Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Indole, a ubiquitous structural motif in bioactive compounds, has played a pivotal role in drug discovery. Among indole derivatives, indole-3-carboxaldehyde (I3A) has emerged as a particularly promising scaffold for the development of therapeutic agents. This review delves into the recent advancements in the chemical modification of I3A and its derivatives, highlighting their potential applications in various therapeutic areas. I3A derivatives have demonstrated a wide range of biological activities, including anti-inflammatory, anti-leishmanial, anti-cancer, anti-bacterial, anti-fungal, and anti-HIV properties. The structural modifications introduced to the I3A scaffold, such as substitutions on the indole ring (alkylation/arylation/halogenation), variations in the aldehyde group condensation (Aldol/Claisen/Knoevenagel), and molecular hybridization with other reputable bioactive compounds like coumarins, chalcones, triazoles, and thiophenes, contribute to these activities. Beyond its therapeutic potential, I3A has also found applications as a ligand for Schiff base synthesis, a polymer, and a chromophore. This review provides a comprehensive overview of the latest research on I3A and its derivatives, focusing on the key reactions, modification pathways, reaction conditions, yields, and associated therapeutic activities. By understanding these advancements, researchers can gain valuable insights into the potential applications and future directions for I3A-based drug discovery.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575351704241120060746
2025-01-07
2025-10-05
Loading full text...

Full text loading...

References

  1. MurrayC.J.L. VosT. LozanoR. NaghaviM. FlaxmanA.D. MichaudC. EzzatiM. ShibuyaK. SalomonJ.A. AbdallaS. AboyansV. AbrahamJ. AckermanI. AggarwalR. AhnS.Y. AliM.K. AlMazroaM.A. AlvaradoM. AndersonH.R. AndersonL.M. AndrewsK.G. AtkinsonC. BaddourL.M. BahalimA.N. Barker-ColloS. BarreroL.H. BartelsD.H. BasáñezM-G. BaxterA. BellM.L. BenjaminE.J. BennettD. BernabéE. BhallaK. BhandariB. BikbovB. AbdulhakA.B. BirbeckG. BlackJ.A. BlencoweH. BloreJ.D. BlythF. BolligerI. BonaventureA. BoufousS. BourneR. BoussinesqM. BraithwaiteT. BrayneC. BridgettL. BrookerS. BrooksP. BrughaT.S. Bryan-HancockC. BucelloC. BuchbinderR. BuckleG. BudkeC.M. BurchM. BurneyP. BursteinR. CalabriaB. CampbellB. CanterC.E. CarabinH. CarapetisJ. CarmonaL. CellaC. CharlsonF. ChenH. ChengA.T-A. ChouD. ChughS.S. CoffengL.E. ColanS.D. ColquhounS. ColsonK.E. CondonJ. ConnorM.D. CooperL.T. CorriereM. CortinovisM. de VaccaroK.C. CouserW. CowieB.C. CriquiM.H. CrossM. DabhadkarK.C. DahiyaM. DahodwalaN. Damsere-DerryJ. DanaeiG. DavisA. LeoD.D. DegenhardtL. DellavalleR. DelossantosA. DenenbergJ. DerrettS. Des JarlaisD.C. DharmaratneS.D. DheraniM. Diaz-TorneC. DolkH. DorseyE.R. DriscollT. DuberH. EbelB. EdmondK. ElbazA. AliS.E. ErskineH. ErwinP.J. EspindolaP. EwoigbokhanS.E. FarzadfarF. FeiginV. FelsonD.T. FerrariA. FerriC.P. FèvreE.M. FinucaneM.M. FlaxmanS. FloodL. ForemanK. ForouzanfarM.H. FowkesF.G.R. FransenM. FreemanM.K. GabbeB.J. GabrielS.E. GakidouE. GanatraH.A. GarciaB. GaspariF. GillumR.F. GmelG. Gonzalez-MedinaD. GosselinR. GraingerR. GrantB. GroegerJ. GuilleminF. GunnellD. GuptaR. HaagsmaJ. HaganH. HalasaY.A. HallW. HaringD. HaroJ.M. HarrisonJ.E. HavmoellerR. HayR.J. HigashiH. HillC. HoenB. HoffmanH. HotezP.J. HoyD. HuangJ.J. IbeanusiS.E. JacobsenK.H. JamesS.L. JarvisD. JasrasariaR. JayaramanS. JohnsN. JonasJ.B. KarthikeyanG. KassebaumN. KawakamiN. KerenA. KhooJ-P. KingC.H. KnowltonL.M. KobusingyeO. KorantengA. KrishnamurthiR. LadenF. LallooR. LaslettL.L. LathleanT. LeasherJ.L. LeeY.Y. LeighJ. LevinsonD. LimS.S. LimbE. LinJ.K. LipnickM. LipshultzS.E. LiuW. LoaneM. OhnoS.L. LyonsR. MabweijanoJ. MacIntyreM.F. MalekzadehR. MallingerL. ManivannanS. MarcenesW. MarchL. MargolisD.J. MarksG.B. MarksR. MatsumoriA. MatzopoulosR. MayosiB.M. McAnultyJ.H. McDermottM.M. McGillN. McGrathJ. Medina-MoraM.E. MeltzerM. MemishZ.A. MensahG.A. MerrimanT.R. MeyerA-C. MiglioliV. MillerM. MillerT.R. MitchellP.B. MockC. MocumbiA.O. MoffittT.E. MokdadA.A. MonastaL. MonticoM. Moradi-LakehM. MoranA. MorawskaL. MoriR. MurdochM.E. MwanikiM.K. NaidooK. NairM.N. NaldiL. NarayanK.M.V. NelsonP.K. NelsonR.G. NevittM.C. NewtonC.R. NolteS. NormanP. NormanR. O’DonnellM. O’HanlonS. OlivesC. OmerS.B. OrtbladK. OsborneR. OzgedizD. PageA. PahariB. PandianJ.D. RiveroA.P. PattenS.B. PearceN. PadillaR.P. Perez-RuizF. PericoN. PesudovsK. PhillipsD. PhillipsM.R. PierceK. PionS. PolanczykG.V. PolinderS. PopeC.A.III PopovaS. PorriniE. PourmalekF. PrinceM. PullanR.L. RamaiahK.D. RanganathanD. RazaviH. ReganM. RehmJ.T. ReinD.B. RemuzziG. RichardsonK. RivaraF.P. RobertsT. RobinsonC. De LeònF.R. RonfaniL. RoomR. RosenfeldL.C. RushtonL. SaccoR.L. SahaS. SampsonU. Sanchez-RieraL. SanmanE. SchwebelD.C. ScottJ.G. Segui-GomezM. ShahrazS. ShepardD.S. ShinH. ShivakotiR. SilberbergD. SinghD. SinghG.M. SinghJ.A. SingletonJ. SleetD.A. SliwaK. SmithE. SmithJ.L. StapelbergN.J.C. SteerA. SteinerT. StolkW.A. StovnerL.J. SudfeldC. SyedS. TamburliniG. TavakkoliM. TaylorH.R. TaylorJ.A. TaylorW.J. ThomasB. ThomsonW.M. ThurstonG.D. TleyjehI.M. TonelliM. TowbinJ.A. TruelsenT. TsilimbarisM.K. UbedaC. UndurragaE.A. van der WerfM.J. van OsJ. VavilalaM.S. VenketasubramanianN. WangM. WangW. WattK. WeatherallD.J. WeinstockM.A. WeintraubR. WeisskopfM.G. WeissmanM.M. WhiteR.A. WhitefordH. WiebeN. WiersmaS.T. WilkinsonJ.D. WilliamsH.C. WilliamsS.R.M. WittE. WolfeF. WoolfA.D. WulfS. YehP-H. ZaidiA.K.M. ZhengZ-J. ZoniesD. LopezA.D. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: A systematic analysis for the global burden of disease study 2010.Lancet201238098592197222310.1016/S0140‑6736(12)61689‑4 23245608
    [Google Scholar]
  2. MurrayC. UNITAID can address HCV/HIV co-infection.Lancet20133819867628628 23439101
    [Google Scholar]
  3. Al-MullaA. A review: Biological importance of heterocyclic compounds.Pharma Chem.2017913141147
    [Google Scholar]
  4. KaushikN. KaushikN. AttriP. KumarN. KimC. VermaA. ChoiE. Biomedical importance of indoles.Molecules20131866620666210.3390/molecules18066620 23743888
    [Google Scholar]
  5. KumariA. SinghR.K. Medicinal chemistry of indole derivatives: Current to future therapeutic prospectives.Bioorg. Chem.20198910302110.1016/j.bioorg.2019.103021 31176854
    [Google Scholar]
  6. BarluengaJ. ValdésC. Five‐Membered Heterocycles: Indole and Related Systems.Modern Heterocyclic Chemistry2011377531
    [Google Scholar]
  7. DewickP.M. Essentials of organic chemistry: For students of pharmacy, medicinal chemistry and biological chemistry.John Wiley & Sons2013
    [Google Scholar]
  8. LalS. SnapeT.J. 2-Arylindoles: A privileged molecular scaffold with potent, broad-ranging pharmacological activity.Curr. Med. Chem.201219284828483710.2174/092986712803341449 22830349
    [Google Scholar]
  9. PojarováM. KaufmannD. GastparR. NishinoT. ReszkaP. BednarskiP.J. von AngererE. [(2-Phenylindol-3-yl)methylene] propanedinitriles inhibit the growth of breast cancer cells by cell cycle arrest in G2/M phase and apoptosis.Bioorg. Med. Chem.200715237368737910.1016/j.bmc.2007.07.046 17889547
    [Google Scholar]
  10. JasiewiczB. Kozanecka-OkupnikW. PrzygodzkiM. WarżajtisB. RychlewskaU. PospiesznyT. MrówczyńskaL. Synthesis, antioxidant and cytoprotective activity evaluation of C-3 substituted indole derivatives.Sci. Rep.20211111542510.1038/s41598‑021‑94904‑z 34326403
    [Google Scholar]
  11. BahugunaA. BharatamP.V. RawatD.S. 3D QSAR studies on amphiphilic indoles for antimycobacterial activity.J. Biochem. Mol. Toxicol.2021353e2267510.1002/jbt.22675 33347664
    [Google Scholar]
  12. AshokP. LuC.L. ChanderS. ZhengY.T. MurugesanS. Design, synthesis, and biological evaluation of 1‐(thiophen‐2‐yl)‐9 H ‐pyrido[3,4‐ b]indole derivatives as anti‐ HIV ‐1 Agents.Chem. Biol. Drug Des.201585672272810.1111/cbdd.12456 25328020
    [Google Scholar]
  13. El-HussienyM. El-SayedN.F. EwiesE.F. IbrahimN.M. MahranM.R.H. FouadM.A. Synthesis, molecular docking and biological evaluation of 2-(thiophen-2-yl)-1H-indoles as potent HIV-1 non-nucleoside reverse transcriptase inhibitors.Bioorg. Chem.20209510352110.1016/j.bioorg.2019.103521 31884145
    [Google Scholar]
  14. ThanikachalamP.V. MauryaR.K. GargV. MongaV. MongaV. An insight into the medicinal perspective of synthetic analogs of indole: A review.Eur. J. Med. Chem.201918056261210.1016/j.ejmech.2019.07.019 31344615
    [Google Scholar]
  15. MorseG.D. ReichmanR.C. FischlM.A. ParaM. LeedomJ. PowderlyW. DemeterL.M. ResnickL. BassiakosY. TimponeJ. CoxS. BattsD. Concentration-targeted phase I trials of atevirdine mesylate in patients with HIV infection: Dosage requirements and pharmacokinetic studies.Antiviral Res.2000451475810.1016/S0166‑3542(99)00073‑X 10774589
    [Google Scholar]
  16. MargolisD.A. EronJ.J. DeJesusE. WhiteS. WannamakerP. StancilB. JohnsonM. Unexpected finding of delayed-onset seizures in HIV-positive, treatment-experienced subjects in the Phase IIb evaluation of fosdevirine (GSK2248761).Antivir. Ther.2014191697810.3851/IMP2689 24158593
    [Google Scholar]
  17. SuleimanM. HasanA.H. MurugesanS. AmranS.I. JamalisJ. Advances in the synthesis of diarylpyrimidine as potent non-nucleoside reverse transcriptase inhibitors: Biological activities, molecular docking studies and structure-activity relationship: A critical review.Curr. Org. Chem.202327866169110.2174/1385272827666230711173329
    [Google Scholar]
  18. RamsamoojH. PreussC.V. Fluvastatin.Treasure Island, FLStatPearls2017
    [Google Scholar]
  19. BrockG.B. McMahonC.G. ChenK.K. CostiganT. ShenW. WatkinsV. AnglinG. WhitakerS. Efficacy and safety of tadalafil for the treatment of erectile dysfunction: Results of integrated analyses.J. Urol.20021684 Part 11332133610.1016/S0022‑5347(05)64442‑4 12352386
    [Google Scholar]
  20. GalièN. BrundageB.H. GhofraniH.A. OudizR.J. SimonneauG. SafdarZ. ShapiroS. WhiteR.J. ChanM. BeardsworthA. FrumkinL. BarstR.J. Tadalafil therapy for pulmonary arterial hypertension.Circulation2009119222894290310.1161/CIRCULATIONAHA.108.839274 19470885
    [Google Scholar]
  21. BlierP. de MontignyC. TardifD. Effects of the two antidepres-sant drugs mianserin and indalpine on the serotonergic system: Single-cell studies in the rat.Psychopharmacology (Berl.)198484224224910.1007/BF00427453 6438684
    [Google Scholar]
  22. Treatment of migraine attacks with sumatriptan.N. Engl. J. Med.1991325531632110.1056/NEJM199108013250504 1647495
    [Google Scholar]
  23. MajJ. KotodziejczykK. RogóżZ. SkuzaG. Roxindole, a potential antidepressant I. Effect on the dopamine system.J. Neural Transm. (Vienna)1996103562764110.1007/BF01273159 8811507
    [Google Scholar]
  24. LucasS. The pharmacology of indomethacin.Headache201656243644610.1111/head.12769 26865183
    [Google Scholar]
  25. O'BrienM. McCauleyJ. CohenE. Indomethacin.Analytical profiles of drug substances1984Vol. 1321123810.1016/S0099‑5428(08)60192‑6
    [Google Scholar]
  26. RoilaF. Del FaveroA. Ondansetron clinical pharmacokinetics.Clin. Pharmacokinet.19952929510910.2165/00003088‑199529020‑00004 7586904
    [Google Scholar]
  27. HurstM. JarvisB. Perindopril: An updated review of its use in hypertension.Drugs200161686789610.2165/00003495‑200161060‑00020 11398915
    [Google Scholar]
  28. ToddP.A. FittonA. Perindopril. A review of its pharmacological properties and therapeutic use in cardiovascular disorders.Drugs19914219011410.2165/00003495‑199142010‑00006 1718688
    [Google Scholar]
  29. DoanP. KarjalainenA. ChandraseelanJ.G. SandbergO. Yli-HarjaO. RosholmT. FranzenR. CandeiasN.R. KandhaveluM. Synthesis and biological screening for cytotoxic activity of N-substituted indolines and morpholines.Eur. J. Med. Chem.201612029630310.1016/j.ejmech.2016.05.024 27214140
    [Google Scholar]
  30. BillesF. PodeaP.V. Mohammed-ZieglerI. ToşaM. MikoschH. IrimieD.F. Formyl- and acetylindols: Vibrational spectroscopy of an expectably pharmacologically active compound family.Spectrochim. Acta A Mol. Biomol. Spectrosc.20097451031104510.1016/j.saa.2009.08.044 19875329
    [Google Scholar]
  31. MathadaS.B. YernaleG.N. BashaJ.N. The multi‐pharmacological targeted role of Indole and its derivatives: A review.ChemistrySelect202381e20220418110.1002/slct.202204181
    [Google Scholar]
  32. ZhangL.S. DaviesS.S. Microbial metabolism of dietary comp-onents to bioactive metabolites: Opportunities for new therapeutic interventions.Genome Med.2016814610.1186/s13073‑016‑0296‑x 27102537
    [Google Scholar]
  33. Kim, S. PubChem: A Large-Scale Public Chemical Database for Drug Discovery. In: Open Access Databases and Datasets for Drug Discovery; National Library of Medicine, National Institutes of Health: 8600 Rockville Pike, Bethesda, MD 20894, USA20233966
    [Google Scholar]
  34. FatimaA. KhanumG. SharmaA. VermaI. AroraH. Sid-diquiN. JavedS. Experimental spectroscopic, computational, hir-shfeld surface, molecular docking investigations on 1H-Indole-3-Carbaldehyde.Polycycl. Aromat. Compd.20234321263128710.1080/10406638.2022.2026989
    [Google Scholar]
  35. SridarV. MaheswariR. ReddyB. An unusual oxidation of gramine methiodides under NaNO 2/DMF conditions.2001Available from: https://nopr.niscpr.res.in/bitstream/123456789/24283/1/IJCB%2040B(12)%201253-1254.pdf
    [Google Scholar]
  36. MoghadamM. TangestaninejadS. MirkhaniV. Mohammadpoor-baltorkI. SirjanianN. ParandS. Polystyrene-bound Mn(T4PyP): A highly efficient and reusable catalyst for biomimetic oxidative decarboxylation of carboxylic acids with sodium periodate.Bioorg. Med. Chem.20091793394339810.1016/j.bmc.2009.03.038 19359183
    [Google Scholar]
  37. ShiX-X. QuanN. NieL-D. DongJ. ZhuR-H. A green chemistry method for the regeneration of carbonyl compounds from oximes by using cupric chloride dihydrate as a recoverable promoter for hydrolysis.Synlett2011201171028103210.1055/s‑0030‑1259730
    [Google Scholar]
  38. TongkhanS. RadchatawedchakoonW. KruanetrS. SakeeU. Silica-supported ceric ammonium nitrate catalyzed chemoselective formylation of indoles.Tetrahedron Lett.201455293909391210.1016/j.tetlet.2014.04.124
    [Google Scholar]
  39. IshikuraM. ItohT. AbeT. NakamuraS. Cu-mediated oxidat-ive dimerization of skatole to tryptanthrin, an indolo [2, 1-b] quinazolone alkaloid.Heterocycles20159171423142810.3987/COM‑15‑13228
    [Google Scholar]
  40. ChenJ. LiuB. LiuD. LiuS. ChengJ. The copper‐catalyzed C‐3‐formylation of indole C-H bonds using tertiary amines and molecular oxygen.Adv. Synth. Catal.2012354132438244210.1002/adsc.201200345
    [Google Scholar]
  41. El-SawyE. Abo-SalemH. MandourA. 1H-Indole-3-carboxaldehyde: synthesis and reactions.Egypt. J. Chem.2017605723751
    [Google Scholar]
  42. FangW.Y. RavindarL. RakeshK.P. ManukumarH.M. ShantharamC.S. AlharbiN.S. QinH.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review.Eur. J. Med. Chem.201917311715310.1016/j.ejmech.2019.03.063 30995567
    [Google Scholar]
  43. KhaleelC. TabancaN. BuchbauerG. α-Terpineol, a natural monoterpene: A review of its biological properties.Open Chem.201816134936110.1515/chem‑2018‑0040
    [Google Scholar]
  44. KerruN. Singh-PillayA. AwoladeP. SinghP. Current anti-diabetic agents and their molecular targets: A review.Eur. J. Med. Chem.201815243648810.1016/j.ejmech.2018.04.061 29751237
    [Google Scholar]
  45. ChernyshovV.V. PopadyukI.I. YarovayaO.I. SalakhutdinovN.F. Nitrogen-containing heterocyclic compounds obtained from monoterpenes or their derivatives: Synthesis and properties.Top. Curr. Chem. (Cham)202238054210.1007/s41061‑022‑00399‑1 35951263
    [Google Scholar]
  46. AgarwalA. SrivastavaK. PuriS.K. ChauhanP.M.S. Synthesis of substituted indole derivatives as a new class of antimalarial agents.Bioorg. Med. Chem. Lett.200515123133313610.1016/j.bmcl.2005.04.011 15925306
    [Google Scholar]
  47. LakshmiN.V. ThirumuruganP. NoorullaK.M. PerumalP.T. InCl3 mediated one-pot multicomponent synthesis, anti-microbial, antioxidant and anticancer evaluation of 3-pyranyl indole derivatives.Bioorg. Med. Chem. Lett.201020175054506110.1016/j.bmcl.2010.07.039 20675130
    [Google Scholar]
  48. JinG. LeeS. ChoiM. SonS. KimG.W. OhJ.W. LeeC. LeeK. Chemical genetics-based discovery of indole derivatives as HCV NS5B polymerase inhibitors.Eur. J. Med. Chem.20147541342510.1016/j.ejmech.2014.01.062 24561671
    [Google Scholar]
  49. BahekarR.H. JainM.R. GoelA. PatelD.N. PrajapatiV.M. GuptaA.A. JadavP.A. PatelP.R. Design, synthesis, and biolo-gical evaluation of substituted-N-(thieno[2,3-b]pyridin-3-yl)-guani-dines, N-(1H-pyrrolo[2,3-b]pyridin-3-yl)-guanidines, and N-(1H-indol-3-yl)-guanidines.Bioorg. Med. Chem.20071593248326510.1016/j.bmc.2007.02.029 17339113
    [Google Scholar]
  50. MoharebR.M. AhmedH.H. ElmegeedG.A. Abd-ElhalimM.M. ShaficR.W. Development of new indole-derived neuroprotective agents.Bioorg. Med. Chem.20111992966297410.1016/j.bmc.2011.03.031 21493072
    [Google Scholar]
  51. MeanwellN.A. WallaceO.B. WangH. DeshpandeM. PearceB.C. TrehanA. YeungK.S. QiuZ. WrightJ.J.K. RobinsonB.A. GongY.F. WangH.G.H. BlairW.S. ShiP-Y. LinP. LinP.F. Inhibitors of HIV-1 attachment. Part 3: A preliminary sur-vey of the effect of structural variation of the benzamide moiety on antiviral activity.Bioorg. Med. Chem. Lett.200919175136513910.1016/j.bmcl.2009.07.027 19632112
    [Google Scholar]
  52. HallA. BillintonA. BrownS.H. ChowdhuryA. GiblinG.M.P. GoldsmithP. HurstD.N. NaylorA. PatelS. ScoccittiT. TheobaldP.J. Discovery of a novel indole series of EP1 receptor antagonists by scaffold hopping.Bioorg. Med. Chem. Lett.20081882684269010.1016/j.bmcl.2008.03.018 18378447
    [Google Scholar]
  53. SinghP. MittalA. BhardwajA. KaurS. KumarS. 1-toluene-sulfonyl-3-[(3′-hydroxy-5′-substituted)-γ-butyrolactone]-indoles: S-ynthesis, COX-2 inhibition and anti-cancer activities.Bioorg. Med. Chem. Lett.2008181858910.1016/j.bmcl.2007.11.010 18061444
    [Google Scholar]
  54. MadadiN.R. PenthalaN.R. BrentsL.K. FordB.M. PratherP.L. CrooksP.A. Evaluation of (Z)-2-((1-benzyl-1H-indol-3-yl)methylene)-quinuclidin-3-one analogues as novel, high affinity ligands for CB1 and CB2 cannabinoid receptors.Bioorg. Med. Chem. Lett.20132372019202110.1016/j.bmcl.2013.02.025 23466226
    [Google Scholar]
  55. AdamJ.M. CairnsJ. CaulfieldW. CowleyP. CummingI. EassonM. EdwardsD. FergusonM. GoodwinR. JeremiahF. KiyoiT. MistryA. MoirE. MorphyR. TierneyJ. YorkM. BakerJ. CottneyJ.E. HoughtonA.K. WestwoodP.J. WalkerG. Design, synthesis, and structure–activity relationships of indole-3-carboxamides as novel water soluble cannabinoid CB1 receptor agonists.MedChemComm201011546010.1039/c0md00022a
    [Google Scholar]
  56. GallantM. DufresneC. GareauY. GuayD. LeblancY. PrasitP. RochetteC. SawyerN. SlipetzD.M. TremblayN. MettersK.M. LabelleM. New class of potent ligands for the human peripheral cannabinoid receptor.Bioorg. Med. Chem. Lett.19966192263226810.1016/0960‑894X(96)00426‑X
    [Google Scholar]
  57. LiJ. SiR. ZhangQ. LiY. ZhangJ. ShanY. Novel indole-guanidine hybrids as potential anticancer agents: Design, synthesis and biological evaluation.Chem. Biol. Interact.202236811024210.1016/j.cbi.2022.110242 36326519
    [Google Scholar]
  58. TiwariS. KirarS. BanerjeeU.C. NeerupudiK.B. SinghS. WaniA.A. BharatamP.V. SinghI.P. Synthesis of N-substituted indole derivatives as potential antimicrobial and antileishmanial agents.Bioorg. Chem.20209910378710.1016/j.bioorg.2020.103787 32251947
    [Google Scholar]
  59. Claudio Viegas-Junior,; Danuello, A.; da Silva Bolzani, V.; Bar-reiro, E.J.; Fraga, C.A. Molecular hybridization: A useful tool in the design of new drug prototypes.Curr. Med. Chem.200714171829185210.2174/092986707781058805 17627520
    [Google Scholar]
  60. BérubéG. An overview of molecular hybrids in drug discovery.Expert Opin. Drug Discov.201611328130510.1517/17460441.2016.1135125 26727036
    [Google Scholar]
  61. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  62. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  63. ChengF. admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties.J. Chem. Inf. Model.201259114959
    [Google Scholar]
  64. PerwinA. MazumdarN. Synthesis of N‐Acyl Indole‐3‐carboxaldehyde derivatives and polyvinyl alcohol acetalization with 1‐Propionylindole‐3‐Carboxaldehyde.ChemistrySelect2024918e20240016910.1002/slct.202400169
    [Google Scholar]
  65. GaurA. PeerzadaM.N. KhanN.S. AliI. AzamA. Synthesis and anticancer evaluation of novel indole based arylsulfonylh-ydrazides against human breast cancer cells.ACS Omega2022746420364204310.1021/acsomega.2c03908 36440122
    [Google Scholar]
  66. GeorgeG. AutiP.S. PaulA.T. Design, synthesis, in silico molecular modelling studies and biological evaluation of novel indole-thiazolidinedione hybrid analogues as potential pancreatic lipase inhibitors.New J. Chem.20214531381139410.1039/D0NJ05649A
    [Google Scholar]
  67. YadavM. LalK. KumarA. KumarA. KumarD. Indole-chalcone linked 1,2,3-triazole hybrids: Facile synthesis, antimicrobial evaluation and docking studies as potential antimicrobial agents.J. Mol. Struct.2022126113286710.1016/j.molstruc.2022.132867
    [Google Scholar]
  68. GordonC.P. Venn-BrownB. RobertsonM.J. YoungK.A. ChauN. MarianaA. WhitingA. ChircopM. RobinsonP.J. McCluskeyA. Development of second-generation indole-based dynamin GTPase inhibitors.J. Med. Chem.2013561465910.1021/jm300844m 23167654
    [Google Scholar]
  69. ChopparaP. BethuM.S. Vara PrasadY. Venkateswara RaoJ. Uday RanjanT.J. Siva PrasadG.V. DoradlaR. MurthyY.L.N. Synthesis, characterization and cytotoxic investigations of novel bis(indole) analogues besides antimicrobial study.Arab. J. Chem.20191282721273110.1016/j.arabjc.2015.05.015
    [Google Scholar]
  70. KarimabadM.N. MahmoodiM. JafarzadehA. DarehkordiA. HajizadehM.R. KhorramdelazadH. Falahati-pourS.K. HassanshahiG. The novel Indole-3-formaldehyde (2-AITFEI-3-F) is involved in processes of apoptosis induction?Life Sci.2017181314410.1016/j.lfs.2017.05.026 28549559
    [Google Scholar]
  71. DarehkordiA. RahmaniF. HashemiV. Synthesis of new triflu-oromethylated indole derivatives.Tetrahedron Lett.201354354689469210.1016/j.tetlet.2013.06.093
    [Google Scholar]
  72. LeeJ.S. JungW.K. JeongM.H. YoonT.R. KimH.K. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway.Int. J. Toxicol.2012311707710.1177/1091581811423845 22215411
    [Google Scholar]
  73. AlfieriM.L. PanzellaL. d’IschiaM. NapolitanoA. Bioin-spired heterocyclic partnership in a cyanine-type acidichromic chromophore.Molecules20202517381710.3390/molecules25173817 32839420
    [Google Scholar]
  74. AnjirwalaS.N. PatelS.K. Ceric ammonium nitrate catalyzed one-pot three-component microwave-assisted synthesis of indole-substituted fused pyrimidine and pyridine derivatives.Tetrahedron202415513388310.1016/j.tet.2024.133883
    [Google Scholar]
  75. LalK. YadavP. Green synthesis and antibacterial evaluation of isatin-oxime-triazole conjugates.Chem Biol Interface.201664234242
    [Google Scholar]
  76. KirarS. ThakurN.S. LahaJ.K. BhaumikJ. BanerjeeU.C. Development of gelatin nanoparticle-based biodegradable Phototheranostic agents: Advanced system to treat infectious diseases.ACS Biomater. Sci. Eng.20184247348210.1021/acsbiomaterials.7b00751 33418737
    [Google Scholar]
  77. EL-Gammal, O.A.; Alshater, H.; El-Boraey, H.A. Schiff base metal complexes of 4-methyl-1H-indol-3-carbaldehyde derivative as a series of potential antioxidants and antimicrobial: Synthesis, spectroscopic characterization and 3D molecular modeling.J. Mol. Struct.2019119522023010.1016/j.molstruc.2019.05.101
    [Google Scholar]
  78. LamieP.F. AliW.A.M. BazgierV. RárováL. Novel N-substituted indole Schiff bases as dual inhibitors of cycloox-ygenase-2 and 5-lipoxygenase enzymes: Synthesis, biological activities in vitro and docking study.Eur. J. Med. Chem.201612380381310.1016/j.ejmech.2016.08.013 27541263
    [Google Scholar]
  79. ParthibanA. SivasankarR. RajdevB. AshaR.N. JeyakumarT.C. PeriakaruppanR. NaiduV.G.M. Synthesis, in vitro, in silico and DFT studies of indole curcumin derivatives as potential anticancer agents.J. Mol. Struct.2022127013388510.1016/j.molstruc.2022.133885
    [Google Scholar]
  80. BandgarB.P. KinkarS.N. ChavanH.V. JaldeS.S. ShaikhR.U. GaccheR.N. Synthesis and biological evaluation of asymmetric indole curcumin analogs as potential anti-inflammatory and antioxidant agents.J. Enzyme Inhib. Med. Chem.201429171110.3109/14756366.2012.743536 23356406
    [Google Scholar]
  81. SachithanandamV. LalithaP. ParthibanA. MuthukumaranJ. JainM. MisraR. MageswaranT. SridharR. PurvajaR. RameshR. A comprehensive in silico and in vitro studies on quinizarin: A promising phytochemical derived from Rhizophora mucronata Lam.J. Biomol. Struct. Dyn.202240167218722910.1080/07391102.2021.1894983 33682626
    [Google Scholar]
  82. ZhaoZ. WolkenbergS.E. LuM. MunshiV. MoyerG. FengM. CarellaA.V. EctoL.T. GabryelskiL.J. LaiM-T. PrasadS.G. YanY. McGaugheyG.B. MillerM.D. LindsleyC.W. HartmanG.D. VaccaJ.P. WilliamsT.M. WilliamsT.M. Novel indole-3-sulfonamides as potent HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs).Bioorg. Med. Chem. Lett.200818255455910.1016/j.bmcl.2007.11.085 18083561
    [Google Scholar]
  83. DoussonC. AlexandreF.R. AmadorA. BonaricS. BotS. CailletC. ConvardT. da CostaD. LioureM.P. RolandA. RosinovskyE. MaldonadoS. ParsyC. TrochetC. StorerR. StewartA. WangJ. MayesB.A. MusiuC. PoddesuB. VargiuL. LiuzziM. MoussaA. JakubikJ. HubbardL. SeiferM. StandringD. Discovery of the aryl-phospho-indole IDX899, a highly potent anti-HIV non-nucleoside reverse transcriptase inhibitor.J. Med. Chem.20165951891189810.1021/acs.jmedchem.5b01430 26804933
    [Google Scholar]
  84. D’CruzO.J. QaziS. YivS. UckunF.M. A novel vaginal microbicide containing the rationally designed anti-HIV compound HI-443 (N′-[2-(2-thiophene)ethyl]-N′-[2-(5-bromopyridyl)] thiou-rea]).Expert Opin. Investig. Drugs201221326527910.1517/13543784.2012.655422 22292483
    [Google Scholar]
  85. BoniniC. ChiummientoL. BonisM.D. FunicelloM. LupattelliP. SuannoG. BertiF. CampanerP. Synthesis, biological activity and modelling studies of two novel anti HIV PR inhibitors with a thiophene containing hydroxyethylamino core.Tetrahedron200561276580658910.1016/j.tet.2005.04.048
    [Google Scholar]
  86. UckunF.M. TibblesH.E. VenkatachalamT.K. ErbeckD. In vivo pharmacokinetics, metabolism, toxicity, and anti-HIV activity of N′-[2-(2-Thiophene)ethyl]-N′-[2-(5-bromopyridyl)]thiourea (HI-443), a potent non-nucleoside inhibitor of HIV reverse transcr-iptase.Arzneimittelforschung2007577483496 17803063
    [Google Scholar]
  87. HafezT.S. Organophosphorus chemistry, 36 [1] reactions of furobenzopyran-6-carboxaldehydes with alkyl phosphites and ylidenetriphenylphosphoranes.Egypt. J. Chem.2007Special Issue4558
    [Google Scholar]
  88. EwiesE.F. ElsayedN.F. BoulosL.S. SolimanA-M.M. Synthesis of novel 1, 2-diphenylpyrrole derivatives using organophosphorus reagents and their antitumour activities.J. Chem. Res.201438632533010.3184/174751914X13976652851990
    [Google Scholar]
  89. FernandezI. GalvezC. UrpiL. Synthesis of 3-VINYL-2-ARYL (HETEROARYL) IndolesAnnals of chemistry Real soc espan chemistry faculty of chemical physics ciudad univ: madrid, spain,1991
    [Google Scholar]
  90. CadoganJ.I.G. Organophosphorus reagents in organic synthesis.Academic Press1979
    [Google Scholar]
  91. LemsterT. PindurU. LengletG. DepauwS. DassiC. David-CordonnierM.H. Photochemical electrocyclisation of 3-vinylindoles to pyrido[2,3-a]-, pyrido[4,3-a]- and thieno[2,3-a]-carbazoles: Design, synthesis, DNA binding and antitumor cell cytotoxicity.Eur. J. Med. Chem.20094483235325210.1016/j.ejmech.2009.03.026 19386396
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575351704241120060746
Loading
/content/journals/mrmc/10.2174/0113895575351704241120060746
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bioactivity; drug design; halogenation; indole; Indole-3-carboxaldehyde; triazoles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test