Skip to content
2000
Volume 25, Issue 19
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Influenza viruses are major human pathogens that cause widespread respiratory infections, affecting millions of people globally and contributing to significant morbidity and mortality. Several currently available anti-influenza drugs are facing increasing levels of viral resistance. Therefore, the discovery of therapeutics targeting novel mechanisms of action is becoming increasingly important. A key viral protein involved in the infection process is the envelope glycoprotein Hemagglutinin (HA), which facilitates both host cell receptor binding and membrane fusion, two essential steps required for viral entry and replication. Due to its central role in the early stages of infection, HA has emerged as a highly promising target for antiviral drug development. Many small-molecule HA inhibitors have been identified with potential anti-influenza activity by stabilizing the HA structure and preventing its conformational change during the membrane fusion process. This review presents a detailed chemical evaluation of these HA-targeting compounds based on studies reported in the literature, highlighting their core chemical scaffolds and structural features. The antiviral efficacy of these compounds is discussed based on and data, along with insights into their mechanisms of action. A comprehensive literature search was conducted, and studies meeting the predefined inclusion criteria were thoroughly reviewed. By focusing on the chemical structure of these inhibitors, this review provides information for the rational design of new therapeutic agents aimed at preventing or limiting influenza virus infections.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575401074250923075239
2025-10-01
2026-01-01
Loading full text...

Full text loading...

References

  1. Influenza (seasonal) Fact Sheets.2025Available from: https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
  2. MontoA.S. FukudaK. Lessons from influenza pandemics of the last 100 years.Clin. Infect. Dis.202070595195710.1093/cid/ciz803 31420670
    [Google Scholar]
  3. SmithG.J.D. BahlJ. VijaykrishnaD. ZhangJ. PoonL.L.M. ChenH. WebsterR.G. PeirisJ.S.M. GuanY. Dating the emergence of pandemic influenza viruses.Proc. Natl. Acad. Sci. USA200910628117091171210.1073/pnas.0904991106 19597152
    [Google Scholar]
  4. ChengV.C.C. ToK.K.W. TseH. HungI.F.N. YuenK.Y. Two years after pandemic influenza A/2009/H1N1: What have we learned?Clin. Microbiol. Rev.201225222326310.1128/CMR.05012‑11 22491771
    [Google Scholar]
  5. BeckerT. ElbaheshH. ReperantL.A. RimmelzwaanG.F. OsterhausA.D.M.E. Influenza vaccines: Successes and continuing challenges.J. Infect. Dis.202122412S405S41910.1093/infdis/jiab269 34590139
    [Google Scholar]
  6. ChonH. Medicinal herbs and plant extracts for influenza: Bioactivity, mechanism of anti-influenza effects, and modulation of immune responses.In: Studies in Natural Products Chemistry.AmsterdamElsevier201230532310.1016/B978‑0‑444‑59530‑0.00011‑3
    [Google Scholar]
  7. ZhangZ.J. Morris-NatschkeS.L. ChengY.Y. LeeK.H. LiR.T. Development of anti‐influenza agents from natural products.Med. Res. Rev.20204062290233810.1002/med.21707 32677056
    [Google Scholar]
  8. ZouM. LeiC. HuangD. LiuL. HanY. Application of plant-derived products as adjuvants for immune activation and vaccine development.Vaccine2024422512611510.1016/j.vaccine.2024.07.016 38987109
    [Google Scholar]
  9. PielakR.M. ChouJ.J. Influenza M2 proton channels.Biochim. Biophys. Acta Biomembr.20111808252252910.1016/j.bbamem.2010.04.015 20451491
    [Google Scholar]
  10. O’HanlonR. ShawM.L. Baloxavir marboxil: The new influenza drug on the market.Curr. Opin. Virol.201935141810.1016/j.coviro.2019.01.006 30852344
    [Google Scholar]
  11. MesekoC. SanicasM. AshaK. SulaimanL. KumarB. Antiviral options and therapeutics against influenza: History, latest developments and future prospects.Front. Cell. Infect. Microbiol.202313126934410.3389/fcimb.2023.1269344 38094741
    [Google Scholar]
  12. BonominiA. MercorelliB. LoregianA. Antiviral strategies against influenza virus: An update on approved and innovative therapeutic approaches.Cell. Mol. Life Sci.20258217510.1007/s00018‑025‑05611‑1 39945883
    [Google Scholar]
  13. BatoolS. ChokkakulaS. SongM.S. Influenza treatment: Limitations of antiviral therapy and advantages of drug combination therapy.Microorganisms202311118310.3390/microorganisms11010183 36677475
    [Google Scholar]
  14. TakashitaE. MeijerA. LackenbyA. GubarevaL. Rebelo-de-AndradeH. BesselaarT. FryA. GregoryV. LeangS.K. HuangW. LoJ. PereyaslovD. SiqueiraM.M. WangD. MakG.C. ZhangW. DanielsR.S. HurtA.C. TashiroM. Global update on the susceptibility of human influenza viruses to neuraminidase inhibitors, 2013–2014.Antiviral Res.2015117273810.1016/j.antiviral.2015.02.003 25721488
    [Google Scholar]
  15. TakashitaE. KawakamiC. MoritaH. OgawaR. FujisakiS. ShirakuraM. MiuraH. NakamuraK. KishidaN. KuwaharaT. MitamuraK. AbeT. IchikawaM. YamazakiM. WatanabeS. OdagiriT. Detection of influenza A(H3N2) viruses exhibiting reduced susceptibility to the novel cap-dependent endonuclease inhibitor baloxavir in Japan, December 2018.Euro Surveill.2019243180069810.2807/1560‑7917.ES.2019.24.3.1800698 30670142
    [Google Scholar]
  16. LiuH.Y. YangP.L. Small-molecule inhibition of viral fusion glycoproteins.Annu. Rev. Virol.20218145948910.1146/annurev‑virology‑022221‑063725 34197186
    [Google Scholar]
  17. SkehelJ.J. WileyD.C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin.Annu. Rev. Biochem.200069153156910.1146/annurev.biochem.69.1.531 10966468
    [Google Scholar]
  18. WhiteK. EsparzaM. LiangJ. BhatP. NaidooJ. McGovernB.L. WilliamsM.A.P. AlabiB.R. ShayJ. NiederstrasserH. PosnerB. García-SastreA. ReadyJ. FontouraB.M.A. Aryl sulfonamide inhibits entry and replication of diverse influenza viruses via the hemagglutinin protein.J. Med. Chem.20216415109511096610.1021/acs.jmedchem.1c00304 34260245
    [Google Scholar]
  19. HamiltonB.S. WhittakerG.R. DanielS. Influenza virus-mediated membrane fusion: Determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion.Viruses2012471144116810.3390/v4071144 22852045
    [Google Scholar]
  20. Sempere BorauM. StertzS. Entry of influenza A virus into host cells — Recent progress and remaining challenges.Curr. Opin. Virol.202148232910.1016/j.coviro.2021.03.001 33838498
    [Google Scholar]
  21. ChenG.L. SubbaraoK. Attacking the flu: Neutralizing antibodies may lead to ‘universal’ vaccine.Nat. Med.200915111251125210.1038/nm1109‑1251 19893556
    [Google Scholar]
  22. KirkpatrickE. QiuX. WilsonP.C. BahlJ. KrammerF. The influenza virus hemagglutinin head evolves faster than the stalk domain.Sci. Rep.2018811043210.1038/s41598‑018‑28706‑1 29992986
    [Google Scholar]
  23. GamblinS.J. HaireL.F. RussellR.J. StevensD.J. XiaoB. HaY. VasishtN. SteinhauerD.A. DanielsR.S. ElliotA. WileyD.C. SkehelJ.J. The structure and receptor binding properties of the 1918 influenza hemagglutinin.Science200430356651838184210.1126/science.1093155 14764886
    [Google Scholar]
  24. LiuJ. StevensD.J. HaireL.F. WalkerP.A. CoombsP.J. RussellR.J. GamblinS.J. SkehelJ.J. Structures of receptor complexes formed by hemagglutinins from the Asian Influenza pandemic of 1957.Proc. Natl. Acad. Sci. USA200910640171751718010.1073/pnas.0906849106 19805083
    [Google Scholar]
  25. ZhangW. QiJ. ShiY. LiQ. GaoF. SunY. LuX. LuQ. VavrickaC.J. LiuD. YanJ. GaoG.F. Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus.Protein Cell20101545946710.1007/s13238‑010‑0059‑1 21203961
    [Google Scholar]
  26. StevensJ. BlixtO. TumpeyT.M. TaubenbergerJ.K. PaulsonJ.C. WilsonI.A. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus.Science2006312577240441010.1126/science.1124513 16543414
    [Google Scholar]
  27. TzarumN. de VriesR.P. ZhuX. YuW. McBrideR. PaulsonJ.C. WilsonI.A. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus.Cell Host Microbe201517336937610.1016/j.chom.2015.02.005 25766295
    [Google Scholar]
  28. ShiY. ZhangW. WangF. QiJ. WuY. SongH. GaoF. BiY. ZhangY. FanZ. QinC. SunH. LiuJ. HaywoodJ. LiuW. GongW. WangD. ShuY. WangY. YanJ. GaoG.F. Structures and receptor binding of hemagglutinins from human-infecting H7N9 influenza viruses.Science2013342615524324710.1126/science.1242917 24009358
    [Google Scholar]
  29. WangM. ZhangW. QiJ. WangF. ZhouJ. BiY. WuY. SunH. LiuJ. HuangC. LiX. YanJ. ShuY. ShiY. GaoG.F. Structural basis for preferential avian receptor binding by the human-infecting H10N8 avian influenza virus.Nat. Commun.201561560010.1038/ncomms6600 25574798
    [Google Scholar]
  30. SuttonT.C. The pandemic threat of emerging H5 and H7 avian influenza viruses.Viruses201810946110.3390/v10090461 30154345
    [Google Scholar]
  31. HarringtonW.N. KackosC.M. WebbyR.J. The evolution and future of influenza pandemic preparedness.Exp. Mol. Med.202153573774910.1038/s12276‑021‑00603‑0 33953324
    [Google Scholar]
  32. WuN.C. WilsonI.A. Structural insights into the design of novel anti-influenza therapies.Nat. Struct. Mol. Biol.201825211512110.1038/s41594‑018‑0025‑9 29396418
    [Google Scholar]
  33. KilbourneE.D. JohanssonB.E. GrajowerB. Independent and disparate evolution in nature of influenza A virus hemagglutinin and neuraminidase glycoproteins.Proc. Natl. Acad. Sci. USA199087278679010.1073/pnas.87.2.786 2300562
    [Google Scholar]
  34. ChenZ. CuiQ. CaffreyM. RongL. DuR. Small Molecule Inhibitors of Influenza Virus Entry.Pharmaceuticals202114658710.3390/ph14060587 34207368
    [Google Scholar]
  35. KangY. ShiY. XuS. Arbidol: The current demand, strategies, and antiviral mechanisms.Immun. Inflamm. Dis.202311898410.1002/iid3.984 37647451
    [Google Scholar]
  36. LenevaI.A. RussellR.J. BoriskinY.S. HayA.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol.Antiviral Res.200981213214010.1016/j.antiviral.2008.10.009 19028526
    [Google Scholar]
  37. BoriskinY. LenevaI. PécheurE.I. PolyakS. Arbidol: A broad-spectrum antiviral compound that blocks viral fusion.Curr. Med. Chem.20081510997100510.2174/092986708784049658 18393857
    [Google Scholar]
  38. KadamR.U. WilsonI.A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol.Proc. Natl. Acad. Sci. USA2017114220621410.1073/pnas.1617020114 28003465
    [Google Scholar]
  39. AhmedA.A. AbouzidM. Arbidol targeting influenza virus A Hemagglutinin; A comparative study.Biophys. Chem.202127710666310.1016/j.bpc.2021.106663 34388678
    [Google Scholar]
  40. BlaisingJ. PolyakS.J. PécheurE.I. Arbidol as a broad-spectrum antiviral: An update.Antiviral Res.2014107849410.1016/j.antiviral.2014.04.006 24769245
    [Google Scholar]
  41. FinkS.L. VojtechL. WagonerJ. SlivinskiN.S.J. JacksonK.J. WangR. KhadkaS. LuthraP. BaslerC.F. PolyakS.J. The antiviral drug arbidol inhibits zika virus.Sci. Rep.201881898910.1038/s41598‑018‑27224‑4 29895962
    [Google Scholar]
  42. WangY. DingY. YangC. LiR. DuQ. HaoY. LiZ. JiangH. ZhaoJ. ChenQ. YangZ. HeZ. Inhibition of the infectivity and inflammatory response of influenza virus by Arbidol hydrochloride in vitro and in vivo (mice and ferret).Biomed. Pharmacother.20179139340110.1016/j.biopha.2017.04.091 28475918
    [Google Scholar]
  43. LiuQ. XiongH. LuL. LiuY. LuoF. HouW. YangZ. Antiviral and anti-inflammatory activity of arbidol hydrochloride in influenza A (H1N1) virus infection.Acta Pharmacol. Sin.20133481075108310.1038/aps.2013.54 23770981
    [Google Scholar]
  44. BrancatoV. PedutoA. WhartonS. MartinS. MoreV. Di MolaA. MassaA. PerfettoB. DonnarummaG. SchiraldiC. TufanoM.A. de RosaM. FilosaR. HayA. Design of inhibitors of influenza virus membrane fusion: Synthesis, structure–activity relationship and in vitro antiviral activity of a novel indole series.Antiviral Res.201399212513510.1016/j.antiviral.2013.05.005 23707194
    [Google Scholar]
  45. WrightZ.V.F. WuN.C. KadamR.U. WilsonI.A. WolanD.W. Structure-based optimization and synthesis of antiviral drug Arbidol analogues with significantly improved affinity to influenza hemagglutinin.Bioorg. Med. Chem. Lett.201727163744374810.1016/j.bmcl.2017.06.074 28689973
    [Google Scholar]
  46. GharaviN. HaggartyS. El-KadiA.O.S. Chemoprotective and carcinogenic effects of tert-butylhydroquinone and its metabolites.Curr. Drug Metab.2007811710.2174/138920007779315035 17266519
    [Google Scholar]
  47. BodianD.L. YamasakiR.B. BuswellR.L. StearnsJ.F. WhiteJ.M. KuntzI.D. Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones.Biochemistry199332122967297810.1021/bi00063a007 8457561
    [Google Scholar]
  48. HoffmanL.R. KuntzI.D. WhiteJ.M. Structure-based identification of an inducer of the low-pH conformational change in the influenza virus hemagglutinin: Irreversible inhibition of infectivity.J. Virol.199771118808882010.1128/jvi.71.11.8808‑8820.1997 9343241
    [Google Scholar]
  49. AntanasijevicA. ChengH. WardropD.J. RongL. CaffreyM. Inhibition of influenza H7 hemagglutinin-mediated entry.PLoS One20138107636310.1371/journal.pone.0076363 24194835
    [Google Scholar]
  50. RussellR.J. KerryP.S. StevensD.J. SteinhauerD.A. MartinS.R. GamblinS.J. SkehelJ.J. Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion.Proc. Natl. Acad. Sci. USA200810546177361774110.1073/pnas.0807142105 19004788
    [Google Scholar]
  51. AntanasijevicA. HafemanN.J. TundupS. KingsleyC. MishraR.K. RongL. ManicassamyB. WardropD. CaffreyM. Stabilization and improvement of a promising influenza antiviral: Making a PAIN PAINless.ACS Infect. Dis.20162960861510.1021/acsinfecdis.6b00046 27759373
    [Google Scholar]
  52. LuoG. ColonnoR. KrystalM. Characterization of a hemagglutinin-specific inhibitor of influenza A virus.Virology19962261667610.1006/viro.1996.0628 8941323
    [Google Scholar]
  53. LuoG. TorriA. HarteW.E. DanetzS. CianciC. TileyL. DayS. MullaneyD. YuK.L. OuelletC. DextrazeP. MeanwellN. ColonnoR. KrystalM. Molecular mechanism underlying the action of a novel fusion inhibitor of influenza A virus.J. Virol.19977154062407010.1128/jvi.71.5.4062‑4070.1997 9094684
    [Google Scholar]
  54. YuK.L. RuedigerE. LuoG. CianciC. DanetzS. TileyL. TrehanA.K. MonkovicI. PearceB. MartelA. KrystalM. MeanwellN.A. Novel quinolizidine salicylamide influenza fusion inhibitors.Bioorg. Med. Chem. Lett.19999152177218010.1016/S0960‑894X(99)00361‑3 10465540
    [Google Scholar]
  55. CianciC. YuK.L. DischinoD.D. HarteW. DeshpandeM. LuoG. ColonnoR.J. MeanwellN.A. KrystalM. pH-dependent changes in photoaffinity labeling patterns of the H1 influenza virus hemagglutinin by using an inhibitor of viral fusion.J. Virol.19997331785179410.1128/JVI.73.3.1785‑1794.1999 9971755
    [Google Scholar]
  56. DeshpandeM.S. WeiJ. LuoG. CianciC. DanetzS. TorriA. TileyL. KrystalM. YuK.L. HuangS. GaoQ. MeanwellN.A. An approach to the identification of potent inhibitors of influenza virus fusion using parallel synthesis methodology.Bioorg. Med. Chem. Lett.200111172393239610.1016/S0960‑894X(01)00459‑0 11527739
    [Google Scholar]
  57. TangG. LinX. QiuZ. LiW. ZhuL. WangL. LiS. LiH. LinW. YangM. GuoT. ChenL. LeeD. WuJ.Z. YangW. Design and synthesis of benzenesulfonamide derivatives as potent anti-influenza hemagglutinin inhibitors.ACS Med. Chem. Lett.20112860360710.1021/ml2000627 24900355
    [Google Scholar]
  58. ZhuL. LiY. LiS. LiH. QiuZ. LeeC. LuH. LinX. ZhaoR. ChenL. WuJ.Z. TangG. YangW. Inhibition of influenza A virus (H1N1) fusion by benzenesulfonamide derivatives targeting viral hemagglutinin.PLoS One20116122912010.1371/journal.pone.0029120 22195002
    [Google Scholar]
  59. van DongenM.J.P. KadamR.U. JuraszekJ. LawsonE. BrandenburgB. SchmitzF. SchepensW.B.G. StoopsB. van DiepenH.A. JongeneelenM. TangC. VermondJ. van Eijgen-Obregoso RealA. BloklandS. GargD. YuW. GoutierW. LanckackerE. KlapJ.M. PeetersD.C.G. WuJ. BuyckC. JonckersT.H.M. RoymansD. RoevensP. VogelsR. KoudstaalW. FriesenR.H.E. RaboissonP. DhanakD. GoudsmitJ. WilsonI.A. A small-molecule fusion inhibitor of influenza virus is orally active in mice.Science20193636431eaar622110.1126/science.aar6221 30846569
    [Google Scholar]
  60. WangA. LiY. LvK. GaoR. WangA. YanH. QinX. XuS. MaC. JiangJ. WeiZ. ZhangK. LiuM. Optimization and SAR research at the piperazine and phenyl rings of JNJ4796 as new anti-influenza A virus agents, part 1.Eur. J. Med. Chem.202122211359110.1016/j.ejmech.2021.113591 34126455
    [Google Scholar]
  61. WuW. YanH. JiangB. WangA. LiX. ZhangY. WuJ. ZhongX. GaoR. WangA. LvK. LiY. LiuM. Optimization and SAR research at the benzoxazole and tetrazole rings of JNJ4796 as new anti-influenza A virus agents, part 2.Eur. J. Med. Chem.2023245Pt 111490610.1016/j.ejmech.2022.114906 36395647
    [Google Scholar]
  62. WeisshaarM. CoxR. MorehouseZ. Kumar KyasaS. YanD. OberackerP. MaoS. GoldenJ.E. LowenA.C. NatchusM.G. PlemperR.K. Identification and characterization of influenza virus entry inhibitors through dual Myxovirus high-throughput screening.J. Virol.201690167368738710.1128/JVI.00898‑16 27252534
    [Google Scholar]
  63. KimJ.I. LeeS. LeeG.Y. ParkS. BaeJ.Y. HeoJ. KimH.Y. WooS.H. LeeH.U. AhnC.A. BangH.J. JuH.S. OkK. ByunY. ChoD.J. ShinJ.S. KimD.Y. ParkM.S. ParkM.S. Novel small molecule targeting the hemagglutinin stalk of influenza viruses.J. Virol.20199317e00878e1910.1128/JVI.00878‑19 31167918
    [Google Scholar]
  64. YaoY. KadamR.U. LeeC.C.D. WoehlJ.L. WuN.C. ZhuX. KitamuraS. WilsonI.A. WolanD.W. An influenza A hemagglutinin small-molecule fusion inhibitor identified by a new high-throughput fluorescence polarization screen.Proc. Natl. Acad. Sci. USA202011731184311843810.1073/pnas.2006893117 32690700
    [Google Scholar]
  65. BasuA. AntanasijevicA. WangM. LiB. MillsD.M. AmesJ.A. NashP.J. WilliamsJ.D. PeetN.P. MoirD.T. PrichardM.N. KeithK.A. BarnardD.L. CaffreyM. RongL. BowlinT.L. New small molecule entry inhibitors targeting hemagglutinin-mediated influenza a virus fusion.J. Virol.20148831447146010.1128/JVI.01225‑13 24198411
    [Google Scholar]
  66. PlotchS.J. O’HaraB. MorinJ. PalantO. LaRocqueJ. BloomJ.D. LangS.A. DiGrandiM.J. BradleyM. NilakantanR. GluzmanY. Inhibition of influenza A virus replication by compounds interfering with the fusogenic function of the viral hemagglutinin.J. Virol.199973114015110.1128/JVI.73.1.140‑151.1999 9847316
    [Google Scholar]
  67. LiuS. LiR. ZhangR. ChanC.C.S. XiB. ZhuZ. YangJ. PoonV.K.M. ZhouJ. ChenM. MünchJ. KirchhoffF. PleschkaS. HaarmannT. DietrichU. PanC. DuL. JiangS. ZhengB. CL-385319 inhibits H5N1 avian influenza A virus infection by blocking viral entry.Eur. J. Pharmacol.20116602-346046710.1016/j.ejphar.2011.04.013 21536025
    [Google Scholar]
  68. LiR. SongD. ZhuZ. XuH. LiuS. An induced pocket for the binding of potent fusion inhibitor CL-385319 with H5N1 influenza virus hemagglutinin.PLoS One2012784195610.1371/journal.pone.0041956 22876294
    [Google Scholar]
  69. HusseinA.F.A. ChengH. TundupS. AntanasijevicA. VarhegyiE. PerezJ. AbdulRahman, E.M.; Elenany, M.G.; Helal, S.; Caffrey, M.; Peet, N.; Manicassamy, B.; Rong, L. Identification of entry inhibitors with 4-aminopiperidine scaffold targeting group 1 influenza A virus.Antiviral Res.202017710478210.1016/j.antiviral.2020.104782 32222293
    [Google Scholar]
  70. AntanasijevicA. DurstM.A. ChengH. GaisinaI.N. PerezJ.T. ManicassamyB. RongL. LavieA. CaffreyM. Structure of avian influenza hemagglutinin in complex with a small molecule entry inhibitor.Life Sci. Alliance20203820200072410.26508/lsa.202000724 32611549
    [Google Scholar]
  71. GaisinaI.N. PeetN.P. ChengH. LiP. DuR. CuiQ. FurlongK. ManicassamyB. CaffreyM. ThatcherG.R.J. RongL. Optimization of 4-aminopiperidines as inhibitors of influenza a viral entry that are synergistic with oseltamivir.J. Med. Chem.20206363120313010.1021/acs.jmedchem.9b01900 32069052
    [Google Scholar]
  72. LeivaR. Barniol-XicotaM. CodonyS. GinexT. VanderlindenE. MontesM. CaffreyM. LuqueF.J. NaesensL. VázquezS. Aniline-based inhibitors of influenza H1N1 virus acting on hemagglutinin-mediated fusion.J. Med. Chem.20186119811810.1021/acs.jmedchem.7b00908 29220568
    [Google Scholar]
  73. de CastroS. GinexT. VanderlindenE. LaporteM. StevaertA. CumellaJ. GagoF. CamarasaM.J. LuqueF.J. NaesensL. VelazquezS. N-benzyl 4,4-disubstituted piperidines as a potent class of influenza H1N1 virus inhibitors showing a novel mechanism of hemagglutinin fusion peptide interaction.Eur. J. Med. Chem.202019411222310.1016/j.ejmech.2020.112223 32220685
    [Google Scholar]
  74. SokolovaA.S. PutilovaV.P. YarovayaO.I. ZybkinaA.V. MordvinovaE.D. ZaykovskayaA.V. ShcherbakovD.N. OrshanskayaI.R. SinegubovaE.O. EsaulkovaI.L. BorisevichS.S. BormotovN.I. ShishkinaL.N. ZarubaevV.V. PyankovO.V. MaksyutovR.A. SalakhutdinovN.F. Synthesis and antiviral activity of camphene derivatives against different types of viruses.Molecules2021268223510.3390/molecules26082235 33924393
    [Google Scholar]
  75. ZhaoX. LiR. ZhouY. XiaoM. MaC. YangZ. ZengS. DuQ. YangC. JiangH. HuY. WangK. MokC.K.P. SunP. DongJ. CuiW. WangJ. TuY. YangZ. HuW. Discovery of highly potent pinanamine-based inhibitors against Amantadine- and Oseltamivir-resistant influenza A viruses.J. Med. Chem.201861125187519810.1021/acs.jmedchem.8b00042 29799746
    [Google Scholar]
  76. ValdiviaA. RochaM. LuqueF.J. Mining druggable sites in influenza A hemagglutinin: Binding of the pinanamine-based inhibitor M090.ACS Med. Chem. Lett.202516112613510.1021/acsmedchemlett.4c00502 39811135
    [Google Scholar]
  77. WuG. YuG. YuY. YangS. DuanZ. WangW. LiuY. YuR. LiJ. ZhuT. GuQ. LiD. Chemoreactive-inspired discovery of influenza a virus dual inhibitor to block hemagglutinin-mediated adsorption and membrane fusion.J. Med. Chem.202063136924694010.1021/acs.jmedchem.0c00312 32520560
    [Google Scholar]
  78. LiB. HuangL. LinJ. MaX. LuoY. GaiW. XieY. ZhuT. WangW. LiD. Design, synthesis, and biological evaluation of novel penindolone derivatives as potential inhibitors of hemagglutinin-mediated membrane fusion.Eur. J. Med. Chem.202325811561510.1016/j.ejmech.2023.115615 37413878
    [Google Scholar]
  79. ZhengY. TiceC.M. SinghS.B. The use of spirocyclic scaffolds in drug discovery.Bioorg. Med. Chem. Lett.201424163673368210.1016/j.bmcl.2014.06.081 25052427
    [Google Scholar]
  80. MüllerG. BerkenboschT. BenningshofJ.C.J. StumpfeD. BajorathJ. Charting biologically relevant spirocyclic compound space.Chemistry201723370371010.1002/chem.201604714 27859909
    [Google Scholar]
  81. VanderlindenE. GöktaşF. CesurZ. FroeyenM. ReedM.L. RussellC.J. CesurN. NaesensL. Novel inhibitors of influenza virus fusion: Structure-activity relationship and interaction with the viral hemagglutinin.J. Virol.20108494277428810.1128/JVI.02325‑09 20181685
    [Google Scholar]
  82. Cihan-ÜstündağG. ZopunM. VanderlindenE. OzkirimliE. PersoonsL. ÇapanG. NaesensL. Superior inhibition of influenza virus hemagglutinin-mediated fusion by indole-substituted spirothiazolidinones.Bioorg. Med. Chem.202028111513010.1016/j.bmc.2019.115130 31753804
    [Google Scholar]
  83. GöktaşF. VanderlindenE. NaesensL. CesurN. CesurZ. Microwave assisted synthesis and anti-influenza virus activity of 1-adamantyl substituted N-(1-thia-4-azaspiro[4.5]decan-4-yl)carbox-amide derivatives.Bioorg. Med. Chem.201220247155715910.1016/j.bmc.2012.09.064 23117173
    [Google Scholar]
  84. GöktaşF. VanderlindenE. NaesensL. CesurZ. CesurN. TaşP. Synthesis and structure-activity relationship of n-(3-oxo-1-thia-4-azaspiro[4.5]decan-4-yl)carboxamide inhibitors of influenza virus hemagglutinin mediated fusion.Phosphorus Sulfur Silicon Relat. Elem.201519071075108710.1080/10426507.2014.965819
    [Google Scholar]
  85. GöktaşF. ÖzbilM. CesurN. VanderlindenE. NaesensL. CesurZ. Novel N ‐(1‐thia‐4‐azaspiro[4.5]decan‐4‐yl)carboxamide derivatives as potent and selective influenza virus fusion inhibitors.Arch. Pharm.201935211190002810.1002/ardp.201900028 31531897
    [Google Scholar]
  86. ÇınarG. AlikadıoğluZ. Soylu-EterÖ. NaesensL. Cihan-ÜstündağG. Design, synthesis and anti‐influenza virus activity of 4‐Tert‐Butyl‐N‐(3‐Oxo‐1‐Thia‐4‐Azaspiro[4.5]Dec‐4‐yl)benzamide derivatives that target hemagglutinin‐mediated fusion.Drug Dev. Res.20258627008010.1002/ddr.70080 40125625
    [Google Scholar]
  87. ApaydınÇ.B. TansuyuM. CesurZ. NaesensL. GöktaşF. Design, synthesis and anti-influenza virus activity of furan-substituted spirothiazolidinones.Bioorg. Chem.202111210495810.1016/j.bioorg.2021.104958 33979734
    [Google Scholar]
  88. Cihan-ÜstündağG. AcarÇ. NaesensL. Erköse-GençG. ŞatanaD. Synthesis of new N‐(3‐oxo‐1‐thia‐4‐azaspiro[4.5]decan‐4‐yl)pyridine‐3‐carboxamide derivatives and evaluation of their anti‐influenza virus and antitubercular activities.Arch. Pharm.202235510220022410.1002/ardp.202200224 35849096
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575401074250923075239
Loading
/content/journals/mrmc/10.2174/0113895575401074250923075239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test