifluoromethyl pyridazines via annulation of pyridinium ylides with trifluoroacetyl diazoester.Org. Biomol. Chem.202220173564356910.1039/D2OB00483F
    [Google Scholar]
  60. EwiedaS.Y. HassanR.A. AhmedE.M. AbdouA.M. HassanM.S.A. Synthesis, COX-2 inhibition, anti-inflammatory activity, molecular docking, and histopathological studies of new pyridazine derivatives.Bioorg. Chem.202415010762310.1016/j.bioorg.2024.107623
    [Google Scholar]
  61. KrishnanR. ShibuS.N. PoelmanD. BadyalA.K. KuntiA.K. SwartH.C. MenonS.G. Recent advances in microwave synthesis for photoluminescence and photocatalysis.Mater. Today Commun.20223210389010.1016/j.mtcomm.2022.103890
    [Google Scholar]
  62. JolivetS. Texier-BoulletF. HamelinJ. JacquaultP. New method for the synthesis of 3(2H)‐pyridazinones and their alkene precursors: Solvent‐free reactions under microwave irradiation.Heteroatom Chem.19956546947410.1002/hc.520060512
    [Google Scholar]
  63. SoteloE. MoceloR. SuárezM. LoupyA. Synthesis of polyfunctional pyridazine derivatives using a solvent-free microwave assisted method.Synth. Commun.199727142419242310.1080/00397919708004105
    [Google Scholar]
  64. HoogenboomR. MooreB.C. SchubertU.S. Microwave-assisted synthesis of 3,6-di(pyridin-2-yl)pyridazines: Unexpected ketone and aldehyde cycloadditions.J. Org. Chem.200671134903490910.1021/jo060632p
    [Google Scholar]
  65. MohamedN.R. El-SaidiM.M.T. AliY.M. ElnagdiM.H. Microwaves in organic synthesis: Facile synthesis of biologically active pyridazinone and iminopyridazine derivatives.J. Heterocycl. Chem.20074461333133710.1002/jhet.5570440615
    [Google Scholar]
  66. GharebN. ElshihawyH.A. Abdel-DaimM.M. HelalM.A. Novel pyrazoles and pyrazolo[1,2- a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations.Bioorg. Med. Chem. Lett.201727112377238310.1016/j.bmcl.2017.04.020
    [Google Scholar]
  67. KumbarS.M. ShanbhagG.V. HalligudiS.B. Synthesis of monoallyl guaiacol via allylation using HY zeolite.J. Mol. Catal. Chem.20062441-227828210.1016/j.molcata.2005.09.032
    [Google Scholar]
  68. RavindranathN. RameshC. Ravinder ReddyM. DasB. Selective removal of N‐Boc protecting group from aromatic amines using silica gel‐supported sodium hydrogen sulfate and HY‐zeolite as heterogeneous catalysts.Adv. Synth. Catal.2003345111207120810.1002/adsc.200303108
    [Google Scholar]
  69. SrinivasK.V.N.S. ReddyE.B. DasB. Highly convenient and efficient one-pot conversions of aldehydes into nitriles and ketones into amides using HY-zeolite.Synlett2002200240625062710.1055/s‑2002‑22701
    [Google Scholar]
  70. ZareL. MahmoodiN. YahyazadehA. MamaghaniM. TabatabaeianK. An efficient one‐pot synthesis of pyridazinones and phthalazinones using HY‐zeolite.J. Heterocycl. Chem.201148486486710.1002/jhet.649
    [Google Scholar]
  71. HoteB.S. SawantA.S. SawantS.S. SiO2-BiCl3 as heterogeneous catalyzed synthesis of 6-methyl-2-aryl-4,5-dihydropyridazin-3(2H)-one derivatives.Polycycl. Aromat. Compd.20204051501150910.1080/10406638.2018.1557708
    [Google Scholar]
  72. GroverV. MandalB.P. TyagiA.K. Tyagi, Solid state synthesis of materials.Handbook on Synthesis Strategies for Advanced Materials: Volume-I: Techniques and Fundamental.Springer2021
    [Google Scholar]
  73. LeeB. KangP. LeeK.H. ChoJ. NamW. LeeW.K. HurN.H. Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine.Tetrahedron Lett.201354111384138810.1016/j.tetlet.2012.12.106
    [Google Scholar]
  74. RuanD.T. LuR. RuanK-H. Redirecting thromboxane A2 and prostacyclin biosyntheses from thrombotic to antithrombotic property by an Enzymelink2021765768
    [Google Scholar]
  75. BadimonL. VilahurG. RoccaB. PatronoC. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis.Cardiovasc. Res.202111792001201510.1093/cvr/cvab003
    [Google Scholar]
  76. RuckerD. DhamoonA.S. Physiology, thromboxane A2.Treasure IslandStatPearls Publishing2019115
    [Google Scholar]
  77. WangB. WuL. ChenJ. DongL. ChenC. WenZ. HuJ. FlemingI. WangD.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets.Signal Transduct. Target. Ther.2021619410.1038/s41392‑020‑00443‑w
    [Google Scholar]
  78. OzenG. AljesriK. AbdelazeemH. NorelX. TurkyılmazG. TurkyılmazS. TopalG. Comparative study on the effect of aspirin, TP receptor antagonist and TxA2 synthase inhibitor on the vascular tone of human saphenous vein and internal mammary artery.Life Sci.202128612007310.1016/j.lfs.2021.120073
    [Google Scholar]
  79. BavryA.A. BhattD.L. Experimental antiplatelet therapy.Platelets.2nd edBurlingtonAcademic Press20071193120810.1016/B978‑012369367‑9/50827‑2
    [Google Scholar]
  80. TsouprasA. GkikaD.A. SiadimasI. ChristodoulopoulosI. EfthymiopoulosP. KyzasG.Z. The multifaceted effects of non-steroidal and non-opioid anti-inflammatory and analgesic drugs on platelets: Current knowledge, limitations, and future perspectives.Pharmaceuticals202417562710.3390/ph17050627
    [Google Scholar]
  81. ZhangJ. YangJ. ChangX. ZhangC. ZhouH. LiuM. Ozagrel for acute ischemic stroke: A meta-analysis of data from randomized controlled trials.Neurol. Res.201234434635310.1179/1743132812Y.0000000022
    [Google Scholar]
  82. SzczukoM. KoziołI. KotlęgaD. BrodowskiJ. DrozdA. The role of thromboxane in the course and treatment of ischemic stroke.Int. J. Mol. Sci.2021222111644[review].10.3390/ijms222111644
    [Google Scholar]
  83. JonesR.L. GiembyczM.A. WoodwardD.F. Prostanoid receptor antagonists: Development strategies and therapeutic applications.Br. J. Pharmacol.2009158110414510.1111/j.1476‑5381.2009.00317.x
    [Google Scholar]
  84. TyndallJ. SandilyaR. GPCR agonists and antagonists in the clinic.Med. Chem.20051440542110.2174/1573406054368675
    [Google Scholar]
  85. MongeA. AldanaI. AlvarezT. FontM. SantiagoE. LatreJ.A. BermejilloM.J. Lopez-UnzuM.J. Fernandez-AlvarezE. New 5H-pyridazino[4,5-b]indole derivatives. Synthesis and studies as inhibitors of blood platelet aggregation and inotropics.J. Med. Chem.199134103023302910.1021/jm00114a010
    [Google Scholar]
  86. YamaguchiM. KameiK. KogaT. AkimaM. MaruyamaA. KurokiT. OhiN. Novel antiasthmatic agents with dual activities of thromboxane A2 synthetase inhibition and bronchodilation. 2. 4-(3-Pyridyl)-1(2H)-phthalazinones.J. Med. Chem.199336254061406810.1021/jm00077a009
    [Google Scholar]
  87. YamaguchiM. KogaT. KameiK. AkimaM. KurokiT. HamanaM. OhiN. Novel antiasthmatic agents with dual activities of thromboxane A2 synthetase inhibition and bronchodilation. III. 4-[2-(5-Ethyl-2-thienyl)]-2′-[2-(1-imidazolyl)ethyl]-1(2H)-phthalazinones.Chem. Pharm. Bull.19944281601160410.1248/cpb.42.1601
    [Google Scholar]
  88. YamaguchiM. MaruyamaN. KogaT. KameiK. AkimaM. KurokiT. HamanaM. OhiN. Novel antiasthmatic agents with dual activities of thromboxane A2 synthetase inhibition and bronchodilation. V. Thienopyridazinone derivatives.Chem. Pharm. Bull.199543223624010.1248/cpb.43.236
    [Google Scholar]
  89. CorsanoS. VezzaR. ScapicchiR. ForesiS. StrappaghettiG. NenciG.G. GreseleP. New pyridazinone derivatives as inhibitors of platelet aggregation.Eur. J. Med. Chem.1995307-862763110.1016/0223‑5234(96)88278‑X
    [Google Scholar]
  90. HaiderN. HartmannR.W. SteinwenderA. Synthesis of 2-[2-(1-Imidazolyl)ethyl]-4-phenylcycloalka[g]phthalazin-1(2H)-ones as Thromboxane A2 Synthase Inhibitors.Arch. Pharm.19993321140840910.1002/(SICI)1521‑4184(199911)332:11<408:AID‑ARDP408>3.0.CO;2‑P
    [Google Scholar]
  91. de MatosL.G.G. CândidoE.B. VidigalP.V.T. BordoniP.H.C. LamaitaR.M. CarneiroM.M. da Silva-FilhoA.L. Association between toll-like receptor and tumor necrosis factor immunological pathways in uterine cervical neoplasms.Tumori20171031818610.5301/tj.5000576
    [Google Scholar]
  92. ViniciusL.F. HelenaH.L.B. Cytokines and interferons: Types and functions.Autoantibodies and Cytokines.RijekaIntechOpen20186587
    [Google Scholar]
  93. YaoC. NarumiyaS. Prostaglandin‐cytokine crosstalk in chronic inflammation.Br. J. Pharmacol.2019176333735410.1111/bph.14530
    [Google Scholar]
  94. BradleyJ.R. TNF‐mediated inflammatory disease.J. Pathol.2008214214916010.1002/path.2287
    [Google Scholar]
  95. TanakaT. NarazakiM. KishimotoT. IL-6 in inflammation, immunity, and disease.Cold Spring Harb. Perspect. Biol.2014610a01629510.1101/cshperspect.a016295
    [Google Scholar]
  96. FischerW. SchudtC. WendelA. Protection by phosphodiesterase inhibitors against endotoxin-induced liver injury in galactosamine-sensitized mice.Biochem. Pharmacol.199345122399240410.1016/0006‑2952(93)90219‑M
    [Google Scholar]
  97. BarberotC. MoniotA. Allart-SimonI. MalleretL. YegorovaT. Laronze-CochardM. BentaherA. MédebielleM. BouillonJ.P. HénonE. SapiJ. VelardF. GérardS. Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents.Eur. J. Med. Chem.201814613914610.1016/j.ejmech.2018.01.035
    [Google Scholar]
  98. MartinC. GöggelR. Dal PiazV. VergelliC. GiovannoniM. ErnstM. UhligS. Airway relaxant and anti-inflammatory properties of a PDE4 inhibitor with low affinity for the high-affinity rolipram binding site.Naunyn Schmiedebergs Arch. Pharmacol.2002365428428910.1007/s00210‑001‑0525‑7
    [Google Scholar]
  99. McIntyreC.J. PonticelloG.S. LivertonN.J. O’KeefeS.J. O’NeillE.A. PangM. SchwartzC.D. ClaremonD.A. Pyridazine based inhibitors of p38 MAPK.Bioorg. Med. Chem. Lett.200212468969210.1016/S0960‑894X(01)00834‑4
    [Google Scholar]
  100. CollettiS.L. FrieJ.L. DixonE.C. SinghS.B. ChoiB.K. ScapinG. FitzgeraldC.E. KumarS. NicholsE.A. O’KeefeS.J. O’NeillE.A. PorterG. SamuelK. SchmatzD.M. SchwartzC.D. ShoopW.L. ThompsonC.M. ThompsonJ.E. WangR. WoodsA. ZallerD.M. DohertyJ.B. Hybrid-designed inhibitors of p38 MAP kinase utilizing N-arylpyridazinones.J. Med. Chem.200346334935210.1021/jm025585h
    [Google Scholar]
  101. TamayoN. LiaoL. GoldbergM. PowersD. TudorY.Y. YuV. WongL.M. HenkleB. MiddletonS. SyedR. HarveyT. JangG. HungateR. DominguezC. Design and synthesis of potent pyridazine inhibitors of p38 MAP kinase.Bioorg. Med. Chem. Lett.20051592409241310.1016/j.bmcl.2005.02.010
    [Google Scholar]
  102. GiovannoniM.P. CesariN. GrazianoA. VergelliC. BiancalaniC. BiaginiP. PiazV.D. Synthesis of pyrrolo[2,3-d]pyridazinones as potent, subtype selective PDE4 inhibitors.J. Enzyme Inhib. Med. Chem.200722330931810.1080/14756360601114700
    [Google Scholar]
  103. BunnelleW.H. TietjeK.R. FrostJ.M. PetersD. JiJ. LiT. ScanioM.J.C. ShiL. AndersonD.J. DyhringT. GrønlienJ.H. WeenH. Thorin-HageneK. MeyerM.D. Octahydropyrrolo[3,4-c]pyrrole: A diamine scaffold for construction of either α4β2 or α7-selective nicotinic acetylcholine receptor (nAChR) ligands. Substitutions that switch subtype selectivity.J. Med. Chem.200952144126414110.1021/jm900249k
    [Google Scholar]
  104. LiJ. MathieuS.L. HarrisR. JiJ. AndersonD.J. MalyszJ. BunnelleW.H. WaringJ.F. MarshK.C. MurtazaA. OlsonL.M. GopalakrishnanM. Role of α7 nicotinic acetylcholine receptors in regulating tumor necrosis factor-α (TNF-α) as revealed by subtype selective agonists.J. Neuroimmunol.20112391-2374310.1016/j.jneuroim.2011.08.007
    [Google Scholar]
  105. BiaginiP. BiancalaniC. GrazianoA. CesariN. GiovannoniM.P. CilibrizziA. PiazV.D. VergelliC. CrocettiL. DelcanaleM. ArmaniE. RizziA. PucciniP. GalloP.M. SpinabelliD. CarusoP. Functionalized pyrazoles and pyrazolo[3,4-d]pyridazinones: Synthesis and evaluation of their phosphodiesterase 4 inhibitory activity.Bioorg. Med. Chem.201018103506351710.1016/j.bmc.2010.03.066
    [Google Scholar]
  106. AbouzidK.A.M. KhalilN.A. AhmedE.M. ZaitoneS.A.B. Synthesis and biological evaluation of new heteroaryl carboxylic acid derivatives as anti-inflammatory-analgesic agents.Chem. Pharm. Bull.201361222222810.1248/cpb.c12‑00949
    [Google Scholar]
  107. PanditS.S. KulkarniM.R. GhoshU. PanditY.B. LadN.P. Synthesis and biological evaluation of imidazo[1,2-b]pyridazines as inhibitors of TNF-α production.Mol. Divers.201822354556010.1007/s11030‑017‑9798‑8
    [Google Scholar]
  108. PanditS.S. KulkarniM.R. PanditY.B. LadN.P. KhedkarV.M. Synthesis and in vitro evaluations of 6-(hetero)-aryl-imidazo[1,2-b]pyridazine-3-sulfonamide’s as an inhibitor of TNF-α production.Bioorg. Med. Chem. Lett.2018281243010.1016/j.bmcl.2017.11.026
    [Google Scholar]
  109. EidN.M. GeorgeR.F. Facile synthesis of some pyrazoline-based compounds with promising anti-inflammatory activity.Future Med. Chem.201810218319910.4155/fmc‑2017‑0144
    [Google Scholar]
  110. MoniotA. BrauxJ. SiboniR. GuillaumeC. AudonnetS. Allart-SimonI. SapiJ. TirouvanziamR. GérardS. GangloffS.C. VelardF. Inhibition of recruitment and activation of neutrophils by pyridazinone-scaffold-based compounds.Int. J. Mol. Sci.20222313722610.3390/ijms23137226
    [Google Scholar]
  111. IbrahimN.A. AnwarH.M. MoghazyA.M. El MalahT. RagabW.M. Abd El-AalR.A.H. SalehN.A. EldosokiD.E. Heme oxygenase – 1 expression in liver and colon of rats exposed to oxidative stress and dysplasia by a carcinogen diethylnitrosamine and the possible therapeutic effects of probiotic versus pyridazine derivative and chemotherapy.Egypt. J. Chem.2022654249268
    [Google Scholar]
  112. TleyjehI.M. KashourZ. RiazM. HassettL. VeigaV.C. KashourT. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis, first update.Clin. Microbiol. Infect.20212781076108210.1016/j.cmi.2021.04.019
    [Google Scholar]
  113. BoyceE.G. RoganE.L. VyasD. PrasadN. MaiY. Sarilumab: Review of a second IL-6 receptor antagonist indicated for the treatment of rheumatoid arthritis.Ann. Pharmacother.201852878079110.1177/1060028018761599
    [Google Scholar]
  114. SarosiekS. ShahR. MunshiN.C. Review of siltuximab in the treatment of multicentric Castleman’s disease.Ther. Adv. Hematol.20167636036610.1177/2040620716653745
    [Google Scholar]
  115. HollandS.J. PanA. FranciC. HuY. ChangB. LiW. DuanM. TornerosA. YuJ. HeckrodtT.J. ZhangJ. DingP. ApatiraA. ChuaJ. BrandtR. PineP. GoffD. SinghR. PayanD.G. HitoshiY. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer.Cancer Res.20107041544155410.1158/0008‑5472.CAN‑09‑2997
    [Google Scholar]
  116. AsanoT. YamazakiH. KasaharaC. KubotaH. KontaniT. HarayamaY. OhnoK. MizuharaH. YokomotoM. MisumiK. KinoshitaT. OhtaM. TakeuchiM. Identification, Synthesis, and Biological Evaluation of 6-[(6R)-2-(4-Fluorophenyl)-6-(hydroxymethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidin-3-yl]-2-(2-methylphenyl)pyridazin-3(2H)-one (AS1940477), a Potent p38 MAP Kinase Inhibitor.J. Med. Chem.201255177772778510.1021/jm3008008
    [Google Scholar]
  117. TerajimaM. InoueT. MagariK. YamazakiH. HigashiY. MizuharaH. Anti-inflammatory effect and selectivity profile of AS1940477, a novel and potent p38 mitogen-activated protein kinase inhibitor.Eur. J. Pharmacol.20136981-345546210.1016/j.ejphar.2012.11.021
    [Google Scholar]
  118. VergelliC. SchepetkinI.A. CicianiG. CilibrizziA. CrocettiL. GiovannoniM.P. GuerriniG. IacovoneA. KirpotinaL.N. YeR.D. QuinnM.T. Synthesis of five- and six-membered N-phenylacetamido substituted heterocycles as formyl peptide receptor agonists.Drug Dev. Res.2017781496210.1002/ddr.21370
    [Google Scholar]
  119. LiaoJ. YangJ. LiX. HuC. ZhuW. ZhouY. ZouY. GuoM. ChenZ. LiX. DaiJ. XuY. ZhengZ. ChenP. ChoW.J. LiangG. TangQ. Discovery of the diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogue J27 for the treatment of acute lung injury and sepsis by targeting JNK2 and inhibiting the JNK2-NF-κB/MAPK pathway.J. Med. Chem.20236617123041232310.1021/acs.jmedchem.3c00832
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575404189250811070603
Loading
/content/journals/mrmc/10.2174/0113895575404189250811070603
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): anti-inflammatory; cytokine; IL-6; prostaglandin; pyridazine; pyridazinone; Synthesis; TNF-α; TxA2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test