Skip to content
2000
image of Pyridazine and Pyridazinone in Medicinal Chemistry: Synthesis and Anti-inflammatory Pathways Targeting TxA2, TNF-α, and IL-6

Abstract

Inflammation is a fundamental biological reaction to harmful stimuli, which is crucial in the initiation and advancement of different diseases, including rheumatoid arthritis, cardiovascular conditions, neurological disorders such as Alzheimer's and Parkinson’s, and multiple cancer types. Chronic inflammation, in particular, contributes to irreversible tissue damage and the progression of disease. Thus, the suppression of key inflammatory mediators has become a promising therapeutic approach. Thromboxane A (TxA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) are among the mediators that have been thoroughly investigated for their roles in regulating immune responses and sustaining inflammation; therefore, targeting these mediators offers substantial therapeutic potential. In recent years, significant attention has been focused on heterocyclic compounds, especially pyridazine and pyridazinone derivatives, owing to their structural diversity and extensive biological activity. These scaffolds have shown significant effectiveness in regulating inflammatory pathways by limiting TxA production, reducing TNF-α release, and disrupting IL-6 signaling. This review presents a comprehensive overview of pyridazine and pyridazinone-based compounds as potential anti-inflammatory agents. It highlights both traditional and current synthetic strategies used in their development and explores their mechanisms of action with respect to key inflammatory targets. Additionally, the study examines recent pharmacological assessments and preclinical results, offering insights into the medicinal uses of these substances. A brief perspective on future research directions is also included, emphasizing the need for further structural optimization, validation, and clinical translation. Collectively, these results highlight the potential of pyridazine and pyridazinone derivatives in the development of advanced anti-inflammatory pharmaceuticals.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575404189250811070603
2025-08-13
2025-11-08
Loading full text...

Full text loading...

References

  1. Ptaschinski C. Lukacs N.W. acute and chronic inflammation induces disease pathogenesis Molecular Pathology Elsevier 2009 25 40 10.1016/B978‑0‑12‑374419‑7.00002‑0
    [Google Scholar]
  2. Furman D. Campisi J. Verdin E. Carrera-Bastos P. Targ S. Franceschi C. Ferrucci L. Gilroy D.W. Fasano A. Miller G.W. Miller A.H. Mantovani A. Weyand C.M. Barzilai N. Goronzy J.J. Rando T.A. Effros R.B. Lucia A. Kleinstreuer N. Slavich G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019 25 12 1822 1832 10.1038/s41591‑019‑0675‑0
    [Google Scholar]
  3. Singh Y.P. Prasad S. Kumar H. A comprehensive analysis on galantamine based hybrids for the management of Alzheimer’s disease. Chem. Biol. Drug Des. 2024 104 5 70004 10.1111/cbdd.70004
    [Google Scholar]
  4. Serhan C.N. Treating inflammation and infection in the 21st century: New hints from decoding resolution mediators and mechanisms. FASEB J. 2017 31 4 1273 1288 10.1096/fj.201601222R
    [Google Scholar]
  5. Majno G. Joris I. Cells, tissues, and disease: Principles of general pathology. Oxford University Press 2004 307 330
    [Google Scholar]
  6. Kumar V. Abbas A.K. Aster J.C. Robbins basic pathology. Elsevier Health Sciences 2017 57 96
    [Google Scholar]
  7. Buzzetti R. Maddaloni E. Gaglia J. Leslie R.D. Wong F.S. Boehm B.O. Adult-onset autoimmune diabetes. Nat. Rev. Dis. Primers 2022 8 1 63 10.1038/s41572‑022‑00390‑6 36138034
    [Google Scholar]
  8. Batool S. Abbasian N. Burton J.O. Stover C. Microparticles and their roles in inflammation: A review. Open Imm J. 2013 6 1 14 10.2174/1874226201306010001
    [Google Scholar]
  9. Placha D. Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery nanosystems. Pharmaceutics 2021 13 1 64 10.3390/pharmaceutics13010064
    [Google Scholar]
  10. Yuui K. Kudo R. Kasuda S. Arterial thromboxane A2-induced transient contraction after IL-1β exposure. Eur. J. Inflamm. 2022 20 10.1177/1721727X221077946
    [Google Scholar]
  11. Taguchi S. Azushima K. Yamaji T. Urate S. Suzuki T. Abe E. Tanaka S. Tsukamoto S. Kamimura D. Kinguchi S. Yamashita A. Wakui H. Tamura K. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy. Sci. Rep. 2021 11 1 23587 10.1038/s41598‑021‑02864‑1
    [Google Scholar]
  12. Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2021 33 3 127 148 10.1093/intimm/dxaa078
    [Google Scholar]
  13. Yamaguchi A. Botta E. Holinstat M. Eicosanoids in inflammation in the blood and the vessel. Front. Pharmacol. 2022 13 997403 10.3389/fphar.2022.997403
    [Google Scholar]
  14. Florescu D.N. Boldeanu M.V. Șerban R.E. Florescu L.M. Serbanescu M.S. Ionescu M. Streba L. Constantin C. Vere C.C. Correlation of the pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, inflammatory markers, and tumor markers with the diagnosis and prognosis of colorectal cancer. Life 2023 13 12 2261 10.3390/life13122261
    [Google Scholar]
  15. Mustafa G. Mahrosh H.S. Arif R. In silico characterization of growth differentiation factors as inhibitors of TNF‐alpha and IL‐6 in immune‐mediated inflammatory disease rheumatoid arthritis. BioMed Res. Int. 2021 2021 1 5538535 10.1155/2021/5538535
    [Google Scholar]
  16. Osman E.O. Khalil N.A. Magdy A. El-Dash Y. Pyridazine and pyridazinone derivatives: Synthesis and in vitro investigation of their anti‐inflammatory potential in LPS‐induced RAW264.7 macrophages. Drug Dev. Res. 2024 85 2 22173 10.1002/ddr.22173
    [Google Scholar]
  17. Alsaiari A.A. Almehmadi M.M. Asif M. Diverse pharmacological potential of pyridazine analogs against various diseases. Med. Chem. 2024 20 3 245 267 10.2174/1573406419666230913102835
    [Google Scholar]
  18. Farghaly A-R.A. Pyridazino[4,5-b]indoles II. Reactions and its biological importance. ARKIVOC 2023 2023
    [Google Scholar]
  19. Francavilla F. Intranuovo F. La Spada G. Lacivita E. Catto M. Graps E.A. Altomare C.D. Inflammaging and immunosenescence in the post‐COVID era: Small molecules, big challenges. ChemMedChem 2025 20 6 e202400672 10.1002/cmdc.202400672 39651728
    [Google Scholar]
  20. Cantini N. Schepetkin I.A. Danilenko N.V. Khlebnikov A.I. Crocetti L. Giovannoni M.P. Kirpotina L.N. Quinn M.T. Pyridazinones and structurally related derivatives with anti-inflammatory activity. Molecules 2022 27 12 3749 10.3390/molecules27123749
    [Google Scholar]
  21. Meanwell N.A. The pyridazine heterocycle in molecular recognition and drug discovery. Med. Chem. Res. 2023 32 9 1853 1921 10.1007/s00044‑023‑03035‑9
    [Google Scholar]
  22. Boukharsa Y. Karrouchi K. Attjioui H. Ansar M.H. An overview of pyridazinone analogs: Chemical and pharmacological potential. Mini Rev. Med. Chem. 2025 25 1 3 26 10.2174/0113895575287746240528072330
    [Google Scholar]
  23. Ribeiro E. Vale N. Understanding the clinical use of levosimendan and perspectives on its future in oncology. Biomolecules 2023 13 9 1296 10.3390/biom13091296
    [Google Scholar]
  24. Abdallah A.E. Elkady H. Elwan A. Rashed M. Hammad A. Elkady M.A. Elsakka E.G.E. Alesawy M.S. New vatalanib analogs: Design, synthesis, in silico study and biological evaluation for anticancer activity. J. Mol. Struct. 2025 1322 140595 10.1016/j.molstruc.2024.140595
    [Google Scholar]
  25. Jeong G.H. Lee H. Woo S.Y. Lee H.K. Chung B.Y. Bai H.W. Novel aminopyridazine derivative of minaprine modified by radiolysis presents potent anti-inflammatory effects in LPS-stimulated RAW 264.7 and DH82 macrophage cells. Sci. Rep. 2023 13 1 10887 10.1038/s41598‑023‑37812‑8
    [Google Scholar]
  26. Garrido B. Afonso Ribeiro J. Palavra F. Branaplam as a promising splicing modulator: From spinal muscular atrophy to Huntington’s disease. Sinapse 2023 23 2 82 91 10.46531/sinapse/AR/230005/2023
    [Google Scholar]
  27. Özdemir Z. Alagöz M.A. Arslan G. Özçelik A.B. Pharmacologically active molecules bearing the pyridazinone ring as main scaffold. J. Gazi Univ Health. Sci. Institut 2022 4 2 61 79
    [Google Scholar]
  28. Asif M. Alghamdi S. A mini-review on pyridazine analogs: Chemical and pharmacological potentials. Mini Rev. Org. Chem. 2023 20 2 100 123 10.2174/1570193X19666220329155551
    [Google Scholar]
  29. Singh J. Kumar V. Silakari P. Kumar S. Pyridazinones: A versatile scaffold in the development of potential target‐based novel anticancer agents. J. Heterocycl. Chem. 2023 60 6 929 949 10.1002/jhet.4589
    [Google Scholar]
  30. Costas-Lago M.C. Besada P. Mosquera R. Cano E. Terán C. Stilbene-pyridazinone hybrids: Design, synthesis and in vitro antiplatelet activity screening. Bioorg. Chem. 2024 150 107615 10.1016/j.bioorg.2024.107615
    [Google Scholar]
  31. Allart-Simon I. Moniot A. Bisi N. Ponce-Vargas M. Audonnet S. Laronze-Cochard M. Sapi J. Hénon E. Velard F. Gérard S. Pyridazinone derivatives as potential anti-inflammatory agents: Synthesis and biological evaluation as PDE4 inhibitors. RSC Medicinal Chemistry 2021 12 4 584 592 10.1039/D0MD00423E
    [Google Scholar]
  32. Yusuf M. Abdulaziz O. Aljuaid A. Allahyani M. Almehmadi M. Alzahrani A.Y.A. Verma S. Asif M. Molecular docking studies of synthesized pyridazinone scaffolds as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Polycycl. Aromat. Compd. 2024 2 1 14
    [Google Scholar]
  33. Kumar R. Khan M.I. Panwar A. Vashist B. Rai S.K. Kumar A. PDE4 inhibitors and their potential combinations for the treatment of chronic obstructive pulmonary disease: A narrative review. Open Respir. Med. J. 2024 18 1 18743064340418 10.2174/0118743064340418241021095046
    [Google Scholar]
  34. Hassan M.S.A. Ahmed E.M. El-Malah A.A. Kassab A.E. Anti‐inflammatory activity of pyridazinones: A review. Arch. Pharm. 2022 355 8 2200067 10.1002/ardp.202200067
    [Google Scholar]
  35. Fischer E. Indole aus phenylhydrazin. Justus Liebigs Ann. Chem. 1886 236 147 149
    [Google Scholar]
  36. Täüber E. Pyridazin (o‐Pyrazin). Ber. Dtsch. Chem. Ges. 1895 28 1 451 455 10.1002/cber.189502801111
    [Google Scholar]
  37. Rubinstein H. Skarbek J.E. Fever H. Reactions of 3-carboxyacryloylhydrazines and the formation of meleimides, isomaleimides, and pyridazinones. J. Org. Chem. 1971 36 22 3372 3376 10.1021/jo00821a023
    [Google Scholar]
  38. Coudert P. Couquelet J. Tronche P. A new synthetic route to 4,6‐diarylpyridazinones and some of their derivatives. J. Heterocycl. Chem. 1988 25 3 799 802 10.1002/jhet.5570250318
    [Google Scholar]
  39. Wermuth C.G. Schlewer G. Bourguignon J.J. Maghioros G. Bouchet M.J. Moire C. Kan J.P. Worms P. Biziere K. 3-Aminopyridazine derivatives with atypical antidepressant, serotonergic and dopaminergic activities. J. Med. Chem. 1989 32 3 528 537 10.1021/jm00123a004
    [Google Scholar]
  40. Khalifa F.A. Benzil in heterocyclic synthesis: Synthesis and reactions of 3,4-diphenyl-5-cyano-pyridazine-6-thione. Phosphorus Sulfur Silicon Relat. Elem. 1991 56 1-4 81 86 10.1080/10426509108038069
    [Google Scholar]
  41. Aly Nada A. Ragab Mohamed N. Mohamed Mahran A. Wahba Erian A. The utility of phosphonium ylides in heterocyclic synthesis: Synthesis of pyridazinone and tetrahydrocinnolinone derivatives. J. Chem. Res. Synop. 1997 7 7 236 237 10.1039/a700368d
    [Google Scholar]
  42. Hovakimyan S.A. Babakhanyan A.V. Voskanyan V.S. Karapetian V.E. Panosyan G.A. Kocharian S.T. Synthesis of pyridazinone derivatives. Chem. Heterocycl. Compd. 2004 40 8 1047 1051 10.1023/B:COHC.0000046696.37815.62
    [Google Scholar]
  43. Abouzid K. Bekhit S.A. Novel anti-inflammatory agents based on pyridazinone scaffold; design, synthesis and in vivo activity. Bioorg. Med. Chem. 2008 16 10 5547 5556 10.1016/j.bmc.2008.04.007
    [Google Scholar]
  44. Humphries P.S. Oliver R.M. Facile synthesis of 4,5-disubstituted-3(2H)-pyridazinones. Tetrahedron Lett. 2009 50 22 2682 2684 10.1016/j.tetlet.2009.03.144
    [Google Scholar]
  45. Ünsal-Tan O. Özden K. Rauk A. Balkan A. Synthesis and cyclooxygenase inhibitory activities of some N-acylhydrazone derivatives of isoxazolo[4,5-d]pyridazin-4(5H)-ones. Eur. J. Med. Chem. 2010 45 6 2345 2352 10.1016/j.ejmech.2010.02.012
    [Google Scholar]
  46. Siddiqui A.A. Mishra R. Shaharyar M. Synthesis, characterization and antihypertensive activity of pyridazinone derivatives. Eur. J. Med. Chem. 2010 45 6 2283 2290 10.1016/j.ejmech.2010.02.003
    [Google Scholar]
  47. Ahmad S. Rathish I.G. Bano S. Alam M.S. Javed K. Synthesis and biological evaluation of some novel 6-aryl-2-(p-sulfamylphenyl)-4,5-dihydropyridazin-3(2H)-ones as anti-cancer, antimicrobial, and anti-inflammatory agents. J. Enzyme Inhib. Med. Chem. 2010 25 2 266 271 10.3109/14756360903155781
    [Google Scholar]
  48. Bashir R. Yaseen S. Ovais S. Ahmad S. Hamid H. Alam M.S. Samim M. Javed K. Synthesis and biological evaluation of some novel sulfamoylphenyl-pyridazinone as anti-inflammatory agents (Part-II). J. Enzyme Inhib. Med. Chem. 2012 27 1 92 96 10.3109/14756366.2011.577036
    [Google Scholar]
  49. Rathish I.G. Javed K. Ahmad S. Bano S. Alam M.S. Akhter M. Pillai K.K. Ovais S. Samim M. Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3(2H)-ones. Eur. J. Med. Chem. 2012 49 304 309 10.1016/j.ejmech.2012.01.026
    [Google Scholar]
  50. Pokhodylo N.T. Shyyka O.Y. New cascade reaction of azides with malononitrile dimer to polyfunctional [1,2,3]triazolo[4,5-b]pyridine. Synth. Commun. 2017 47 11 1096 1101 10.1080/00397911.2017.1313427
    [Google Scholar]
  51. Singh J. Saini V. Kumar A. Bansal R. Synthesis, molecular docking and biological evaluation of some newer 2-substituted-4-(benzo[d][1,3]dioxol-5-yl)-6-phenylpyridazin-3(2H)-ones as potential anti-inflammatory and analgesic agents. Bioorg. Chem. 2017 71 201 210 10.1016/j.bioorg.2017.02.006
    [Google Scholar]
  52. Krasavin M. Shetnev A. Baykov S. Kalinin S. Nocentini A. Sharoyko V. Poli G. Tuccinardi T. Korsakov M. Tennikova T.B. Supuran C.T. Pyridazinone-substituted benzenesulfonamides display potent inhibition of membrane-bound human carbonic anhydrase IX and promising antiproliferative activity against cancer cell lines. Eur. J. Med. Chem. 2019 168 301 314 10.1016/j.ejmech.2019.02.044
    [Google Scholar]
  53. Ahmed E.M. Kassab A.E. El-Malah A.A. Hassan M.S.A. Synthesis and biological evaluation of pyridazinone derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents. Eur. J. Med. Chem. 2019 171 25 37 10.1016/j.ejmech.2019.03.036
    [Google Scholar]
  54. Ahmed E.M. Hassan M.S.A. El-Malah A.A. Kassab A.E. New pyridazine derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents; design, synthesis and biological evaluation. Bioorg. Chem. 2020 95 103497 10.1016/j.bioorg.2019.103497
    [Google Scholar]
  55. Khan A. Diwan A. Thabet H.K. Imran M. Bakht M.A. Discovery of novel pyridazine-based cyclooxygenase-2 inhibitors with a promising gastric safety profile. Molecules 2020 25 9 2002 10.3390/molecules25092002
    [Google Scholar]
  56. Kodama T. Sasaki I. Sugimura H. Synthesis of pyridazine derivatives via aza-diels–alder reactions of 1, 2, 3-triazine derivatives and 1-propynylamines. J. Org. Chem. 2021 86 13 8926 8932 10.1021/acs.joc.1c00851
    [Google Scholar]
  57. Abd El-Hameed R.H. Mahgoub S. El-Shanbaky H.M. Mohamed M.S. Ali S.A. Utility of novel 2-furanones in synthesis of other heterocyclic compounds having anti-inflammatory activity with dual COX2/LOX inhibition. J. Enzyme Inhib. Med. Chem. 2021 36 1 977 986 10.1080/14756366.2021.1908277
    [Google Scholar]
  58. Zheng Y. Müller J. Kunz S. Siderius M. Maes L. Caljon G. Müller N. Hemphill A. Sterk G.J. Leurs R. 3-nitroimidazo[1,2-b]pyridazine as a novel scaffold for antiparasitics with sub-nanomolar anti-Giardia lamblia activity. Int. J. Parasitol. Drugs Drug Resist. 2022 19 47 55 10.1016/j.ijpddr.2022.05.004
    [Google Scholar]
  59. Fang Z. Teng Y. Yang H. Li R. Li Q. You Y. Weng Z. Synthesis of 4-trifluoromethyl pyridazines via annulation of pyridinium ylides with trifluoroacetyl diazoester. Org. Biomol. Chem. 2022 20 17 3564 3569 10.1039/D2OB00483F
    [Google Scholar]
  60. Ewieda S.Y. Hassan R.A. Ahmed E.M. Abdou A.M. Hassan M.S.A. Synthesis, COX-2 inhibition, anti-inflammatory activity, molecular docking, and histopathological studies of new pyridazine derivatives. Bioorg. Chem. 2024 150 107623 10.1016/j.bioorg.2024.107623
    [Google Scholar]
  61. Krishnan R. Shibu S.N. Poelman D. Badyal A.K. Kunti A.K. Swart H.C. Menon S.G. Recent advances in microwave synthesis for photoluminescence and photocatalysis. Mater. Today Commun. 2022 32 103890 10.1016/j.mtcomm.2022.103890
    [Google Scholar]
  62. Jolivet S. Texier-Boullet F. Hamelin J. Jacquault P. New method for the synthesis of 3(2H)‐pyridazinones and their alkene precursors: Solvent‐free reactions under microwave irradiation. Heteroatom Chem. 1995 6 5 469 474 10.1002/hc.520060512
    [Google Scholar]
  63. Sotelo E. Mocelo R. Suárez M. Loupy A. Synthesis of polyfunctional pyridazine derivatives using a solvent-free microwave assisted method. Synth. Commun. 1997 27 14 2419 2423 10.1080/00397919708004105
    [Google Scholar]
  64. Hoogenboom R. Moore B.C. Schubert U.S. Microwave-assisted synthesis of 3,6-di(pyridin-2-yl)pyridazines: Unexpected ketone and aldehyde cycloadditions. J. Org. Chem. 2006 71 13 4903 4909 10.1021/jo060632p
    [Google Scholar]
  65. Mohamed N.R. El-Saidi M.M.T. Ali Y.M. Elnagdi M.H. Microwaves in organic synthesis: Facile synthesis of biologically active pyridazinone and iminopyridazine derivatives. J. Heterocycl. Chem. 2007 44 6 1333 1337 10.1002/jhet.5570440615
    [Google Scholar]
  66. Ghareb N. Elshihawy H.A. Abdel-Daim M.M. Helal M.A. Novel pyrazoles and pyrazolo[1,2- a]pyridazines as selective COX-2 inhibitors; Ultrasound-assisted synthesis, biological evaluation, and DFT calculations. Bioorg. Med. Chem. Lett. 2017 27 11 2377 2383 10.1016/j.bmcl.2017.04.020
    [Google Scholar]
  67. Kumbar S.M. Shanbhag G.V. Halligudi S.B. Synthesis of monoallyl guaiacol via allylation using HY zeolite. J. Mol. Catal. Chem. 2006 244 1-2 278 282 10.1016/j.molcata.2005.09.032
    [Google Scholar]
  68. Ravindranath N. Ramesh C. Ravinder Reddy M. Das B. Selective removal of N‐Boc protecting group from aromatic amines using silica gel‐supported sodium hydrogen sulfate and HY‐zeolite as heterogeneous catalysts. Adv. Synth. Catal. 2003 345 11 1207 1208 10.1002/adsc.200303108
    [Google Scholar]
  69. Srinivas K.V.N.S. Reddy E.B. Das B. Highly convenient and efficient one-pot conversions of aldehydes into nitriles and ketones into amides using HY-zeolite. Synlett 2002 2002 4 0625 0627 10.1055/s‑2002‑22701
    [Google Scholar]
  70. Zare L. Mahmoodi N. Yahyazadeh A. Mamaghani M. Tabatabaeian K. An efficient one‐pot synthesis of pyridazinones and phthalazinones using HY‐zeolite. J. Heterocycl. Chem. 2011 48 4 864 867 10.1002/jhet.649
    [Google Scholar]
  71. Hote B.S. Sawant A.S. Sawant S.S. SiO2-BiCl3 as heterogeneous catalyzed synthesis of 6-methyl-2-aryl-4,5-dihydropyridazin-3(2H)-one derivatives. Polycycl. Aromat. Compd. 2020 40 5 1501 1509 10.1080/10406638.2018.1557708
    [Google Scholar]
  72. Grover V. Mandal B.P. Tyagi A.K. Tyagi, Solid state synthesis of materials. Handbook on Synthesis Strategies for Advanced Materials: Volume-I: Techniques and Fundamental. Springer 2021
    [Google Scholar]
  73. Lee B. Kang P. Lee K.H. Cho J. Nam W. Lee W.K. Hur N.H. Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine. Tetrahedron Lett. 2013 54 11 1384 1388 10.1016/j.tetlet.2012.12.106
    [Google Scholar]
  74. Ruan D.T. Lu R. Ruan K-H. Redirecting thromboxane A2 and prostacyclin biosyntheses from thrombotic to antithrombotic property by an Enzymelink 2021 765 768
    [Google Scholar]
  75. Badimon L. Vilahur G. Rocca B. Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc. Res. 2021 117 9 2001 2015 10.1093/cvr/cvab003
    [Google Scholar]
  76. Rucker D. Dhamoon A.S. Physiology, thromboxane A2. Treasure Island StatPearls Publishing 2019 1 15
    [Google Scholar]
  77. Wang B. Wu L. Chen J. Dong L. Chen C. Wen Z. Hu J. Fleming I. Wang D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 2021 6 1 94 10.1038/s41392‑020‑00443‑w
    [Google Scholar]
  78. Ozen G. Aljesri K. Abdelazeem H. Norel X. Turkyılmaz G. Turkyılmaz S. Topal G. Comparative study on the effect of aspirin, TP receptor antagonist and TxA2 synthase inhibitor on the vascular tone of human saphenous vein and internal mammary artery. Life Sci. 2021 286 120073 10.1016/j.lfs.2021.120073
    [Google Scholar]
  79. Bavry A.A. Bhatt D.L. Experimental antiplatelet therapy. Platelets. 2nd ed Burlington Academic Press 2007 1193 1208 10.1016/B978‑012369367‑9/50827‑2
    [Google Scholar]
  80. Tsoupras A. Gkika D.A. Siadimas I. Christodoulopoulos I. Efthymiopoulos P. Kyzas G.Z. The multifaceted effects of non-steroidal and non-opioid anti-inflammatory and analgesic drugs on platelets: Current knowledge, limitations, and future perspectives. Pharmaceuticals 2024 17 5 627 10.3390/ph17050627
    [Google Scholar]
  81. Zhang J. Yang J. Chang X. Zhang C. Zhou H. Liu M. Ozagrel for acute ischemic stroke: A meta-analysis of data from randomized controlled trials. Neurol. Res. 2012 34 4 346 353 10.1179/1743132812Y.0000000022
    [Google Scholar]
  82. Szczuko M. Kozioł I. Kotlęga D. Brodowski J. Drozd A. The role of thromboxane in the course and treatment of ischemic stroke. Int. J. Mol. Sci. 2021 22 21 11644 10.3390/ijms222111644 review
    [Google Scholar]
  83. Jones R.L. Giembycz M.A. Woodward D.F. Prostanoid receptor antagonists: Development strategies and therapeutic applications. Br. J. Pharmacol. 2009 158 1 104 145 10.1111/j.1476‑5381.2009.00317.x
    [Google Scholar]
  84. Tyndall J. Sandilya R. GPCR agonists and antagonists in the clinic. Med. Chem. 2005 1 4 405 421 10.2174/1573406054368675
    [Google Scholar]
  85. Monge A. Aldana I. Alvarez T. Font M. Santiago E. Latre J.A. Bermejillo M.J. Lopez-Unzu M.J. Fernandez-Alvarez E. New 5H-pyridazino[4,5-b]indole derivatives. Synthesis and studies as inhibitors of blood platelet aggregation and inotropics. J. Med. Chem. 1991 34 10 3023 3029 10.1021/jm00114a010
    [Google Scholar]
  86. Yamaguchi M. Kamei K. Koga T. Akima M. Maruyama A. Kuroki T. Ohi N. Novel antiasthmatic agents with dual activities of thromboxane A2 synthetase inhibition and bronchodilation. 2. 4-(3-Pyridyl)-1(2H)-phthalazinones. J. Med. Chem. 1993 36 25 4061 4068 10.1021/jm00077a009
    [Google Scholar]
  87. Yamaguchi M. Koga T. Kamei K. Akima M. Kuroki T. Hamana M. Ohi N. Novel antiasthmatic agents with dual activities of thromboxane A2 synthetase inhibition and bronchodilation. III. 4-[2-(5-Ethyl-2-thienyl)]-2′-[2-(1-imidazolyl)ethyl]-1(2H)-phthalazinones. Chem. Pharm. Bull. 1994 42 8 1601 1604 10.1248/cpb.42.1601
    [Google Scholar]
  88. Yamaguchi M. Maruyama N. Koga T. Kamei K. Akima M. Kuroki T. Hamana M. Ohi N. Novel antiasthmatic agents with dual activities of thromboxane A2 synthetase inhibition and bronchodilation. V. Thienopyridazinone derivatives. Chem. Pharm. Bull. 1995 43 2 236 240 10.1248/cpb.43.236
    [Google Scholar]
  89. Corsano S. Vezza R. Scapicchi R. Foresi S. Strappaghetti G. Nenci G.G. Gresele P. New pyridazinone derivatives as inhibitors of platelet aggregation. Eur. J. Med. Chem. 1995 30 7-8 627 631 10.1016/0223‑5234(96)88278‑X
    [Google Scholar]
  90. Haider N. Hartmann R.W. Steinwender A. Synthesis of 2-[2-(1-Imidazolyl)ethyl]-4-phenylcycloalka[g]phthalazin-1(2H)-ones as Thromboxane A2 Synthase Inhibitors. Arch. Pharm. 1999 332 11 408 409 10.1002/(SICI)1521‑4184(199911)332:11<408:AID‑ARDP408>3.0.CO;2‑P
    [Google Scholar]
  91. de Matos L.G.G. Cândido E.B. Vidigal P.V.T. Bordoni P.H.C. Lamaita R.M. Carneiro M.M. da Silva-Filho A.L. Association between toll-like receptor and tumor necrosis factor immunological pathways in uterine cervical neoplasms. Tumori 2017 103 1 81 86 10.5301/tj.5000576
    [Google Scholar]
  92. Vinicius L.F. Helena H.L.B. Cytokines and interferons: Types and functions. Autoantibodies and Cytokines. Rijeka IntechOpen 2018 65 87
    [Google Scholar]
  93. Yao C. Narumiya S. Prostaglandin‐cytokine crosstalk in chronic inflammation. Br. J. Pharmacol. 2019 176 3 337 354 10.1111/bph.14530
    [Google Scholar]
  94. Bradley J.R. TNF‐mediated inflammatory disease. J. Pathol. 2008 214 2 149 160 10.1002/path.2287
    [Google Scholar]
  95. Tanaka T. Narazaki M. Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014 6 10 a016295 10.1101/cshperspect.a016295
    [Google Scholar]
  96. Fischer W. Schudt C. Wendel A. Protection by phosphodiesterase inhibitors against endotoxin-induced liver injury in galactosamine-sensitized mice. Biochem. Pharmacol. 1993 45 12 2399 2404 10.1016/0006‑2952(93)90219‑M
    [Google Scholar]
  97. Barberot C. Moniot A. Allart-Simon I. Malleret L. Yegorova T. Laronze-Cochard M. Bentaher A. Médebielle M. Bouillon J.P. Hénon E. Sapi J. Velard F. Gérard S. Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. Eur. J. Med. Chem. 2018 146 139 146 10.1016/j.ejmech.2018.01.035
    [Google Scholar]
  98. Martin C. Göggel R. Dal Piaz V. Vergelli C. Giovannoni M. Ernst M. Uhlig S. Airway relaxant and anti-inflammatory properties of a PDE4 inhibitor with low affinity for the high-affinity rolipram binding site. Naunyn Schmiedebergs Arch. Pharmacol. 2002 365 4 284 289 10.1007/s00210‑001‑0525‑7
    [Google Scholar]
  99. McIntyre C.J. Ponticello G.S. Liverton N.J. O’Keefe S.J. O’Neill E.A. Pang M. Schwartz C.D. Claremon D.A. Pyridazine based inhibitors of p38 MAPK. Bioorg. Med. Chem. Lett. 2002 12 4 689 692 10.1016/S0960‑894X(01)00834‑4
    [Google Scholar]
  100. Colletti S.L. Frie J.L. Dixon E.C. Singh S.B. Choi B.K. Scapin G. Fitzgerald C.E. Kumar S. Nichols E.A. O’Keefe S.J. O’Neill E.A. Porter G. Samuel K. Schmatz D.M. Schwartz C.D. Shoop W.L. Thompson C.M. Thompson J.E. Wang R. Woods A. Zaller D.M. Doherty J.B. Hybrid-designed inhibitors of p38 MAP kinase utilizing N-arylpyridazinones. J. Med. Chem. 2003 46 3 349 352 10.1021/jm025585h
    [Google Scholar]
  101. Tamayo N. Liao L. Goldberg M. Powers D. Tudor Y.Y. Yu V. Wong L.M. Henkle B. Middleton S. Syed R. Harvey T. Jang G. Hungate R. Dominguez C. Design and synthesis of potent pyridazine inhibitors of p38 MAP kinase. Bioorg. Med. Chem. Lett. 2005 15 9 2409 2413 10.1016/j.bmcl.2005.02.010
    [Google Scholar]
  102. Giovannoni M.P. Cesari N. Graziano A. Vergelli C. Biancalani C. Biagini P. Piaz V.D. Synthesis of pyrrolo[2,3-d]pyridazinones as potent, subtype selective PDE4 inhibitors. J. Enzyme Inhib. Med. Chem. 2007 22 3 309 318 10.1080/14756360601114700
    [Google Scholar]
  103. Bunnelle W.H. Tietje K.R. Frost J.M. Peters D. Ji J. Li T. Scanio M.J.C. Shi L. Anderson D.J. Dyhring T. Grønlien J.H. Ween H. Thorin-Hagene K. Meyer M.D. Octahydropyrrolo[3,4-c]pyrrole: A diamine scaffold for construction of either α4β2 or α7-selective nicotinic acetylcholine receptor (nAChR) ligands. Substitutions that switch subtype selectivity. J. Med. Chem. 2009 52 14 4126 4141 10.1021/jm900249k
    [Google Scholar]
  104. Li J. Mathieu S.L. Harris R. Ji J. Anderson D.J. Malysz J. Bunnelle W.H. Waring J.F. Marsh K.C. Murtaza A. Olson L.M. Gopalakrishnan M. Role of α7 nicotinic acetylcholine receptors in regulating tumor necrosis factor-α (TNF-α) as revealed by subtype selective agonists. J. Neuroimmunol. 2011 239 1-2 37 43 10.1016/j.jneuroim.2011.08.007
    [Google Scholar]
  105. Biagini P. Biancalani C. Graziano A. Cesari N. Giovannoni M.P. Cilibrizzi A. Piaz V.D. Vergelli C. Crocetti L. Delcanale M. Armani E. Rizzi A. Puccini P. Gallo P.M. Spinabelli D. Caruso P. Functionalized pyrazoles and pyrazolo[3,4-d]pyridazinones: Synthesis and evaluation of their phosphodiesterase 4 inhibitory activity. Bioorg. Med. Chem. 2010 18 10 3506 3517 10.1016/j.bmc.2010.03.066
    [Google Scholar]
  106. Abouzid K.A.M. Khalil N.A. Ahmed E.M. Zaitone S.A.B. Synthesis and biological evaluation of new heteroaryl carboxylic acid derivatives as anti-inflammatory-analgesic agents. Chem. Pharm. Bull. 2013 61 2 222 228 10.1248/cpb.c12‑00949
    [Google Scholar]
  107. Pandit S.S. Kulkarni M.R. Ghosh U. Pandit Y.B. Lad N.P. Synthesis and biological evaluation of imidazo[1,2-b]pyridazines as inhibitors of TNF-α production. Mol. Divers. 2018 22 3 545 560 10.1007/s11030‑017‑9798‑8
    [Google Scholar]
  108. Pandit S.S. Kulkarni M.R. Pandit Y.B. Lad N.P. Khedkar V.M. Synthesis and in vitro evaluations of 6-(hetero)-aryl-imidazo[1,2-b]pyridazine-3-sulfonamide’s as an inhibitor of TNF-α production. Bioorg. Med. Chem. Lett. 2018 28 1 24 30 10.1016/j.bmcl.2017.11.026
    [Google Scholar]
  109. Eid N.M. George R.F. Facile synthesis of some pyrazoline-based compounds with promising anti-inflammatory activity. Future Med. Chem. 2018 10 2 183 199 10.4155/fmc‑2017‑0144
    [Google Scholar]
  110. Moniot A. Braux J. Siboni R. Guillaume C. Audonnet S. Allart-Simon I. Sapi J. Tirouvanziam R. Gérard S. Gangloff S.C. Velard F. Inhibition of recruitment and activation of neutrophils by pyridazinone-scaffold-based compounds. Int. J. Mol. Sci. 2022 23 13 7226 10.3390/ijms23137226
    [Google Scholar]
  111. Ibrahim N.A. Anwar H.M. Moghazy A.M. El Malah T. Ragab W.M. Abd El-Aal R.A.H. Saleh N.A. Eldosoki D.E. Heme oxygenase – 1 expression in liver and colon of rats exposed to oxidative stress and dysplasia by a carcinogen diethylnitrosamine and the possible therapeutic effects of probiotic versus pyridazine derivative and chemotherapy. Egypt. J. Chem. 2022 65 4 249 268
    [Google Scholar]
  112. Tleyjeh I.M. Kashour Z. Riaz M. Hassett L. Veiga V.C. Kashour T. Efficacy and safety of tocilizumab in COVID-19 patients: A living systematic review and meta-analysis, first update. Clin. Microbiol. Infect. 2021 27 8 1076 1082 10.1016/j.cmi.2021.04.019
    [Google Scholar]
  113. Boyce E.G. Rogan E.L. Vyas D. Prasad N. Mai Y. Sarilumab: Review of a second IL-6 receptor antagonist indicated for the treatment of rheumatoid arthritis. Ann. Pharmacother. 2018 52 8 780 791 10.1177/1060028018761599
    [Google Scholar]
  114. Sarosiek S. Shah R. Munshi N.C. Review of siltuximab in the treatment of multicentric Castleman’s disease. Ther. Adv. Hematol. 2016 7 6 360 366 10.1177/2040620716653745
    [Google Scholar]
  115. Holland S.J. Pan A. Franci C. Hu Y. Chang B. Li W. Duan M. Torneros A. Yu J. Heckrodt T.J. Zhang J. Ding P. Apatira A. Chua J. Brandt R. Pine P. Goff D. Singh R. Payan D.G. Hitoshi Y. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010 70 4 1544 1554 10.1158/0008‑5472.CAN‑09‑2997
    [Google Scholar]
  116. Asano T. Yamazaki H. Kasahara C. Kubota H. Kontani T. Harayama Y. Ohno K. Mizuhara H. Yokomoto M. Misumi K. Kinoshita T. Ohta M. Takeuchi M. Identification, Synthesis, and Biological Evaluation of 6-[(6R)-2-(4-Fluorophenyl)-6-(hydroxymethyl)-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidin-3-yl]-2-(2-methylphenyl)pyridazin-3(2H)-one (AS1940477), a Potent p38 MAP Kinase Inhibitor. J. Med. Chem. 2012 55 17 7772 7785 10.1021/jm3008008
    [Google Scholar]
  117. Terajima M. Inoue T. Magari K. Yamazaki H. Higashi Y. Mizuhara H. Anti-inflammatory effect and selectivity profile of AS1940477, a novel and potent p38 mitogen-activated protein kinase inhibitor. Eur. J. Pharmacol. 2013 698 1-3 455 462 10.1016/j.ejphar.2012.11.021
    [Google Scholar]
  118. Vergelli C. Schepetkin I.A. Ciciani G. Cilibrizzi A. Crocetti L. Giovannoni M.P. Guerrini G. Iacovone A. Kirpotina L.N. Ye R.D. Quinn M.T. Synthesis of five- and six-membered N-phenylacetamido substituted heterocycles as formyl peptide receptor agonists. Drug Dev. Res. 2017 78 1 49 62 10.1002/ddr.21370
    [Google Scholar]
  119. Liao J. Yang J. Li X. Hu C. Zhu W. Zhou Y. Zou Y. Guo M. Chen Z. Li X. Dai J. Xu Y. Zheng Z. Chen P. Cho W.J. Liang G. Tang Q. Discovery of the diphenyl 6-oxo-1,6-dihydropyridazine-3-carboxylate/carboxamide analogue J27 for the treatment of acute lung injury and sepsis by targeting JNK2 and inhibiting the JNK2-NF-κB/MAPK pathway. J. Med. Chem. 2023 66 17 12304 12323 10.1021/acs.jmedchem.3c00832
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575404189250811070603
Loading
/content/journals/mrmc/10.2174/0113895575404189250811070603
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: TNF-α ; pyridazinone ; anti-inflammatory ; Synthesis ; prostaglandin ; and IL-6 ; TxA2 ; cytokine ; pyridazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test