Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Diabetes mellitus, a serious metabolic health condition and one of the most common diseases around the globe, primarily arises due to elevated blood sugar levels and causes multiple metabolic abnormalities. Nowadays, it has become the biggest challenge for the scientific community. Serious fatal health problems, such as neuropathy, retinopathy, and nephropathy, are the result of mismanagement of this illness, which significantly lowers the quality of life. -glucosidase is an enzyme in the small intestine that causes the breakdown of complex polysaccharide units into glucose units, , smaller units that then enter the bloodstream and result in hyperglycaemic conditions. To solve this issue, the inhibitors of -glucosidase must be developed immediately to manage and treat diabetes in patients. This literature survey highlights the importance of triazoles containing different heterocyclic rings, such as furan, benzyl, benzimidazole, thiazole, pyrrole, coumarin, indole, xanthone, ., which have shown promising antidiabetic activity against α-glucosidase. The parameters, such as kinetic investigations, binding interactions, IC value, structure-activity relationship, and molecular docking studies of the most potent compound, are covered in this review, which provides an overview of enzyme inhibitory activity. This review also includes the patents on α-glucosidase with triazole rings, demonstrating their effectiveness against α-glucosidase.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575371876250429175826
2025-05-06
2026-02-22
Loading full text...

Full text loading...

References

  1. SenS. ChakrabortyR. DeB. Diabetes mellitus in 21st century.Springer201610.1007/978‑981‑10‑1542‑7
    [Google Scholar]
  2. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  3. ZimmetP.Z. MaglianoD.J. HermanW.H. ShawJ.E. Diabetes: A 21st century challenge.Lancet Diabetes Endocrinol.201421566410.1016/S2213‑8587(13)70112‑824622669
    [Google Scholar]
  4. KumariP. KohalR. Bhavana; Gupta, G.D.; Verma, S.K. Selectivity challenges for aldose reductase inhibitors: A review on comparative SAR and interaction studies.J. Mol. Struct.2024131813920710.1016/j.molstruc.2024.139207
    [Google Scholar]
  5. WestI.C. Radicals and oxidative stress in diabetes.Diabet. Med.200017317118010.1046/j.1464‑5491.2000.00259.x10784220
    [Google Scholar]
  6. GinH. RigalleauV. Post-prandial hyperglycemia. post-prandial hyperglycemia and diabetes.Diabetes Metab.2000264265272[PMID: 11011218].
    [Google Scholar]
  7. SunH. WangD. SongX. ZhangY. DingW. PengX. ZhangX. LiY. MaY. WangR. YuP. Natural prenylchalconaringenins and prenylnaringenins as antidiabetic agents: α-glucosidase and α-amylase inhibition and in vivo antihyperglycemic and antihyperlipidemic effects.J. Agric. Food Chem.20176581574158110.1021/acs.jafc.6b0544528132506
    [Google Scholar]
  8. O’KeefeJ.H. BellD.S.H. Postprandial hyperglycemia/ hyperlipidemia (postprandial dysmetabolism) is a cardiovascular risk factor.Am. J. Cardiol.2007100589990410.1016/j.amjcard.2007.03.10717719342
    [Google Scholar]
  9. Simó-ServatO. HernándezC. SimóR. Diabetic retinopathy in the context of patients with diabetes.Ophthalmic Res.201962421121710.1159/00049954131129667
    [Google Scholar]
  10. VerrottiA. PreziosoG. ScattoniR. ChiarelliF. Autonomic neuropathy in diabetes mellitus.Front. Endocrinol.2014520510.3389/fendo.2014.0020525520703
    [Google Scholar]
  11. SatirapojB. SupasyndhO. DispanR. PunpanichD. TribanyatkulS. ChoovichianP. Apolipoprotein E genetic polymorphisms and the development of nephropathy in type 2 diabetes.J. Med. Assoc. Thai.201396911191126[PMID: 24163986].
    [Google Scholar]
  12. WhitingD.R. GuariguataL. WeilC. ShawJ. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030.Diabetes Res. Clin. Pract.201194331132110.1016/j.diabres.2011.10.02922079683
    [Google Scholar]
  13. PrabhakarP.K. Pathophysiology of secondary complications of diabetes mellitus.Pathophysiology2016913236
    [Google Scholar]
  14. MushtaqA. AzamU. MehreenS. NaseerM.M. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges.Eur. J. Med. Chem.202324911511910.1016/j.ejmech.2023.11511936680985
    [Google Scholar]
  15. AhamedM.M. BanjiO. A review on diabetic neuropathy and nephropathy.Int. J. Pharm. Sci. Res.201232300
    [Google Scholar]
  16. HuynhJ. YamadaJ. BeauharnaisC. WengerJ.B. ThadhaniR.I. WexlerD. RobertsD.J. Bentley-LewisR. Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion.Placenta201536101161116610.1016/j.placenta.2015.08.00426303757
    [Google Scholar]
  17. ApayaM.K. KuoT.F. YangM.T. YangG. HsiaoC.L. ChangS.B. LinY. YangW.C. Phytochemicals as modulators of β-cells and immunity for the therapy of type 1 diabetes: Recent discoveries in pharmacological mechanisms and clinical potential.Pharmacol. Res.202015610475410.1016/j.phrs.2020.10475432173584
    [Google Scholar]
  18. HossainU. DasA.K. GhoshS. SilP.C. An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications.Food Chem. Toxicol.202014511173810.1016/j.fct.2020.11173832916220
    [Google Scholar]
  19. EizirikD.L. PasqualiL. CnopM. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure.Nat. Rev. Endocrinol.202016734936210.1038/s41574‑020‑0355‑732398822
    [Google Scholar]
  20. AlomariM. TahaM. RahimF. SelvarajM. IqbalN. ChigurupatiS. HussainS. UddinN. AlmandilN.B. NawazM. Khalid FarooqR.K. KhanK.M. Synthesis of indole-based-thiadiazole derivatives as a potent inhibitor of α-glucosidase enzyme along with in silico study.Bioorg. Chem.202110810463810.1016/j.bioorg.2021.10463833508679
    [Google Scholar]
  21. ChahalS. RaniP. Shweta; Goel, K.K.; Joshi, G.; Singh, R.; Kumar, P.; Singh, D.; Sindhu, J. Pyrano[2,3-c]pyrazole fused spirooxindole-linked 1,2,3-triazoles as antioxidant agents: Exploring their utility in the development of antidiabetic drugs via inhibition of α-amylase and DPP4 activity.Bioorg. Chem.202414710736310.1016/j.bioorg.2024.10736338657527
    [Google Scholar]
  22. HeM. LiY.J. ShaoJ. FuC. LiY.S. CuiZ.N. 2,5-Disubstituted furan derivatives containing imidazole, triazole or tetrazole moiety as potent α-glucosidase inhibitors.Bioorg. Chem.202313110629810.1016/j.bioorg.2022.10629836455481
    [Google Scholar]
  23. AshwalE. HodM. Gestational diabetes mellitus: Where are we now?Clin. Chim. Acta2015451Pt A142010.1016/j.cca.2015.01.02125655741
    [Google Scholar]
  24. GhaniU. AshrafS. HaqZ.U. KaplancikliZ.A. Demi̇rci̇F. ÖzkayY. AfzalS. The 4-(dimethylaminoalkyl)piperazine inhibitors of α-glucosidase: Allosteric enzyme inhibition and identification of interacting chemical groups.Turk. J. Chem.20224651484149210.55730/1300‑0527.345337529755
    [Google Scholar]
  25. HarmonD.L. SwansonK.C. Review: Nutritional regulation of intestinal starch and protein assimilation in ruminants.Animal202014S1s17s2810.1017/S175173111900313632024574
    [Google Scholar]
  26. ProençaC. RibeiroD. FreitasM. FernandesE. Flavonoids as potential agents in the management of type 2 diabetes through the modulation of α-amylase and α-glucosidase activity: A review.Crit. Rev. Food Sci. Nutr.202262123137320710.1080/10408398.2020.186275533427491
    [Google Scholar]
  27. LeeB.H. RoseD.R. LinA.H.M. Quezada-CalvilloR. NicholsB.L. HamakerB.R. Contribution of the individual small intestinal α-glucosidases to digestion of unusual α-linked glycemic disaccharides.J. Agric. Food Chem.201664336487649410.1021/acs.jafc.6b0181627480812
    [Google Scholar]
  28. DirirA.M. DaouM. YousefA.F. YousefL.F. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes.Phytochem. Rev.20222141049107910.1007/s11101‑021‑09773‑134421444
    [Google Scholar]
  29. SinghA. SinghK. SharmaA. KaurK. KaurK. ChadhaR. BediP.M.S. Recent developments in synthetic α-glucosidase inhibitors: A comprehensive review with structural and molecular insight.J. Mol. Struct.2023128113511510.1016/j.molstruc.2023.135115
    [Google Scholar]
  30. BlaakE.E. AntoineJ.M. BentonD. BjörckI. BozzettoL. BrounsF. DiamantM. DyeL. HulshofT. HolstJ.J. LamportD.J. LavilleM. LawtonC.L. MeheustA. NilsonA. NormandS. RivelleseA.A. TheisS. TorekovS.S. VinoyS. Impact of postprandial glycaemia on health and prevention of disease.Obes. Rev.2012131092398410.1111/j.1467‑789X.2012.01011.x22780564
    [Google Scholar]
  31. Ritu; Sharma, P.; Gupta, G.D.; Asati, V. Design, synthesis and antidiabetic study of triazole clubbed indole derivatives as α-glucosidase inhibitors.Bioorg. Chem.202313910675010.1016/j.bioorg.2023.10675037499530
    [Google Scholar]
  32. HeacockP.M. HertzlerS.R. WilliamsJ.A. WolfB.W. Effects of a medical food containing an herbal α-glucosidase inhibitor on postprandial glycemia and insulinemia in healthy adults.J. Am. Diet. Assoc.20051051657110.1016/j.jada.2004.11.00115635348
    [Google Scholar]
  33. KatoT. NodeK. Therapeutic potential of α-glucosidase inhibitors to prevent postprandial endothelial dysfunction.Int. Heart J.201455538639010.1536/ihj.14‑19425109946
    [Google Scholar]
  34. LiuS.C. TuY.K. ChienM.N. ChienK.L. Effect of antidiabetic agents added to metformin on glycaemic control, hypoglycaemia and weight change in patients with type 2 diabetes: A network meta‐analysis.Diabetes Obes. Metab.201214981082010.1111/j.1463‑1326.2012.01606.x22486990
    [Google Scholar]
  35. WangJ.S. HuangC.N. HungY.J. KwokC.F. SunJ.H. PeiD. YangC.Y. ChenC.C. LinC.L. SheuW.H.H. Acarbose plus metformin fixed-dose combination outperforms acarbose monotherapy for type 2 diabetes.Diabetes Res. Clin. Pract.20131021162410.1016/j.diabres.2013.08.00123993469
    [Google Scholar]
  36. AlssemaM. RuijgrokC. BlaakE.E. EgliL. DussortP. VinoyS. DekkerJ.M. Denise RobertsonM. Effects of alpha-glucosidase-inhibiting drugs on acute postprandial glucose and insulin responses: A systematic review and meta-analysis.Nutr. Diabetes20211111110.1038/s41387‑021‑00152‑533658478
    [Google Scholar]
  37. HuangJ. ZangX. YangW. YinX. HuangJ. WuS. HongY. Pentacyclic triterpene carboxylic acids derivatives integrated piperazine-amino acid complexes for α-glucosidase inhibition in vitro.Bioorg. Chem.202111510521210.1016/j.bioorg.2021.10521234333423
    [Google Scholar]
  38. ÖzilM. KhanK.M. BaltaşN. WadoodA. SamadA. KahveciB. Synthesis of benzimidazoles containing piperazine ring as potential therapeutic agents against diabetes mellitus and antioxidant activities.J. Mol. Struct.2024130413771410.1016/j.molstruc.2024.137714
    [Google Scholar]
  39. FikreeA. ByrneP. Management of functional gastrointestinal disorders.Clin. Med.2021211445210.7861/clinmed.2020‑098033479067
    [Google Scholar]
  40. CrabbeM.J.C. GoodeD. Aldose reductase: A window to the treatment of diabetic complications?Prog. Retin. Eye Res.199817331338310.1016/S1350‑9462(97)00013‑X9695797
    [Google Scholar]
  41. CerielloA. Acute hyperglycaemia and oxidative stress generation.Diabet. Med.199714Suppl. 3S45S49
    [Google Scholar]
  42. PanigrahyS.K. BhattR. KumarA. Reactive oxygen species: Sources, consequences and targeted therapy in type 2 diabetes.J. Drug Target.20172529310110.1080/1061186X.2016.120765027356044
    [Google Scholar]
  43. MartinA.E. MontgomeryP.A. Acarbose: An α-glucosidase inhibitor.Am. J. Health Syst. Pharm.199653192277229010.1093/ajhp/53.19.22778893066
    [Google Scholar]
  44. ChenX. ZhengY. ShenY. Voglibose (Basen, AO-128), one of the most important α-glucosidase inhibitors.Curr. Med. Chem.200613110911610.2174/09298670678980303516457643
    [Google Scholar]
  45. SelsJ.P.J.E. HuijbertsM.S.P. WolffenbuttelB.H.R. Miglitol, a new α-glucosidase inhibitor.Expert Opin. Pharmacother.19991114915610.1517/14656566.1.1.14911249557
    [Google Scholar]
  46. LembckeB. FölschU.R. GatzemeierW. LückeB. EbertR. SiegelE. CreutzfeldtW. Inhibition of sucrose- and starch-induced glycaemic and hormonal responses by the alpha-glucosidase inhibitor emiglitate (BAY o 1248) in healthy volunteers.Eur. J. Clin. Pharmacol.199141656156710.1007/BF003149851815967
    [Google Scholar]
  47. TuyenD.T. YewG.Y. CuongN.T. HoangL.T. YenH.T. Hong ThaoP.T. ThaoN.T. Sy le ThanhN. Hien TrangN.T. TrungN.T. AfridiR. Mai AnhD.T. ShowP.L. Selection, purification, and evaluation of acarbose−an α-glucosidase inhibitor from Actinoplanes sp.Chemosphere202126512916710.1016/j.chemosphere.2020.12916733307502
    [Google Scholar]
  48. FukaseH. Development of voglibose (Basen®), an antidiabetic agent.J. Synth. Org. Chem. Jpn.1997551092092510.5059/yukigoseikyokaishi.55.920
    [Google Scholar]
  49. FuderH. KleistP. BirkelM. EhrlichA. EmeklibasS. MaslakW. StriddeE. WetzelsbergerN. WieckhorstG. LückerP.W. The α-glucosidase inhibitor voglibose (AO-128) does not change pharmacodynamics or pharmacokinetics of warfarin.Eur. J. Clin. Pharmacol.199753215315710.1007/s0022800503559403289
    [Google Scholar]
  50. Leroux‐StewartJ. Rabasa‐LhoretR. ChiassonJ.L. α-Glucosidase inhibitors.International textbook of diabetes mellitusJohn Wiley & Sons, Ltd2015673685
    [Google Scholar]
  51. SugimotoS. NakajimaH. KosakaK. HosoiH. Review: Miglitol has potential as a therapeutic drug against obesity.Nutr. Metab.20151215110.1186/s12986‑015‑0048‑826628904
    [Google Scholar]
  52. ScottL.J. SpencerC.M. Miglitol.Drugs200059352154910.2165/00003495‑200059030‑0001210776834
    [Google Scholar]
  53. TaylorR.H. Modification of energy density with inhibitors of carbohydrate and fat digestion.Proc. Nutr. Soc.199150239940810.1079/PNS199100511721229
    [Google Scholar]
  54. LundquistI. PanagiotidisG. SalehiA. Islet acid glucan-1,4-alpha-glucosidase: A putative key enzyme in nutrient-stimulated insulin secretion.Endocrinology199613741219122510.1210/endo.137.4.86258928625892
    [Google Scholar]
  55. FallahZ. TajbakhshM. AlikhaniM. LarijaniB. FaramarziM.A. HamedifarH. Mohammadi-KhanaposhtaniM. MahdaviM. A review on synthesis, mechanism of action, and structure-activity relationships of 1,2,3-triazole-based α-glucosidase inhibitors as promising anti-diabetic agents.J. Mol. Struct.2022125513246910.1016/j.molstruc.2022.132469
    [Google Scholar]
  56. WangG. PengZ. WangJ. LiX. LiJ. Synthesis, in vitro evaluation and molecular docking studies of novel triazine-triazole derivatives as potential α-glucosidase inhibitors.Eur. J. Med. Chem.201712542342910.1016/j.ejmech.2016.09.06727689725
    [Google Scholar]
  57. ShafiqueK. FarrukhA. M. AliT. Qasim, S.; Jafri, L.; Abd-Rabboh, H.S.M.; AL-Anazy, M.; Kalsoom, S. Designing click one-pot synthesis and antidiabetic studies of 1,2,3-triazole derivatives.Molecules2023287310410.3390/molecules2807310437049866
    [Google Scholar]
  58. ChaidamS. SaehlimN. AthipornchaiA. SirionU. SaeengR. Synthesis and biological evaluation of 1,6-bis-triazole-2,3,4-tri-O-benzyl-α-d-glucopyranosides as a novel α-glucosidase inhibitor in the treatment of Type 2 diabetes.Bioorg. Med. Chem. Lett.20215012833110.1016/j.bmcl.2021.12833134418573
    [Google Scholar]
  59. AsemanipoorN. Mohammadi-KhanaposhtaniM. MoradiS. VahidiM. AsadiM. FaramarziM.A. MahdaviM. BiglarM. LarijaniB. HamedifarH. HajimiriM.H. Synthesis and biological evaluation of new benzimidazole-1,2,3-triazole hybrids as potential α-glucosidase inhibitors.Bioorg. Chem.20209510348210.1016/j.bioorg.2019.10348231838286
    [Google Scholar]
  60. DeswalL. VermaV. KumarD. KaushikC.P. KumarA. DeswalY. PuniaS. Synthesis and antidiabetic evaluation of benzimidazole‐tethered 1,2,3‐triazoles.Arch. Pharm.20203539200009010.1002/ardp.20200009032567729
    [Google Scholar]
  61. YeyeE.O. Kanwal; M. Khan, K.M.; Chigurupati, S.; Wadood, A.; Ur Rehman, A.; Perveen, S.; K. Maharajan, M.K.; Shamim, S.; Hameed, S.; Aboaba, S.A.; Taha, M. Syntheses, in vitro α-amylase and α-glucosidase dual inhibitory activities of 4-amino-1,2,4-triazole derivatives their molecular docking and kinetic studies.Bioorg. Med. Chem.2020281111546710.1016/j.bmc.2020.11546732327353
    [Google Scholar]
  62. RehmanN.U. UllahS. AlamT. HalimS.A. MohantaT.K. KhanA. AnwarM.U. CsukR. AvulaS.K. Al-HarrasiA. Discovery of new boswellic acid hybrid 1H-1,2,3-triazoles for diabetic management: In vitro and in silico studies.Pharmaceuticals202316222910.3390/ph1602022937259377
    [Google Scholar]
  63. ChannarP.A. SaeedA. LarikF.A. RashidS. IqbalQ. RoziM. YounisS. MaharJ. Design and synthesis of 2,6-di(substituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as α-glucosidase and α-amylase inhibitors, co-relative Pharmacokinetics and 3D QSAR and risk analysis.Biomed. Pharmacother.20179449951310.1016/j.biopha.2017.07.13928780468
    [Google Scholar]
  64. El AshryE.S.H. FarahatM.M.K. AwadL.F. BalbaaM. YusefH. BadawyM.E.I. Abd Al MoatyM.N. New 4-(arylidene)amino-1,2,4-traizole-5-thiol derivatives and their acyclo thioglycosides as α-glucosidase and α-amylase inhibitors: Design, synthesis, and molecular modelling studies.J. Mol. Struct.2022125913273310.1016/j.molstruc.2022.132733
    [Google Scholar]
  65. Shareghi-BoroujeniD. IrajiA. MojtabaviS. FaramarziM.A. AkbarzadehT. SaeediM. Synthesis, in vitro evaluation, and molecular docking studies of novel hydrazineylideneindolinone linked to phenoxymethyl-1,2,3-triazole derivatives as potential α-glucosidase inhibitors.Bioorg. Chem.202111110486910.1016/j.bioorg.2021.10486933839583
    [Google Scholar]
  66. SaeediM. HaririR. IrajiA. AhmadiA. MojtabaviS. GolshaniS. FaramarziM.A. AkbarzadehT. Novel N′-substituted benzylidene benzohydrazides linked to 1,2,3-triazoles: Potent α-glucosidase inhibitors.Sci. Rep.2023131896010.1038/s41598‑023‑36046‑y37268722
    [Google Scholar]
  67. KhouzaniM.A. MogharabiM. FaramarziM.A. MojtabaviS. AzizianH. MahdaviM. HashemiS.M. Development of coumarin tagged 1,2,3-triazole derivatives targeting α-glucosidase inhibition: Synthetic modification, biological evaluation, kinetic and in silico studies.J. Mol. Struct.2023128213519410.1016/j.molstruc.2023.135194
    [Google Scholar]
  68. AsgariM.S. Mohammadi-KhanaposhtaniM. KianiM. RanjbarP.R. ZabihiE. PourbagherR. RahimiR. FaramarziM.A. BiglarM. LarijaniB. MahdaviM. HamedifarH. HajimiriM.H. Biscoumarin-1,2,3-triazole hybrids as novel anti-diabetic agents: Design, synthesis, in vitro α-glucosidase inhibition, kinetic, and docking studies.Bioorg. Chem.20199210320610.1016/j.bioorg.2019.10320631445191
    [Google Scholar]
  69. DhamejaM. KumarH. KurellaS. UmaA. GuptaP. Flavone-1,2,3-triazole derivatives as potential α-glucosidase inhibitors: Synthesis, enzyme inhibition, kinetic analysis and molecular docking study.Bioorg. Chem.202212710602810.1016/j.bioorg.2022.10602835868105
    [Google Scholar]
  70. AvulaS.K. KhanA. HalimS.A. Al-AbriZ. AnwarM.U. Al-RawahiA. CsukR. Al-HarrasiA. Synthesis of novel (R)-4-fluorophenyl-1H-1,2,3-triazoles: A new class of α-glucosidase inhibitors.Bioorg. Chem.20199110318210.1016/j.bioorg.2019.10318231404793
    [Google Scholar]
  71. SaeediM. Mohammadi-KhanaposhtaniM. AsgariM.S. EghbalnejadN. ImanparastS. FaramarziM.A. LarijaniB. MahdaviM. AkbarzadehT. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors.Bioorg. Med. Chem.2019272311514810.1016/j.bmc.2019.11514831679980
    [Google Scholar]
  72. KumarL. LalK. YadavP. KumarA. PaulA.K. Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1H-1,2,3-triazole hybrids.J. Mol. Struct.2020121612825310.1016/j.molstruc.2020.128253
    [Google Scholar]
  73. YeG.J. LanT. HuangZ.X. ChengX.N. CaiC.Y. DingS.M. XieM.L. WangB. Design and synthesis of novel xanthone-triazole derivatives as potential antidiabetic agents: α-Glucosidase inhibition and glucose uptake promotion.Eur. J. Med. Chem.201917736237310.1016/j.ejmech.2019.05.04531158750
    [Google Scholar]
  74. BakheradZ. Mohammadi-KhanaposhtaniM. Sadeghi-AliabadiH. RezaeiS. FassihiA. BakheradM. RastegarH. BiglarM. SaghaieL. LarijaniB. MahdaviM. New thiosemicarbazide-1,2,3-triazole hybrids as potent α-glucosidase inhibitors: Design, synthesis, and biological evaluation.J. Mol. Struct.2019119219220010.1016/j.molstruc.2019.04.082
    [Google Scholar]
  75. RahimF. UllahH. HussainR. TahaM. KhanS. NawazM. NawazF. GilaniS.J. JumahM.N.B. Thiadiazole based triazole/hydrazone derivatives: Synthesis, in vitro α-glucosidase inhibitory activity and in silico molecular docking study.J. Mol. Struct.2023128713561910.1016/j.molstruc.2023.135619
    [Google Scholar]
  76. RehmanA.U. NafeesaK. AbbasiM.A. SaddiquiS.Z. RasoolS. ShahS.A.A. AshrafM. LodhiM.A. KhanF.A. JahanB. $S$-substituted derivatives of 1,2,4-triazol-3-thiol as new drug candidates for type II diabetes.Turk. J. Chem.2018423652671[https://dx.doi.org/10.3906/kim-1705-17].
    [Google Scholar]
  77. IrajiA. Shareghi-BrojeniD. MojtabaviS. FaramarziM.A. AkbarzadehT. SaeediM. Cyanoacetohydrazide linked to 1,2,3-triazole derivatives: A new class of α-glucosidase inhibitors.Sci. Rep.2022121864710.1038/s41598‑022‑11771‑y35606520
    [Google Scholar]
  78. AsadiM. AhangariM.M. IrajiA. AzizianH. NokhbehzaimA. BahadorikhaliliS. MojtabaviS. FaramarziM.A. Nasli-EsfahaniE. LarijaniB. MahdaviM. AmanlouM. Synthesis, α-glucosidase inhibitory activity, and molecular dynamic simulation of 6-chloro-2-methoxyacridine linked to triazole derivatives.Sci. Rep.20241411733810.1038/s41598‑024‑68176‑239069559
    [Google Scholar]
  79. AsgariM.S. TahmasebiB. MojtabaviS. FaramarziM.A. RahimiR. RanjbarP.R. BiglarM. LarijaniB. RastegarH. Mohammadi-KhanaposhtaniM. MahdaviM. Design, synthesis, biological evaluation, and docking study of new acridine‐9‐carboxamide linked to 1,2,3‐triazole derivatives as antidiabetic agents targeting α‐glucosidase.J. Heterocycl. Chem.202057124348435710.1002/jhet.4142
    [Google Scholar]
  80. HameedS. Kanwal; Seraj, F.; Rafique, R.; Chigurupati, S.; Wadood, A.; Rehman, A.U.; Venugopal, V.; Salar, U.; Taha, M.; Khan, K.M. Synthesis of benzotriazoles derivatives and their dual potential as α-amylase and α-glucosidase inhibitors in vitro: Structure-activity relationship, molecular docking, and kinetic studies.Eur. J. Med. Chem.201918311167710.1016/j.ejmech.2019.11167731514061
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575371876250429175826
Loading
/content/journals/mrmc/10.2174/0113895575371876250429175826
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test