Skip to content
2000
image of Mitochondria as a Therapeutic Target in Metabolic Disorders

Abstract

Mitochondria, commonly termed the 'cellular powerhouse', produce the majority of cellular adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). In addition to their role in energy synthesis, mitochondria are crucial for maintaining calcium homeostasis, mediating cellular signaling, regulating cell proliferation and apoptosis, and supporting various other physiological processes. In recent years, mitochondria have gained prominence as a critical target for the treatment of metabolic disorders. Research has demonstrated a strong association between mitochondrial dysfunction and the pathogenesis of metabolic diseases, such as insulin resistance, diabetes, metabolic syndrome, cardiovascular diseases, and endocrine tumors. Consequently, understanding the mechanisms of mitochondrial homeostatic imbalance and developing mitochondria-targeted therapeutics hold promise for innovative treatments of metabolic disorder-related diseases. This article seeks to elucidate recent advancements in the understanding of mitochondrial dysfunction's role in metabolic diseases and offers a comprehensive overview of current therapeutic strategies and approaches for addressing this dysfunction.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575403490250917111723
2025-09-29
2025-11-07
Loading full text...

Full text loading...

References

  1. Ryu K.W. Fung T.S. Baker D.C. Saoi M. Park J. Febres-Aldana C.A. Aly R.G. Cui R. Sharma A. Fu Y. Jones O.L. Cai X. Pasolli H.A. Cross J.R. Rudin C.M. Thompson C.B. Cellular ATP demand creates metabolically distinct subpopulations of mitochondria. Nature 2024 635 8039 746 754 10.1038/s41586‑024‑08146‑w 39506109
    [Google Scholar]
  2. Hubert S. Athrey G. Transcriptomic signals of mitochondrial dysfunction and OXPHOS dynamics in fast-growth chicken. PeerJ 2022 10 13364 10.7717/peerj.13364 35535239
    [Google Scholar]
  3. Li Y. Berliocchi L. Li Z. Rasmussen L.J. Interactions between mitochondrial dysfunction and other hallmarks of aging: Paving a path toward interventions that promote healthy old age. Aging Cell 2024 23 1 e13942 10.1111/acel.13942
    [Google Scholar]
  4. Gao X. Yu X. Zhang C. Wang Y. Sun Y. Sun H. Zhang H. Shi Y. He X. Telomeres and mitochondrial metabolism: Implications for cellular senescence and age-related diseases. Stem Cell Rev. Rep. 2022 18 7 2315 2327 10.1007/s12015‑022‑10370‑8 35460064
    [Google Scholar]
  5. Spinelli R. Baboota R.K. Gogg S. Beguinot F. Blüher M. Nerstedt A. Smith U. Increased cell senescence in human metabolic disorders. J. Clin. Invest. 2023 133 12 169922 10.1172/JCI169922 37317964
    [Google Scholar]
  6. Xiong P. Zhang F. Liu F. Zhao J. Huang X. Luo D. Guo J. Metaflammation in glucolipid metabolic disorders: Pathogenesis and treatment. Biomed. Pharmacother. 2023 161 114545 10.1016/j.biopha.2023.114545 36948135
    [Google Scholar]
  7. Moorthy R. Bhattamisra S.K. Pandey M. Mayuren J. Kow C.S. Candasamy M. Mitochondria and diabetes: Insights and potential therapies. Expert Rev. Endocrinol. Metab. 2024 19 2 141 154 10.1080/17446651.2024.2307526 38347803
    [Google Scholar]
  8. Popov L.D. Mitochondria as intracellular signalling organelles. An update. Cell. Signal. 2023 109 110794 10.1016/j.cellsig.2023.110794 37422005
    [Google Scholar]
  9. Chaudhary M.R. Chaudhary S. Sharma Y. Singh T.A. Mishra A.K. Sharma S. Mehdi M.M. Aging, oxidative stress and degenerative diseases: Mechanisms, complications and emerging therapeutic strategies. Biogerontology 2023 24 5 609 662 10.1007/s10522‑023‑10050‑1 37516673
    [Google Scholar]
  10. Saller B.S. Wöhrle S. Fischer L. Dufossez C. Ingerl I.L. Kessler S. Mateo-Tortola M. Gorka O. Lange F. Cheng Y. Neuwirt E. Marada A. Koentges C. Urban C. Aktories P. Reuther P. Giese S. Kirschnek S. Mayer C. Pilic J. Falquez-Medina H. Oelgeklaus A. Deepagan V.G. Shojaee F. Zimmermann J.A. Weber D. Tai Y.H. Crois A. Ciminski K. Peyronnet R. Brandenburg K.S. Wu G. Baumeister R. Heimbucher T. Rizzi M. Riedel D. Helmstädter M. Buescher J. Neumann K. Misgeld T. Kerschensteiner M. Walentek P. Kreutz C. Maurer U. Rambold A.S. Vince J.E. Edlich F. Malli R. Häcker G. Kierdorf K. Meisinger C. Köttgen A. Jakobs S. Weber A.N.R. Schwemmle M. Groß C.J. Groß O. Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation. Immunity 2025 58 1 90 107.e11 10.1016/j.immuni.2024.10.012 39571574
    [Google Scholar]
  11. Zhou M. Qin Z. Zhu X. Ruan Y. Ling H. Li C. Gan X. Pyruvate dehydrogenase kinases: Key regulators of cellular metabolism and therapeutic targets for metabolic diseases. J. Physiol. Biochem. 2025 81 1 21 34 10.1007/s13105‑025‑01068‑9 40117090
    [Google Scholar]
  12. Luo P. Zheng M. Zhang R. Zhang H. Liu Y. Li W. Sun X. Yu Q. Tipoe G.L. Xiao J. S-Allylmercaptocysteine improves alcoholic liver disease partly through a direct modulation of insulin receptor signaling. Acta Pharm. Sin. B 2021 11 3 668 679 10.1016/j.apsb.2020.11.006 33777674
    [Google Scholar]
  13. Cao X. Gao T. Lv F. Wang Y. Li B. Wang X. ROS-triggered and macrophage-targeted micelles modulate mitochondria function and polarization in obesity. Nanotechnology 2024 35 47 475707 10.1088/1361‑6528/ad7034 39240071
    [Google Scholar]
  14. Jing Cao Zhang, G.; Liu, Z.; Xu, Q.; Li, C.; Cheng, G.; Shi, R. Peroxidasin promotes diabetic vascular endothelial dysfunction induced by advanced glycation end products via NOX2/HOCl/Akt/eNOS pathway. Redox Biol. 2021 45 102031 10.1016/j.redox.2021.102031 34116361
    [Google Scholar]
  15. Zhang J. Chang J. Chen V. Beg M.A. Huang W. Vick L. Wang Y. Zhang H. Yttre E. Gupta A. Castleberry M. Zhang Z. Dai W. Zhu J. Song S. Yang M. Brown A.K. Xu Z. Ma Y.Q. Smith B.C. Zielonka J. Traylor J.G. Ben Dhaou C. Orr A.W. Cui W. Chen Y. Oxidized LDL stimulates PKM2-mediated mtROS production and phagocytosis. J. Lipid Res. 2025 66 5 100809 10.1016/j.jlr.2025.100809 40250804
    [Google Scholar]
  16. Huang W. Li R. Zhang J. Cheng Y. Ramakrishnan D.P. Silverstein R.L.A. CD36 transmembrane domain peptide interrupts CD36 interactions with membrane partners on macrophages and inhibits atherogenic functions. Transl. Res. 2023 254 68 76 10.1016/j.trsl.2022.10.005 36377115
    [Google Scholar]
  17. Wang T. Tian H. Pan T. Yao S. Yu H. Wu Y. Wang S. Pinocembrin suppresses oxidized low-density lipoprotein-triggered NLRP3 inflammasome/GSDMD-mediated endothelial cell pyroptosis through an Nrf2-dependent signaling pathway. Sci. Rep. 2022 12 1 13885 10.1038/s41598‑022‑18297‑3 35974041
    [Google Scholar]
  18. Tábara L.C. Segawa M. Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 2025 26 2 123 146 10.1038/s41580‑024‑00785‑1 39420231
    [Google Scholar]
  19. Christoffersen B.Ø. Sanchez-Delgado G. John L.M. Ryan D.H. Raun K. Ravussin E. Beyond appetite regulation: Targeting energy expenditure, fat oxidation, and lean mass preservation for sustainable weight loss. Obesity (Silver Spring) 2022 30 4 841 857 10.1002/oby.23374 35333444
    [Google Scholar]
  20. Sinha J.K. Jorwal K. Singh K.K. Han S.S. Bhaskar R. Ghosh S. The potential of mitochondrial therapeutics in the treatment of oxidative stress and inflammation in aging. Mol. Neurobiol. 2025 62 6 6748 6763 10.1007/s12035‑024‑04474‑0 39230868
    [Google Scholar]
  21. Khongwichit S. Swangphon P. Nualla-ong A. Prompat N. Amatatongchai M. Lieberzeit P.A. Chunta S. Reduced uptake of oxidized low-density lipoprotein by macrophages using multiple aptamer combinations. ACS Appl. Bio Mater. 2025 8 1 457 474 10.1021/acsabm.4c01432 39762152
    [Google Scholar]
  22. Gallo G. Rubattu S. Volpe M. Mitochondrial dysfunction in heart failure: From pathophysiological mechanisms to therapeutic opportunities. Int. J. Mol. Sci. 2024 25 5 2667 10.3390/ijms25052667 38473911
    [Google Scholar]
  23. Al Ojaimi M. Salah A. El-Hattab A. Mitochondrial fission and fusion: Molecular mechanisms, biological functions, and related disorders. Membranes 2022 12 9 893 10.3390/membranes12090893 36135912
    [Google Scholar]
  24. Mela V. Ruiz-Limón P. Balongo M. Motahari Rad H. Subiri-Verdugo A. Gonzalez-Jimenez A. Soler R. Ocaña L. el Azzouzi H. Tinahones F.J. Valdivielso P. Murri M. Mitochondrial homeostasis in obesity-related hypertriglyceridemia. J. Clin. Endocrinol. Metab. 2022 107 8 2203 2215 10.1210/clinem/dgac332 35608825
    [Google Scholar]
  25. Yang S.Y. Mirabal C.S. Newcomb C.E. Stewart K.J. Arking D.E. Mitochondrial DNA copy number, metabolic syndrome, and insulin sensitivity: Insights from the Sugar, Hypertension, and Physical Exercise studies. PLoS One 2022 17 7 0270951 10.1371/journal.pone.0270951 35849594
    [Google Scholar]
  26. Lian C.Y. Zhai Z.Z. Li Z.F. Wang L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Biol. Interact. 2020 330 109199 10.1016/j.cbi.2020.109199 32805210
    [Google Scholar]
  27. Picard M. Shirihai O.S. Mitochondrial signal transduction. Cell Metab 2022; 34(11): 1620-1653. [104]Rubalcava-Gracia D, García-Villegas R, Larsson NG. No role for nuclear transcription regulators in mammalian mitochondria? Mol. Cell 2023 83 6 832 842 36182692
    [Google Scholar]
  28. Čater M. Križančić Bombek L.K. Protective role of mitochondrial uncoupling proteins against age-related oxidative stress in type 2 diabetes mellitus. Antioxidants 2022 11 8 1473 10.3390/antiox11081473 36009191
    [Google Scholar]
  29. Burillo J. Marqués P. Jiménez B. González-Blanco C. Benito M. Guillén C. Insulin resistance and diabetes mellitus in Alzheimer’s disease. Cells 2021 10 5 1236 10.3390/cells10051236 34069890
    [Google Scholar]
  30. Fan X. Yang M. Lang Y. Lu S. Kong Z. Gao Y. Shen N. Zhang D. Lv Z. Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death Dis. 2024 15 6 442 10.1038/s41419‑024‑06833‑0 38910210
    [Google Scholar]
  31. Engin A.B. Message transmission between adipocyte and macrophage in obesity. Adv. Exp. Med. Biol. 2024 1460 273 295 10.1007/978‑3‑031‑63657‑8_9 39287855
    [Google Scholar]
  32. Garcia B.M. Machado T.S. Carvalho K.F. Nolasco P. Nociti R.P. del Collado M. Capo Bianco M.J.D. Grejo M.P. Augusto Neto J.D. Sugiyama F.H.C. Tostes K. Pandey A.K. Gonçalves L.M. Perecin F. Meirelles F.V. Ferraz J.B.S. Vanzela E.C. Boschero A.C. Guimarães F.E.G. Abdulkader F. Laurindo F.R.M. Kowaltowski A.J. Chiaratti M.R. Mice born to females with oocyte-specific deletion of mitofusin 2 have increased weight gain and impaired glucose homeostasis. Mol. Hum. Reprod. 2020 26 12 938 952 10.1093/molehr/gaaa071 33118034
    [Google Scholar]
  33. Modesti L. Danese A. Angela Maria Vitto V. Ramaccini D. Aguiari G. Gafà R. Lanza G. Giorgi C. Pinton P. Mitochondrial Ca2+ Signaling in Health, Disease and Therapy. Cells 2021 10 6 1317 10.3390/cells10061317 34070562
    [Google Scholar]
  34. Hao S. Ji J. Zhao H. Shang L. Wu J. Li H. Qiao T. Li K. Mitochondrion-targeted peptide ss-31 inhibited oxidized low-density lipoproteins-induced foam cell formation through both ROS scavenging and inhibition of cholesterol influx in RAW264.7 cells. Molecules 2015 20 12 21287 21297 10.3390/molecules201219764 26633327
    [Google Scholar]
  35. Chen S. Wang J. Zhang L. Xia H. Experimental study on alleviating atherosclerosis through intervention of mitochondrial calcium transport and calcium-induced membrane permeability transition. J. Investig. Med. 2021 69 6 1156 1160 10.1136/jim‑2020‑001765 33906902
    [Google Scholar]
  36. Memme J.M. Erlich A.T. Phukan G. Hood D.A. Exercise and mitochondrial health. J. Physiol. 2021 599 3 803 817 10.1113/JP278853 31674658
    [Google Scholar]
  37. Jia D. Tian Z. Wang R. Exercise mitigates age-related metabolic diseases by improving mitochondrial dysfunction. Ageing Res. Rev. 2023 91 102087 10.1016/j.arr.2023.102087 37832607
    [Google Scholar]
  38. Bouviere J. Fortunato R.S. Dupuy C. Werneck-de-Castro J.P. Carvalho D.P. Louzada R.A. Exercise-stimulated ROS sensitive signaling pathways in skeletal muscle. Antioxidants 2021 10 4 537 10.3390/antiox10040537 33808211
    [Google Scholar]
  39. Sun Y. Ding S. ER–mitochondria contacts and insulin resistance modulation through exercise intervention. Int. J. Mol. Sci. 2020 21 24 9587 10.3390/ijms21249587 33339212
    [Google Scholar]
  40. Raun S.H. Buch-Larsen K. Schwarz P. Sylow L. Exercise—A panacea of metabolic dysregulation in cancer: Physiological and molecular insights. Int. J. Mol. Sci. 2021 22 7 3469 10.3390/ijms22073469 33801684
    [Google Scholar]
  41. Li G. Li J. Gao F. Exercise and cardiovascular protection. Adv. Exp. Med. Biol. 2020 1228 205 216 10.1007/978‑981‑15‑1792‑1_14 32342460
    [Google Scholar]
  42. Gu C. Yan J. Zhao L. Wu G. Wang Y. Regulation of mitochondrial dynamics by aerobic exercise in cardiovascular diseases. Front. Cardiovasc. Med. 2022 8 788505 10.3389/fcvm.2021.788505 35097008
    [Google Scholar]
  43. Kobayashi M. Higami Y. Metabolic alteration in aging process: Metabolic remodeling in white adipose tissue by caloric restriction. Yakugaku Zasshi 2020 140 3 383 389 10.1248/yakushi.19‑00193‑2 32115557
    [Google Scholar]
  44. Russo L. Babboni S. Andreassi M.G. Daher J. Canale P. Del Turco S. Basta G. Treating metabolic dysregulation and senescence by caloric restriction: Killing two birds with one stone? Antioxidants 2025 14 1 99 10.3390/antiox14010099 39857433
    [Google Scholar]
  45. Salmonowicz H. Szczepanowska K. The fate of mitochondrial respiratory complexes in aging. Trends Cell Biol. 2025 10.1016/j.tcb.2025.02.008
    [Google Scholar]
  46. Ruetenik A. Barrientos A. Dietary restriction, mitochondrial function and aging: From yeast to humans. Biochim. Biophys. Acta Bioenerg. 2015 1847 11 1434 1447 10.1016/j.bbabio.2015.05.005 25979234
    [Google Scholar]
  47. Widjaja S. Antarianto R.D. Hardiany N.S. Effects of dietary restriction on pgc-1α regulation in the development of age-associated diseases. Curr. Aging Sci. 2024 17 3 189 195 10.2174/0118746098301226240402051508 38616758
    [Google Scholar]
  48. Castro-Barquero S. Ruiz-León A.M. Sierra-Pérez M. Estruch R. Casas R. Dietary strategies for metabolic syndrome: A comprehensive review. Nutrients 2020 12 10 2983 10.3390/nu12102983 33003472
    [Google Scholar]
  49. Mann E.R. Lam Y.K. Uhlig H.H. Short-chain fatty acids: Linking diet, the microbiome and immunity. Nat. Rev. Immunol. 2024 24 8 577 595 10.1038/s41577‑024‑01014‑8 38565643
    [Google Scholar]
  50. Veneti S. Grammatikopoulou M.G. Kintiraki E. Mintziori G. Goulis D.G. Ketone bodies in diabetes mellitus: Friend or foe? Nutrients 2023 15 20 4383 10.3390/nu15204383 37892458
    [Google Scholar]
  51. Xu X. Pang Y. Fan X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025 10 1 190 10.1038/s41392‑025‑02253‑4 40500258
    [Google Scholar]
  52. Jiang Q. Yin J. Chen J. Ma X. Wu M. Liu G. Yao K. Tan B. Yin Y. Mitochondria-targeted antioxidants: A step towards disease treatment. Oxid. Med. Cell. Longev. 2020 2020 1 18 10.1155/2020/8837893 33354280
    [Google Scholar]
  53. Li Y. Zhang H. Yu C. Dong X. Yang F. Wang M. Wen Z. Su M. Li B. Yang L. New insights into mitochondria in health and diseases. Int. J. Mol. Sci. 2024 25 18 9975 10.3390/ijms25189975 39337461
    [Google Scholar]
  54. Willmes C. Mitochondria – A powerful therapeutic target. Trends Mol. Med. 2020 26 1 1 2 10.1016/j.molmed.2019.10.006 31735397
    [Google Scholar]
  55. Zong Y. Li H. Liao P. Chen L. Pan Y. Zheng Y. Zhang C. Liu D. Zheng M. Gao J. Mitochondrial dysfunction: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024 9 1 124 10.1038/s41392‑024‑01839‑8 38744846
    [Google Scholar]
  56. Rauchová H. Coenzyme Q10 effects in neurological diseases. Physiol. Res. 2021 70 S4 S683 S714 10.33549/physiolres.934712 35199552
    [Google Scholar]
  57. Williamson J. Hughes C.M. Cobley J.N. Davison G.W. The mitochondria-targeted antioxidant MitoQ, attenuates exercise-induced mitochondrial DNA damage. Redox Biol. 2020 36 101673 10.1016/j.redox.2020.101673 32810739
    [Google Scholar]
  58. Botting KJ. Skeffington KL. Niu Y. Allison BJ. Brain KL. Itani N. Beck C. Logan A. Murray AJ. Murphy MP. Giussani DA Translatable mitochondria-targeted protection against programmed cardiovascular dysfunction. Sci. Adv 2020 6 34 eabb1929 10.1126/sciadv.abb1929
    [Google Scholar]
  59. Sawyer D.B. Anthracycline-induced vascular dysfunction. JACC Cardiooncol 2020 2 3 489 490 10.1016/j.jaccao.2020.08.005 34396255
    [Google Scholar]
  60. Murray K.O. Berryman-Maciel M. Darvish S. Coppock M.E. You Z. Chonchol M. Seals D.R. Rossman M.J. Mitochondrial-targeted antioxidant supplementation for improving age-related vascular dysfunction in humans: A study protocol. Front. Physiol. 2022 13 980783 10.3389/fphys.2022.980783 36187760
    [Google Scholar]
  61. Kalyanaraman B. Cheng G. Hardy M. You M. OXPHOS-targeting drugs in oncology: New perspectives. Expert Opin. Ther. Targets 2023 27 10 939 952 10.1080/14728222.2023.2261631 37736880
    [Google Scholar]
  62. López-Pedrera C. Villalba J.M. Patiño-Trives A.M. Luque-Tévar M. Barbarroja N. Aguirre M.Á. Escudero-Contreras A. Pérez-Sánchez C. Therapeutic potential and immunomodulatory role of coenzyme q10 and its analogues in systemic autoimmune diseases. Antioxidants 2021 10 4 600 10.3390/antiox10040600 33924642
    [Google Scholar]
  63. Fields M. Marcuzzi A. Gonelli A. Celeghini C. Maximova N. Rimondi E. Mitochondria-targeted antioxidants, an innovative class of antioxidant compounds for neurodegenerative diseases: Perspectives and limitations. Int. J. Mol. Sci. 2023 24 4 3739 10.3390/ijms24043739 36835150
    [Google Scholar]
  64. Zhu Y. Luo M. Bai X. Li J. Nie P. Li B. Luo P. SS‐31, a mitochondria‐targeting peptide, ameliorates kidney disease. Oxid. Med. Cell. Longev. 2022 2022 1 1295509 10.1155/2022/1295509 35707274
    [Google Scholar]
  65. Whitson J.A. Bitto A. Zhang H. Sweetwyne M.T. Coig R. Bhayana S. Shankland E.G. Wang L. Bammler T.K. Mills K.F. Imai S.I. Conley K.E. Marcinek D.J. Rabinovitch P.S. SS‐31 and NMN: Two paths to improve metabolism and function in aged hearts. Aging Cell 2020 19 10 13213 10.1111/acel.13213 32779818
    [Google Scholar]
  66. Chavez J.D. Tang X. Campbell M.D. Reyes G. Kramer P.A. Stuppard R. Keller A. Zhang H. Rabinovitch P.S. Marcinek D.J. Bruce J.E. Mitochondrial protein interaction landscape of SS-31. Proc. Natl. Acad. Sci. USA 2020 117 26 15363 15373 10.1073/pnas.2002250117 32554501
    [Google Scholar]
  67. Du X. Zeng Q. Luo Y. He L. Zhao Y. Li N. Han C. Zhang G. Liu W. Application research of novel peptide mitochondrial-targeted antioxidant SS-31 in mitigating mitochondrial dysfunction. Mitochondrion 2024 75 101846 10.1016/j.mito.2024.101846 38237649
    [Google Scholar]
  68. Zheng Z. Lei C. Liu H. Jiang M. Zhou Z. Zhao Y. Yu C.Y. Wei H. A ROS‐responsive liposomal composite hydrogel integrating improved mitochondrial function and pro‐angiogenesis for efficient treatment of myocardial infarction. Adv. Healthc. Mater. 2022 11 19 2200990 10.1002/adhm.202200990 35848825
    [Google Scholar]
  69. Lu Q. Yao X. Zheng H. Ou J. You J. Zhang Q. Guo W. Xu J. Geng L. Liu Q. Pei N. Gong Y. Zhu H. Shen Y. SS-31 modification alleviates ferroptosis induced by superparamagnetic iron oxide nanoparticles in hypoxia/reoxygenation cardiomyocytes. Heliyon 2024 10 20 38584 10.1016/j.heliyon.2024.e38584 39506934
    [Google Scholar]
  70. Pabla N. Bajwa A. Role of mitochondrial therapy for ischemic-reperfusion injury and acute kidney injury. Nephron J. 2022 146 3 253 258 10.1159/000520698 34883481
    [Google Scholar]
  71. Escribano-Lopez I. Diaz-Morales N. Iannantuoni F. Lopez-Domenech S. de Marañon A.M. Abad-Jimenez Z. Bañuls C. Rovira-Llopis S. Herance J.R. Rocha M. Victor V.M. The mitochondrial antioxidant SS-31 increases SIRT1 levels and ameliorates inflammation, oxidative stress and leukocyte-endothelium interactions in type 2 diabetes. Sci. Rep. 2018 8 1 15862 10.1038/s41598‑018‑34251‑8 30367115
    [Google Scholar]
  72. Xiong L. Hu H. Zhu F. Shi H. Fan X. Pan S. Zhu F. Zhang J. Yu Z. Shi Y. New insight for SS 31 in treating diabetic cardiomyopathy: Activation of mitoGPX4 and alleviation of mitochondria dependent ferroptosis. Int. J. Mol. Med. 2024 54 6 112 10.3892/ijmm.2024.5436 39364755
    [Google Scholar]
  73. Pan M. Cai C. Li W. Cao T. Liu Y. Yang L. Xie Q. Zhang X. Ebselen improves lipid metabolism by activating PI3K/Akt and inhibiting TLR4/JNK signaling pathway to alleviate nonalcoholic fatty liver. Cytokine 2024 181 156671 10.1016/j.cyto.2024.156671 38943739
    [Google Scholar]
  74. Wang S. Xu J. Zheng J. Zhang X. Shao J. Zhao L. Hao J. Anti-inflammatory and antioxidant effects of acetyl-l-carnitine on atherosclerotic rats. Med. Sci. Monit. 2020 26 920250 10.12659/MSM.920250 31945029
    [Google Scholar]
  75. Kathirvel E. Morgan K. French S.W. Morgan T.R. Acetyl-l-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease. Nutr. Res. 2013 33 11 932 941 10.1016/j.nutres.2013.08.001 24176233
    [Google Scholar]
  76. Zhang H. Chen W. Wang J. Du W. Wang B. Song L. Hu Y. Ma X. A novel ROS-activable self-immolative prodrug for tumor-specific amplification of oxidative stress and enhancing chemotherapy of mitoxantrone. Biomaterials 2023 293 121954 10.1016/j.biomaterials.2022.121954 36538847
    [Google Scholar]
  77. Gueven N. Ravishankar P. Eri R. Rybalka E. Idebenone: When an antioxidant is not an antioxidant. Redox Biol. 2021 38 101812 10.1016/j.redox.2020.101812 33254077
    [Google Scholar]
  78. Tauil R.B. Golono P.T. de Lima E.P. de Alvares Goulart R. Guiguer E.L. Bechara M.D. Nicolau C.C.T. Yanaguizawa Junior J.L. Fiorini A.M.R. Méndez-Sánchez N. Abenavoli L. Direito R. Valente V.E. Laurindo L.F. Barbalho S.M. Metabolic-associated fatty liver disease: The influence of oxidative stress, inflammation, mitochondrial dysfunctions, and the role of polyphenols. Pharmaceuticals 2024 17 10 1354 10.3390/ph17101354 39458995
    [Google Scholar]
  79. Ardehjani N.A. Agha-Hosseini M. Nashtaei M.S. Khodarahmian M. Shabani M. Jabarpour M. Fereidouni F. Rastegar T. Amidi F. Resveratrol ameliorates mitochondrial biogenesis and reproductive outcomes in women with polycystic ovary syndrome undergoing assisted reproduction: A randomized, triple-blind, placebo-controlled clinical trial. J. Ovarian Res. 2024 17 1 143 10.1186/s13048‑024‑01470‑9 38987824
    [Google Scholar]
  80. Qin X. Niu W. Zhao K. Luo Y. Wang W. He Y. Yang F. Cao B. Du M. Su H. Resveratrol enhances post-injury muscle regeneration by regulating antioxidant and mitochondrial biogenesis. Curr. Res. Food. Sci 2025 10 100972 10.1016/j.crfs.2025.100972 39896273
    [Google Scholar]
  81. Wu S. Wang L. Wang F. Zhang J. Resveratrol improved mitochondrial biogenesis by activating SIRT1/PGC-1α signal pathway in SAP. Sci. Rep. 2024 14 1 26216 10.1038/s41598‑024‑76825‑9 39482340
    [Google Scholar]
  82. Huang Y. Lu J. Zhan L. Wang M. Shi R. Yuan X. Gao X. Liu X. Zang J. Liu W. Yao X. Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism. J. Biol. Chem. 2021 297 2 100929 10.1016/j.jbc.2021.100929 34216621
    [Google Scholar]
  83. Abo Alrob O. Al-Horani R.A. Altaany Z. Nusair M.B. Synergistic beneficial effects of resveratrol and diet on high-fat diet-induced obesity. Medicina 2022 58 9 1301 10.3390/medicina58091301 36143977
    [Google Scholar]
  84. Javed A. Muzammal A. Akash M.S.H. Rehman K. Biochemical investigation of therapeutic potentials of plant-based bioactive compounds as stimulators of glucagon like peptide-1 secretion. Dose Response 2022 20 3 15593258221114184 10.1177/15593258221114184 35832769
    [Google Scholar]
  85. Daldal H. Nazıroğlu M. Selenium and resveratrol attenuated diabetes mellitus-mediated oxidative retinopathy and apoptosis via the modulation of TRPM2 activity in mice. Biol. Trace Elem. Res. 2022 200 5 2283 2297 10.1007/s12011‑022‑03203‑9 35384580
    [Google Scholar]
  86. Su X. Li Q. Yang M. Zhang W. Liu X. Ba Y. Deng Q. Zhang Y. Han L. Huang H. Resveratrol protects against a high-fat diet-induced neuroinflammation by suppressing mitochondrial fission via targeting SIRT1/PGC-1α. Exp. Neurol. 2024 380 114899 10.1016/j.expneurol.2024.114899 39059737
    [Google Scholar]
  87. Choi Y. No M.H. Heo J.W. Cho E.J. Park D.H. Kang J.H. Kim C.J. Seo D.Y. Han J. Kwak H.B. Resveratrol attenuates aging-induced mitochondrial dysfunction and mitochondria-mediated apoptosis in the rat heart. Nutr. Res. Pract. 2025 19 2 186 199 10.4162/nrp.2025.19.2.186 40226768
    [Google Scholar]
  88. Ben Dassi R. Ibidhi S. Jemai H. Cherif A. Driouich Chaouachi R. Resveratrol: Challenges and prospects in extraction and hybridization with nanoparticles, polymers, and bio‐ceramics. Phytother. Res. 2024 38 11 5309 5322 10.1002/ptr.8319 39228146
    [Google Scholar]
  89. Li Y. Sun K. Chen S. Zhao J. Lei Y. Geng L. Nano-resveratrol liposome: Physicochemical stability, in vitro release, and cytotoxicity. Appl. Biochem. Biotechnol. 2023 195 10 5950 5965 10.1007/s12010‑023‑04344‑w 36729296
    [Google Scholar]
  90. Schniertshauer D. Wespel S. Bergemann J. Natural mitochondria targeting substances and their effect on cellular antioxidant system as a potential benefit in mitochondrial medicine for prevention and remediation of mitochondrial dysfunctions. Curr. Issues Mol. Biol. 2023 45 5 3911 3932 10.3390/cimb45050250 37232719
    [Google Scholar]
  91. Bej E. Cesare P. d’Angelo M. Volpe A.R. Castelli V. Neuronal cell rearrangement during aging: Antioxidant compounds as a potential therapeutic approach. Cells 2024 13 23 1945 10.3390/cells13231945 39682694
    [Google Scholar]
  92. Brimson J.M. Prasanth M.I. Malar D.S. Thitilertdecha P. Kabra A. Tencomnao T. Prasansuklab A. Plant polyphenols for aging health: Implication from their autophagy modulating properties in age-associated diseases. Pharmaceuticals 2021 14 10 982 10.3390/ph14100982 34681206
    [Google Scholar]
  93. Cao P. Wang Y. Zhang C. Sullivan M.A. Chen W. Jing X. Yu H. Li F. Wang Q. Zhou Z. Wang Q. Tian W. Qiu Z. Luo L. Quercetin ameliorates nonalcoholic fatty liver disease (NAFLD) via the promotion of AMPK-mediated hepatic mitophagy. J. Nutr. Biochem. 2023 120 109414 10.1016/j.jnutbio.2023.109414 37423322
    [Google Scholar]
  94. Zhang W. Wu Y. Guo Y. Wang C. Long X. Jiang P. Curcumin relieves corticosterone‐induced behaviour deficits via PGC‐1α‐mediated mitochondrial biogenesis and mitophagy. Clin. Transl. Discov. 2022 2 4 161 10.1002/ctd2.161
    [Google Scholar]
  95. Jiao Q. Xiang L. Chen Y. Mitochondrial transplantation: A promising therapy for mitochondrial disorders. Int. J. Pharm. 2024 658 124194 10.1016/j.ijpharm.2024.124194 38703929
    [Google Scholar]
  96. Xu M. Zhu J. Wang Z. Yan J. Zhou X. Neuroprotective effect of autologous mitochondrial transplantation against global ischemia/reperfusion injury in a rat model of cardiac arrest. Mitochondrion 2024 78 101924 10.1016/j.mito.2024.101924 38944369
    [Google Scholar]
  97. Liu Z. Sun Y. Qi Z. Cao L. Ding S. Mitochondrial transfer/transplantation: An emerging therapeutic approach for multiple diseases. Cell Biosci. 2022 12 1 66 10.1186/s13578‑022‑00805‑7 35590379
    [Google Scholar]
  98. Fu A. Shi X. Zhang H. Fu B. Mitotherapy for fatty liver by intravenous administration of exogenous mitochondria in male mice. Front. Pharmacol. 2017 8 241 10.3389/fphar.2017.00241 28536524
    [Google Scholar]
  99. Zhang T. Miao C. Mitochondrial transplantation as a promising therapy for mitochondrial diseases. Acta Pharm. Sin. B 2023 13 3 1028 1035 10.1016/j.apsb.2022.10.008 36970208
    [Google Scholar]
  100. Louwagie E.J. Larsen T.D. Wachal A.L. Gandy T.C.T. Eclov J.A. Rideout T.C. Kern K.A. Cain J.T. Anderson R.H. Mdaki K.S. Baack M.L. Age and sex influence mitochondria and cardiac health in offspring exposed to maternal glucolipotoxicity. iScience 2020 23 11 101746 10.1016/j.isci.2020.101746 33225249
    [Google Scholar]
  101. Adhikary A. Mukherjee A. Banerjee R. Nagotu S. DRP1: At the crossroads of dysregulated mitochondrial dynamics and altered cell signaling in cancer cells. ACS Omega 2023 8 48 45208 45223 10.1021/acsomega.3c06547 38075775
    [Google Scholar]
  102. Huang J. Li R. Wang C. The role of mitochondrial quality control in cardiac ischemia/reperfusion injury. Oxid. Med. Cell. Longev. 2021 2021 1 5543452 10.1155/2021/5543452 34211627
    [Google Scholar]
  103. Lei X. Lin H. Wang J. Ou Z. Ruan Y. Sadagopan A. Chen W. Xie S. Chen B. Li Q. Wang J. Lin H. Zhu X. Yuan X. Tian T. Lv X. Fu S. Zhu X. Zhou J. Pan G. Xia X. Tannous B.A. Ferrone S. Fan S. Li J. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression. Nat. Commun. 2022 13 1 3882 10.1038/s41467‑022‑31417‑x 35794100
    [Google Scholar]
  104. Ding J. Zhang Z. Li S. Wang W. Du T. Fang Q. Wang Y. Wang D.W. Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress. Arch. Biochem. Biophys. 2022 718 109147 10.1016/j.abb.2022.109147 35143784
    [Google Scholar]
  105. Kato Y. Ariyoshi K. Nohara Y. Matsunaga N. Shimauchi T. Shindo N. Nishimura A. Mi X. Kim S.G. Ide T. Kawanishi E. Ojida A. Nakashima N. Mori Y. Nishida M. Inhibition of dynamin‐related protein 1‐filamin interaction improves systemic glucose metabolism. Br. J. Pharmacol. 2024 181 21 4328 4347 10.1111/bph.16487 38986570
    [Google Scholar]
  106. Marx N. Ritter N. Disse P. Seebohm G. Busch K.B. Detailed analysis of Mdivi-1 effects on complex I and respiratory supercomplex assembly. Sci. Rep. 2024 14 1 19673 10.1038/s41598‑024‑69748‑y 39187541
    [Google Scholar]
  107. Piao L. Fang Y.H. Fisher M. Hamanaka R.B. Ousta A. Wu R. Mutlu G.M. Garcia A.J. Archer S.L. Sharp W.W. Dynamin‐related protein 1 is a critical regulator of mitochondrial calcium homeostasis during myocardial ischemia/reperfusion injury. FASEB J. 2024 38 1 23379 10.1096/fj.202301040RR 38133921
    [Google Scholar]
  108. Zhao D. Zhong R. Wang X. Yan Z. Mitochondrial dysfunction in diabetic nephropathy: Insights and therapeutic avenues from traditional Chinese medicine. Front. Endocrinol. 2024 15 1429420 10.3389/fendo.2024.1429420 39109083
    [Google Scholar]
  109. Cleveland K.H. Brosius F.C. Schnellmann R.G. Regulation of mitochondrial dynamics and energetics in the diabetic renal proximal tubule by the β2-adrenergic receptor agonist formoterol. Am. J. Physiol. Renal Physiol. 2020 319 5 F773 F779 10.1152/ajprenal.00427.2020 32954853
    [Google Scholar]
  110. Onslev J. Fiorenza M. Thomassen M. Havelund J. Bangsbo J. Færgeman N. Wojtaszewski J.F.P. Hostrup M. Beta2-agonist impairs muscle insulin sensitivity in persons with insulin resistance. J. Clin. Endocrinol. Metab. 2024 110 1 275 288 10.1210/clinem/dgae381 38820114
    [Google Scholar]
  111. Peng X. Chen S. Wang Y. Jin M. Mei F. Bao Y. Liao X. Chen Y. Gong W. WITHDRAWN: SGLT2i reduces renal injury by improving mitochondrial metabolism and biogenesis. Mol. Metab. 2022 101613 10.1016/j.molmet.2022.101613 36241142
    [Google Scholar]
  112. Zou R. Shi W. Qiu J. Zhou N. Du N. Zhou H. Chen X. Ma L. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc. Diabetol. 2022 21 1 106 10.1186/s12933‑022‑01532‑6 35705980
    [Google Scholar]
  113. Butler J. Jones W.S. Udell J.A. Anker S.D. Petrie M.C. Harrington J. Mattheus M. Zwiener I. Amir O. Bahit M.C. Bauersachs J. Bayes-Genis A. Chen Y. Chopra V.K. Figtree G. Ge J. Goodman S.G. Gotcheva N. Goto S. Gasior T. Jamal W. Januzzi J.L. Jeong M.H. Lopatin Y. Lopes R.D. Merkely B. Parikh P.B. Parkhomenko A. Ponikowski P. Rossello X. Schou M. Simic D. Steg P.G. Szachniewicz J. van der Meer P. Vinereanu D. Zieroth S. Brueckmann M. Sumin M. Bhatt D.L. Hernandez A.F. Empagliflozin after acute myocardial infarction. N. Engl. J. Med. 2024 390 16 1455 1466 10.1056/NEJMoa2314051 38587237
    [Google Scholar]
  114. Yurista S.R. Silljé H.H.W. Oberdorf-Maass S.U. Schouten E.M. Pavez Giani M.G. Hillebrands J.L. van Goor H. van Veldhuisen D.J. de Boer R.A. Westenbrink B.D. Sodium–glucose co‐transporter 2 inhibition with empagliflozin improves cardiac function in non‐diabetic rats with left ventricular dysfunction after myocardial infarction. Eur. J. Heart Fail. 2019 21 7 862 873 10.1002/ejhf.1473 31033127
    [Google Scholar]
  115. Daud E. Ertracht O. Bandel N. Moady G. Shehadeh M. Reuveni T. Atar S. The impact of empagliflozin on cardiac physiology and fibrosis early after myocardial infarction in non-diabetic rats. Cardiovasc. Diabetol. 2021 20 1 132 10.1186/s12933‑021‑01322‑6 34215277
    [Google Scholar]
  116. Yao X. Xia X. Hay D.C. Shipston M. Ouyang H. Tuning mitochondrial dynamics for aging intervention. Life. Med 2024 3 1 lnae008 10.1093/lifemedi/lnae008 39872392
    [Google Scholar]
  117. Greene J. Segaran A. Lord S. Targeting OXPHOS and the electron transport chain in cancer; Molecular and therapeutic implications. Semin. Cancer Biol. 2022 86 Pt 2 851 859 10.1016/j.semcancer.2022.02.002 35122973
    [Google Scholar]
  118. Nowinski S.M. Solmonson A. Rundhaug J.E. Rho O. Cho J. Lago C.U. Riley C.L. Lee S. Kohno S. Dao C.K. Nikawa T. Bratton S.B. Wright C.W. Fischer S.M. DiGiovanni J. Mills E.M. Mitochondrial uncoupling links lipid catabolism to Akt inhibition and resistance to tumorigenesis. Nat. Commun. 2015 6 1 8137 10.1038/ncomms9137 26310111
    [Google Scholar]
  119. Rai Y. Singh S. Sah D.K. Chauhan A. Kumari N. Pandey R. Paliwal K. Choudhary A. Bhatt A.N. Mitochondrial uncoupler 2,4-dinitrophenol (DNP) confers protection from the acute effect of ionizing radiation by regulating redox homeostasis in radio-sensitive organs of C57BL/6 mice. Int. J. Radiat. Biol. 2025 101 4 358 369 10.1080/09553002.2025.2462077 39970336
    [Google Scholar]
  120. Bertholet A.M. Natale A.M. Bisignano P. Suzuki J. Fedorenko A. Hamilton J. Brustovetsky T. Kazak L. Garrity R. Chouchani E.T. Brustovetsky N. Grabe M. Kirichok Y. Mitochondrial uncouplers induce proton leak by activating AAC and UCP1. Nature 2022 606 7912 180 187 10.1038/s41586‑022‑04747‑5 35614225
    [Google Scholar]
  121. Meyer L.F. Rajadhyaksha P.M. Shah D.K. Physiologically-based pharmacokinetic model for 2,4-dinitrophenol. J. Pharmacokinet. Pharmacodyn. 2022 49 3 325 336 10.1007/s10928‑022‑09806‑y 35089483
    [Google Scholar]
  122. Jiang H. Jin J. Duan Y. Xie Z. Li Y. Gao A. Gu M. Zhang X. Peng C. Xia C. Dong T. Li H. Yu L. Tang J. Yang F. Li J. Li J. Mitochondrial uncoupling coordinated with PDH activation safely ameliorates hyperglycemia via promoting glucose oxidation. Diabetes 2019 68 12 2197 2209 10.2337/db19‑0589 31471292
    [Google Scholar]
  123. Ren R. Pei Y. Kong L. Shi Y. The effect of semaglutide combined with metformin on liver inflammation and pancreatic beta-cell function in patients with type 2 diabetes and non-alcoholic fatty liver disease. J. Diabetes Complications 2025 39 2 108932 10.1016/j.jdiacomp.2024.108932 39700591
    [Google Scholar]
  124. Khailova L.S. Vygodina T.V. Lomakina G.Y. Kotova E.A. Antonenko Y.N. Bicarbonate suppresses mitochondrial membrane depolarization induced by conventional uncouplers. Biochem. Biophys. Res. Commun. 2020 530 1 29 34 10.1016/j.bbrc.2020.06.131 32828301
    [Google Scholar]
  125. Quinlan J.E. Salamoun J.M. Garcia C.J. Hargett S. Beretta M. Shrestha R. Li C. Hoehn K.L. Santos W.L. Unsymmetric hydroxylamine and hydrazine BAM15 derivatives as potent mitochondrial uncouplers. Bioorg. Med. Chem. 2025 118 118045 10.1016/j.bmc.2024.118045 39740573
    [Google Scholar]
  126. Axelrod C.L. King W.T. Davuluri G. Noland R.C. Hall J. Hull M. Dantas W.S. Zunica E.R.M. Alexopoulos S.J. Hoehn K.L. Langohr I. Stadler K. Doyle H. Schmidt E. Nieuwoudt S. Fitzgerald K. Pergola K. Fujioka H. Mey J.T. Fealy C. Mulya A. Beyl R. Hoppel C.L. Kirwan J.P. BAM15‐mediated mitochondrial uncoupling protects against obesity and improves glycemic control. EMBO Mol. Med. 2020 12 7 12088 10.15252/emmm.202012088 32519812
    [Google Scholar]
  127. Chen S.Y. Beretta M. Olzomer E.M. Shah D.P. Wong D.Y.H. Alexopoulos S.J. Aleksovska I. Salamoun J.M. Garcia C.J. Cochran B.J. Rye K.A. Smith G.C. Byrne F.L. Morris M.J. Santos W.L. Cantley J. Hoehn K.L. Targeting negative energy balance with calorie restriction and mitochondrial uncoupling in db/db mice. Mol. Metab. 2023 69 101684 10.1016/j.molmet.2023.101684 36731653
    [Google Scholar]
  128. Tsuji N. Tsuji T. Yamashita T. Hayase N. Hu X. Yuen P.S.T. Star R.A. BAM15 treats mouse sepsis and kidney injury, linking mortality, mitochondrial DNA, tubule damage, and neutrophils. J. Clin. Invest. 2023 133 7 152401 10.1172/JCI152401 36757801
    [Google Scholar]
  129. Gao R. Kalathur R.K.R. Coto-Llerena M. Ercan C. Buechel D. Shuang S. Piscuoglio S. Dill M.T. Camargo F.D. Christofori G. Tang F. YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol. Med. 2021 13 12 14351 10.15252/emmm.202114351 34664408
    [Google Scholar]
  130. Ashrafizadeh M. Javanmardi S. Moradi-Ozarlou M. Mohammadinejad R. Farkhondeh T. Samarghandian S. Garg M. Natural products and phytochemical nanoformulations targeting mitochondria in oncotherapy: An updated review on resveratrol. Biosci. Rep. 2020 40 4 BSR20200257 10.1042/BSR20200257 32163546
    [Google Scholar]
  131. Sharmah B. Afzal N.U. Loying R. Roy A. Kalita J. Das J. Manna P. Glucose-responsive insulin delivery via surface-functionalized titanium dioxide nanoparticles: A promising theragnostic against diabetes mellitus. ACS Appl. Bio Mater. 2025 8 1 475 487 10.1021/acsabm.4c01426 39718458
    [Google Scholar]
  132. Sharma P. Vaiwala R. Parthasarathi S. Patil N. Verma A. Waskar M. Raut J.S. Basu J.K. Ayappa K.G. Interactions of surfactants with the bacterial cell wall and inner membrane: Revealing the link between aggregation and antimicrobial activity. Langmuir 2022 38 50 15714 15728 10.1021/acs.langmuir.2c02520 36472987
    [Google Scholar]
  133. Kim Y. Rouse M. González-Mariscal I. Egan J.M. O’Connell J.F. Dietary curcumin enhances insulin clearance in diet-induced obese mice via regulation of hepatic PI3K-AKT axis and IDE, and preservation of islet integrity. Nutr. Metab. 2019 16 1 48 10.1186/s12986‑019‑0377‑0 31372175
    [Google Scholar]
  134. Zhang Q. Song W. Zhao B. Xie J. Sun Q. Shi X. Yan B. Tian G. Liang X. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of ampk/pgc-1α pathway in vivo and in vitro. Front. Neurosci. 2021 15 636172 10.3389/fnins.2021.636172 33746703
    [Google Scholar]
  135. Wang S. Wang Z. Zang Z. Liang X. Jia B. Ye T. Lan Y. Shi X. A mitochondrion‐targeting piezoelectric nanosystem for the treatment of erectile dysfunction via autophagy regulation. Adv. Mater. 2025 37 5 2413287 10.1002/adma.202413287 39686789
    [Google Scholar]
  136. Zhang X. Wang Z. Jiang H. Zeng H. An N. Liu B. Sun L. Fan Z. Self-powered enzyme-linked microneedle patch for scar-prevention healing of diabetic wounds. Sci. Adv. 2023 9 28 eadh1415 10.1126/sciadv.adh1415 37450590
    [Google Scholar]
  137. Wang Y. Li H. Rasool A. Wang H. Manzoor R. Zhang G. Polymeric nanoparticles (PNPs) for oral delivery of insulin. J. Nanobiotechnology 2024 22 1 1 10.1186/s12951‑023‑02253‑y 38167129
    [Google Scholar]
  138. Andreadi A. Lodeserto P. Todaro F. Meloni M. Romano M. Minasi A. Bellia A. Lauro D. Nanomedicine in the treatment of diabetes. Int. J. Mol. Sci. 2024 25 13 7028 10.3390/ijms25137028 39000136
    [Google Scholar]
  139. Yu M. Wang D. Zhong D. Xie W. Luo J. Adropin carried by reactive oxygen species-responsive nanocapsules ameliorates renal lipid toxicity in diabetic mice. ACS Appl. Mater. Interfaces 2022 14 33 37330 37344 10.1021/acsami.2c06957 35951354
    [Google Scholar]
  140. He F. Xu P. Zhu Z. Zhang Y. Cai C. Zhang Y. Shao J. Jin F. Li Q. You J. Zhou H. Zhang W. Wei J. Hong X. Zhang Z. Han C. Zhang Y. Gu Z. Wang X. Inflammation‐responsive hydrogel accelerates diabetic wound healing through immunoregulation and enhanced angiogenesis. Adv. Healthc. Mater. 2025 14 5 2400150 10.1002/adhm.202400150 38663034
    [Google Scholar]
  141. Zhao W. Bian Y. Wang Q. Yin F. Yin L. Zhang Y. Liu J. Blueberry-derived exosomes-like nanoparticles ameliorate nonalcoholic fatty liver disease by attenuating mitochondrial oxidative stress. Acta Pharmacol. Sin. 2022 43 3 645 658 10.1038/s41401‑021‑00681‑w 33990765
    [Google Scholar]
  142. Chen C. Ma J. Duan S. Xue M. Yang Z. Ma Z. Ji J. Ma Y. Qing G. Guo K. Wu W. Chen T. Wang Z. Luo Y. Mitigation of ischemia/reperfusion injury via selenium nanoparticles: Suppression of STAT1 to inhibit cardiomyocyte oxidative stress and inflammation. Biomaterials 2025 318 123119 10.1016/j.biomaterials.2025.123119 39879840
    [Google Scholar]
  143. Miragoli M. Ceriotti P. Iafisco M. Vacchiano M. Salvarani N. Alogna A. Carullo P. Ramirez-Rodríguez G.B. Patrício T. Esposti L.D. Rossi F. Ravanetti F. Pinelli S. Alinovi R. Erreni M. Rossi S. Condorelli G. Post H. Tampieri A. Catalucci D. Inhalation of peptide-loaded nanoparticles improves heart failure. Sci. Transl. Med. 2018 10 424 eaan6205 10.1126/scitranslmed.aan6205 29343624
    [Google Scholar]
  144. Finocchietto P. Perez H. Blanco G. Miksztowicz V. Marotte C. Morales C. Peralta J. Berg G. Poderoso C. Poderoso J.J. Carreras M.C. Inhibition of mitochondrial fission by Drp-1 blockade by short-term leptin and Mdivi-1 treatment improves white adipose tissue abnormalities in obesity and diabetes. Pharmacol. Res. 2022 178 106028 10.1016/j.phrs.2021.106028 34896541
    [Google Scholar]
  145. Lin Y. Liu J. Bai R. Shi J. Zhu X. Liu J. Guo J. Zhang W. Liu H. Liu Z. Mitochondria-inspired nanoparticles with microenvironment-adapting capacities for on-demand drug delivery after ischemic injury. ACS Nano 2020 14 9 11846 11859 10.1021/acsnano.0c04727 32880428
    [Google Scholar]
  146. Liu D. Jin F. Shu G. Xu X. Qi J. Kang X. Yu H. Lu K. Jiang S. Han F. You J. Du Y. Ji J. Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials 2019 211 57 67 10.1016/j.biomaterials.2019.04.034 31085359
    [Google Scholar]
  147. Furuya T. Lin J. Afanaseva A. Molz L. Lagu B. Ma B. Discovery of potent allosteric drp1 inhibitors by disrupting protein–protein interaction with MiD49. ACS Med. Chem. Lett. 2023 14 8 1095 1099 10.1021/acsmedchemlett.3c00223 37583827
    [Google Scholar]
  148. Xiong G. Zhang K. Ma Y. Song Y. Zhang W. Qi T. Qiu H. Shi J. Kan C. Zhang J. Sun X. BAM15 as a mitochondrial uncoupler: A promising therapeutic agent for diverse diseases. Front. Endocrinol. 2023 14 1252141 10.3389/fendo.2023.1252141 37900126
    [Google Scholar]
  149. Li Y. Li X. Wei L. Ye J. Advancements in mitochondrial-targeted nanotherapeutics: Overcoming biological obstacles and optimizing drug delivery. Front. Immunol. 2024 15 1451989 10.3389/fimmu.2024.1451989 39483479
    [Google Scholar]
  150. Bhatt D.L. Szarek M. Pitt B. Cannon C.P. Leiter L.A. McGuire D.K. Lewis J.B. Riddle M.C. Inzucchi S.E. Kosiborod M.N. Cherney D.Z.I. Dwyer J.P. Scirica B.M. Bailey C.J. Díaz R. Ray K.K. Udell J.A. Lopes R.D. Lapuerta P. Steg P.G. Sotagliflozin in patients with diabetes and chronic kidney disease. N. Engl. J. Med. 2021 384 2 129 139 10.1056/NEJMoa2030186 33200891
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575403490250917111723
Loading
/content/journals/mrmc/10.2174/0113895575403490250917111723
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: therapeutic target ; bioenergetics ; metabolism ; redox biology ; Mitochondria ; cellular signaling
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test