Skip to content
2000
Volume 25, Issue 6
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

The use of biomaterials in treating and managing chronic wounds represents a significant challenge in global healthcare due to the complex nature of these wounds, which are slow to heal and can lead to complications such as frequent infections and diminished quality of life for patients. Chronic wounds, which can arise from conditions like diabetes, poor circulation, and pressure sores, pose distinct challenges in wound care, necessitating the development of specialized dressings. The pathophysiology of chronic wounds is thoroughly examined in this article, with particular attention paid to the cellular and molecular defects at work and the therapeutic guidelines. It also identifies key issues in the field, such as biocompatibility, cost-effectiveness, immune reactions, and regulatory obstacles, while suggesting future research focuses on improving biocompatibility, integrating drug delivery systems, and exploring cellular treatments. Ethical implications, such as patient safety, informed consent, and equitable access to technology, are also discussed. Finally, this review highlights the transformative potential of biomaterials in chronic wound management, urging for continued research and clinical integration to fully harness their capabilities in improving patient care.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575314580241121080256
2025-01-07
2025-10-05
Loading full text...

Full text loading...

References

  1. Cañedo-DorantesL. Cañedo-AyalaM. Skin acute wound healing: A comprehensive review.Int. J. Inflamm.2019201911510.1155/2019/3706315
    [Google Scholar]
  2. SchultzG.S. ChinG.A. MoldawerL. DiegelmannR.F. Principles of wound healing. In: Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists.University of Adelaide Press201110.1017/UPO9781922064004.024
    [Google Scholar]
  3. SingerA.J. Healing mechanisms in cutaneous wounds: Tipping the balance.Tissue Eng. Part B Rev.20222851151116710.1089/ten.teb.2021.0114
    [Google Scholar]
  4. GuoS. DiPietroL.A. Factors affecting wound healing.J. Dent. Res.201089321922910.1177/0022034509359125
    [Google Scholar]
  5. BowersS. FrancoE. Chronic wounds: Evaluation and management.Am. Fam. Physician20201013159166
    [Google Scholar]
  6. SenC.K. GordilloG.M. RoyS. KirsnerR. LambertL. HuntT.K. GottrupF. GurtnerG.C. LongakerM.T. Human skin wounds: A major and snowballing threat to public health and the economy.Wound Repair Regen.200917676377110.1111/j.1524‑475X.2009.00543.x
    [Google Scholar]
  7. SingerA.J. ClarkR.A.F. Cutaneous wound healing.N. Engl. J. Med.19993411073874610.1056/NEJM199909023411006
    [Google Scholar]
  8. HanG. CeilleyR. Chronic wound healing: A review of current management and treatments.Adv. Ther.201734359961010.1007/s12325‑017‑0478‑y
    [Google Scholar]
  9. VevesA. FalangaV. ArmstrongD.G. SabolinskiM.L. Graftskin, a human skin equivalent, is effective in the management of noninfected neuropathic diabetic foot ulcers.Diabetes Care200124229029510.2337/diacare.24.2.290
    [Google Scholar]
  10. LiQ. WangD. JiangZ. LiR. XueT. LinC. DengY. JinY. SunB. Advances of hydrogel combined with stem cells in promoting chronic wound healing.Front Chem.202210103883910.3389/fchem.2022.1038839
    [Google Scholar]
  11. MakrantonakiE. WlaschekM. Scharffetter‐KochanekK. Pathogenesis of wound healing disorders in the elderly.J. Dtsch. Dermatol. Ges.2017153255275
    [Google Scholar]
  12. VigK. ChaudhariA. TripathiS. DixitS. SahuR. PillaiS. DennisV. SinghS. Advances in skin regeneration using tissue engineering.Int. J. Mol. Sci.201718478910.3390/ijms18040789
    [Google Scholar]
  13. ZhangX. ShuW. YuQ. QuW. WangY. LiR. Functional biomaterials for treatment of chronic wound.Front. Bioeng. Biotechnol.2020851610.3389/fbioe.2020.00516
    [Google Scholar]
  14. FalangaV. IsseroffR.R. SoulikaA.M. RomanelliM. MargolisD. KappS. GranickM. HardingK. Chronic wounds.Nat. Rev. Dis. Primers2022815010.1038/s41572‑022‑00377‑3
    [Google Scholar]
  15. BurgessJ.L. WyantW.A. Abdo AbujamraB. KirsnerR.S. JozicI. Diabetic wound-healing science.Medicina (Kaunas)20215710107210.3390/medicina57101072
    [Google Scholar]
  16. WuX. LiuR. LaoT.T. Therapeutic compression materials and wound dressings for chronic venous insufficiency: A comprehensive review.J. Biomed. Mater. Res. B Appl. Biomater.2020108389290910.1002/jbm.b.34443
    [Google Scholar]
  17. MervisJ.S. PhillipsT.J. Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation.J. Am. Acad. Dermatol.201981488189010.1016/j.jaad.2018.12.069
    [Google Scholar]
  18. PowersJ.G. MortonL.M. PhillipsT.J. Dressings for chronic wounds.Dermatol. Ther. 201326319720610.1111/dth.12055
    [Google Scholar]
  19. HuntM. TorresM. Bachar-WikströmE. WikströmJ.D. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis.Front. Cell Dev. Biol.202311125231810.3389/fcell.2023.1252318
    [Google Scholar]
  20. RidiandriesA. TanJ.T.M. BursillC.A. The role of chemokines in wound healing.Int. J. Mol. Sci.20181910321710.3390/ijms19103217
    [Google Scholar]
  21. LiD. PengH. QuL. SommarP. WangA. ChuT. LiX. BiX. LiuQ. Gallais SérézalI. RollmanO. LohcharoenkalW. ZhengX. Eliasson AngelstigS. GrünlerJ. PivarcsiA. SonkolyE. CatrinaS.B. XiaoC. StåhleM. MiQ.S. ZhouL. Xu LandénN. miR-19a/b and miR-20a promote wound healing by regulating the inflammatory response of keratinocytes.J. Invest. Dermatol.2021141365967110.1016/j.jid.2020.06.037
    [Google Scholar]
  22. RaziyevaK. KimY. ZharkinbekovZ. KassymbekK. JimiS. SaparovA. Immunology of acute and chronic wound healing.Biomolecules202111570010.3390/biom11050700
    [Google Scholar]
  23. GraingerD.W. The Williams Dictionary of BiomaterialsLiverpool University Press1999322910.5949/UPO9781846314438
    [Google Scholar]
  24. RatnerBuddy.D. HoffmanA.S. SchoenF.J. LemonsJ.E. Biomaterials Science: An Introduction to Materials in Medicine.Elsevier 3rd ed.201210.1016/B978‑0‑08‑087780‑8.00148‑0
    [Google Scholar]
  25. LangerR. New methods of drug delivery.Science1979249497615271533
    [Google Scholar]
  26. BasakS. BasakA. Proteins and proteases of Prader–Willi syndrome: A comprehensive review and perspectives.Biosci. Rep.2022426BSR2022061010.1042/BSR20220610
    [Google Scholar]
  27. WoodburyS.M. SwansonW.B. MishinaY. Mechanobiology-informed biomaterial and tissue engineering strategies for influencing skeletal stem and progenitor cell fate.Front. Physiol.202314122055510.3389/fphys.2023.1220555
    [Google Scholar]
  28. DanielM. BedouiY. VagnerD. RaffrayL. Ah-PineF. DorayB. GasqueP. Pathophysiology of sepsis and genesis of septic shock: The critical role of mesenchymal stem cells (MSCs).Int. J. Mol. Sci.20222316927410.3390/ijms23169274
    [Google Scholar]
  29. SwolanaD. KępaM. Kruszniewska-RajsC. WojtyczkaR.D. Antibiofilm effect of silver nanoparticles in changing the biofilm-related gene expression of Staphylococcus epidermidis.Int. J. Mol. Sci.20222316925710.3390/ijms23169257
    [Google Scholar]
  30. ShinA. VazmitselY. ConnollyS. KabytaevK. Comprehensive profiling and kinetic studies of glycated lysine residues in human serum albumin.Anal. Bioanal. Chem.2022414174861487510.1007/s00216‑022‑04108‑1
    [Google Scholar]
  31. SamirA. AshourF.H. HakimA.A.A. BassyouniM. Recent advances in biodegradable polymers for sustainable applications.NPJ Mater. Degrad.202266810.1038/s41529‑022‑00277‑7
    [Google Scholar]
  32. FrischE. ClavierL. BelhamdiA. VranaN.E. LavalleP. FrischB. HeurtaultB. GribovaV. Preclinical in vitro evaluation of implantable materials: conventional approaches, new models and future directions.Front. Bioeng. Biotechnol.202311119320410.3389/fbioe.2023.1193204
    [Google Scholar]
  33. TanS.T. WinartoN. DosanR. AisyahP.B. The benefits of occlusive dressings in wound healing.Open Dermatol. J.2019131273310.2174/1874372201913010027
    [Google Scholar]
  34. DissemondJ. AssenheimerB. GerberV. KurzP. LäuchliS. PanfilE.M. ProbstS. TraberJ. StrohalR. Lokaltherapie chronischer Wunden: Das M.O.I.S.T.Konzept. Dtsch. Med. Wochenschr.2023148740040510.1055/a‑1987‑4999
    [Google Scholar]
  35. Maaz ArifM. KhanS.M. GullN. TabishT.A. ZiaS. Ullah KhanR. AwaisS.M. Arif ButtM. Polymer-based biomaterials for chronic wound management: Promises and challenges.Int. J. Pharm.202159812027010.1016/j.ijpharm.2021.120270
    [Google Scholar]
  36. DissemondJ. AssenheimerB. EngelsP. GerberV. KrögerK. KurzP. LäuchliS. ProbstS. ProtzK. TraberJ. UttenweilerS. Strohal, R. M.O.I.S.T. – a concept for the topical treatment of chronic wounds. JDDG.J. Dtsch. Dermatol. Ges.2017154443445
    [Google Scholar]
  37. DissemondJ. BültemannA. GerberV. JägerB. KrögerK. MünterC. Diagnosis and treatment of chronic wounds: current standards of Germany’s Initiative for Chronic Wounds e. V.J. Wound Care2017261272773210.12968/jowc.2017.26.12.727
    [Google Scholar]
  38. MurrayR.Z. WestZ.E. CowinA.J. FarrugiaB.L. Development and use of biomaterials as wound healing therapiesBurns Trauma20197s41038-018-0139-710.1186/s41038‑018‑0139‑7
    [Google Scholar]
  39. AsadiN. Pazoki-ToroudiH. Del BakhshayeshA.R. AkbarzadehA. DavaranS. AnnabiN. Multifunctional hydrogels for wound healing: Special focus on biomacromolecular based hydrogels.Int. J. Biol. Macromol.202117072875010.1016/j.ijbiomac.2020.12.202
    [Google Scholar]
  40. WangT. GuQ. ZhaoJ. MeiJ. ShaoM. PanY. ZhangJ. WuH. ZhangZ. LiuF. Calcium alginate enhances wound healing by up-regulating the ratio of collagen types I/III in diabetic rats.Int. J. Clin. Exp. Pathol.20158666366645
    [Google Scholar]
  41. Mathew-SteinerS.S. RoyS. SenC.K. Collagen in wound healing.Bioengineering (Basel)2021856310.3390/bioengineering8050063
    [Google Scholar]
  42. GrahamC. The role of silver in wound healing.British. J. Nurs.200514S5S22S2810.12968/bjon.2005.14.Sup5.19954
    [Google Scholar]
  43. PetrieK. CoxC.T. BeckerB.C. MacKayB.J. Clinical applications of acellular dermal matrices: A review.Scars. Burn. Heal.202282059513121103831310.1177/20595131211038313
    [Google Scholar]
  44. NguyenH.M. Ngoc LeT.T. NguyenA.T. Thien LeH.N. PhamT.T. Biomedical materials for wound dressing: recent advances and applications.RSC Advances20231385509552810.1039/D2RA07673J
    [Google Scholar]
  45. KhanA. AlamryK.A. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review.Carbohydr. Res.202150610836810.1016/j.carres.2021.108368
    [Google Scholar]
  46. FrykbergR.G. BanksJ. Challenges in the treatment of chronic wounds.Adv. Wound Care (New Rochelle)20154956058210.1089/wound.2015.0635
    [Google Scholar]
  47. HardwickeJ. SchmaljohannD. BoyceD. ThomasD. Epidermal growth factor therapy and wound healing — past, present and future perspectives.Surgeon20086317217710.1016/S1479‑666X(08)80114‑X
    [Google Scholar]
  48. RobsonM.C. MustoeT.A. HuntT.K. The future of recombinant growth factors in wound healing.Am. J. Surg.1998176280S82S10.1016/S0002‑9610(98)00186‑X
    [Google Scholar]
  49. BootsA.W. HaenenG.R.M.M. BastA. Health effects of quercetin: From antioxidant to nutraceutical.Eur. J. Pharmacol.20085852-332533710.1016/j.ejphar.2008.03.008
    [Google Scholar]
  50. BreussJ.M. AtanasovA.G. UhrinP. Resveratrol and its effects on the vascular system.Int. J. Mol. Sci.2019207152310.3390/ijms20071523
    [Google Scholar]
  51. Chainani-WuN. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa).J. Altern. Complement. Med.20039116116810.1089/107555303321223035
    [Google Scholar]
  52. JohnsonT.O. ErmolieffJ. JirousekM.R. Protein tyrosine phosphatase 1B inhibitors for diabetes.Nat. Rev. Drug Discov.20021969670910.1038/nrd895
    [Google Scholar]
  53. GurtnerG.C. WernerS. BarrandonY. LongakerM.T. Wound repair and regeneration.Nature2008453719331432110.1038/nature07039
    [Google Scholar]
  54. CalderP.C. Omega‐3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?Br. J. Clin. Pharmacol.201375364566210.1111/j.1365‑2125.2012.04374.x
    [Google Scholar]
  55. BennettC.F. Therapeutic antisense oligonucleotides are coming of age.Annu. Rev. Med.201970130732110.1146/annurev‑med‑041217‑010829
    [Google Scholar]
  56. HuangS. IngberD.E. The structural and mechanical complexity of cell-growth control.Nat. Cell Biol.199915E131E13810.1038/13043
    [Google Scholar]
  57. TooleB.P. Hyaluronan: from extracellular glue to pericellular cue.Nat. Rev. Cancer20044752853910.1038/nrc1391
    [Google Scholar]
  58. GhilardiS.J. O’ReillyB.M. SgroA.E. Intracellular signaling dynamics and their role in coordinating tissue repair.Wiley Interdiscip. Rev. Syst. Biol. Med.2020123e147910.1002/wsbm.1479
    [Google Scholar]
  59. KiritsiD. NyströmA. The role of TGFβ in wound healing pathologies.Mech. Ageing Dev.2018172515810.1016/j.mad.2017.11.004
    [Google Scholar]
  60. RamirezH. PatelS.B. PastarI. The role of tgfβ signaling in wound epithelialization.Adv. Wound Care (New Rochelle)20143748249110.1089/wound.2013.0466
    [Google Scholar]
  61. LiarteS. Bernabé-GarcíaÁ. NicolásF.J. Role of tgf-β in skin chronic wounds: a keratinocyte perspective.Cells20209230610.3390/cells9020306
    [Google Scholar]
  62. BarrosJ.F. WaclawiakI. PecliC. BorgesP.A. GeorgiiJ.L. Ramos-JuniorE.S. CanettiC. CourauT. KlatzmannD. KunkelS.L. PenidoC. CantoF.B. BenjamimC.F. Role of chemokine receptor ccr4 and regulatory t cells in wound healing of diabetic mice.J. Invest. Dermatol.201913951161117010.1016/j.jid.2018.10.039
    [Google Scholar]
  63. FigueiredoA. LealE.C. CarvalhoE. Protein tyrosine phosphatase 1B inhibition as a potential therapeutic target for chronic wounds in diabetes.Pharmacol. Res.202015910497710.1016/j.phrs.2020.104977
    [Google Scholar]
  64. BuckleyD.A. ChengA. KielyP.A. TremblayM.L. O’ConnorR. Regulation of insulin-like growth factor type i (igf-i) receptor kinase activity by protein tyrosine phosphatase 1b (ptp-1b) and enhanced igf-i-mediated suppression of apoptosis and motility in ptp-1b-deficient fibroblasts.Mol. Cell. Biol.20022271998201010.1128/MCB.22.7.1998‑2010.2002
    [Google Scholar]
  65. TiganisT. BennettA.M. Protein tyrosine phosphatase function: the substrate perspective.Biochem. J.2007402111510.1042/BJ20061548
    [Google Scholar]
  66. ShakhakarmiK. SeoJ.E. LamichhaneS. ThapaC. LeeS. EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies.Arch. Pharm. Res.202346429932210.1007/s12272‑023‑01444‑3
    [Google Scholar]
  67. ChenM.R. DragooJ.L. The effect of nonsteroidal anti-inflammatory drugs on tissue healing.Knee Surg. Sports Traumatol. Arthrosc.201321354054910.1007/s00167‑012‑2095‑2
    [Google Scholar]
  68. KosaricN. KiwanukaH. GurtnerG.C. Stem cell therapies for wound healing.Expert Opin. Biol. Ther.201919657558510.1080/14712598.2019.1596257
    [Google Scholar]
  69. ZhangL. TizardI.R. Activation of a mouse macrophage cell line by acemannan: The major carbohydrate fraction from Aloe vera gel.Immunopharmacology199635211912810.1016/S0162‑3109(96)00135‑X
    [Google Scholar]
  70. LiuC. CuiY. PiF. ChengY. GuoY. QianH. Extraction, purification, structural characteristics, biological activities and pharmacological applications of acemannan, a polysaccharide from Aloe vera: A Review.Molecules2019248155410.3390/molecules24081554
    [Google Scholar]
  71. TamJ.C.W. KoC.H. LauK.M. ToM.H. KwokH.F. ChanY.W. SiuW.S. Etienne-SelloumN. LauC.P. ChanW.Y. LeungP.C. FungK.P. Schini-KerthV.B. LauC.B.S. A Chinese 2-herb formula (NF3) promotes hindlimb ischemia-induced neovascularization and wound healing of diabetic rats.J. Diabetes Complications201428443644710.1016/j.jdiacomp.2014.03.004
    [Google Scholar]
  72. ZhangQ. FongC.C. YuW.K. ChenY. WeiF. KoonC.M. LauK.M. LeungP.C. LauC.B.S. FungK.P. YangM. Herbal formula Astragali radix and Rehmanniae radix exerted wound healing effect on human skin fibroblast cell line Hs27 via the activation of transformation growth factor (TGF-β) pathway and promoting extracellular matrix (ECM) deposition.Phytomedicine201220191610.1016/j.phymed.2012.09.006
    [Google Scholar]
  73. ZengZ. ZhuB.H. Arnebin-1 promotes the angiogenesis of human umbilical vein endothelial cells and accelerates the wound healing process in diabetic rats.J. Ethnopharmacol.2014154365366210.1016/j.jep.2014.04.038
    [Google Scholar]
  74. RannehY. AkimA.M. HamidH.A. KhazaaiH. FadelA. ZakariaZ.A. AlbujjaM. BakarM.F.A. Honey and its nutritional and anti-inflammatory value.BMC Complement. Med. Ther.20212113010.1186/s12906‑020‑03170‑5
    [Google Scholar]
  75. MartonL.T. Pescinini-e-SalzedasL.M. CamargoM.E.C. BarbalhoS.M. HaberJ.F dos S. SinatoraR.V. DetregiachiC.R.P. GirioR.J.S. BuchaimD.V. Cincotto dos Santos Bueno P. The effects of curcumin on diabetes mellitus: A systematic review.Front. Endocrinol.2021669448
    [Google Scholar]
  76. PriyadarsiniK. The chemistry of curcumin: From extraction to therapeutic agent.Molecules20141912200912011210.3390/molecules191220091
    [Google Scholar]
  77. RujirachotiwatA. SuttamanatwongS. Curcumin upregulates transforming growth factor-β1, its receptors, and vascular endothelial growth factor expressions in an in vitro human gingival fibroblast wound healing model.BMC Oral Health202121153510.1186/s12903‑021‑01890‑9
    [Google Scholar]
  78. ShahA. Amini-NikS. The role of phytochemicals in the inflammatory phase of wound healing.Int. J. Mol. Sci.2017185106810.3390/ijms18051068
    [Google Scholar]
  79. JohnsonJ.B. BroszczakD.A. ManiJ.S. AnesiJ. NaikerM. A cut above the rest: oxidative stress in chronic wounds and the potential role of polyphenols as therapeutics.J. Pharm. Pharmacol.202274448550210.1093/jpp/rgab038
    [Google Scholar]
  80. LiuX. LeeP. HoC. LuiV.C.H. ChenY. CheC. TamP.K.H. WongK.K.Y. Silver nanoparticles mediate differential responses in keratinocytes and fibroblasts during skin wound healing.ChemMedChem20105346847510.1002/cmdc.200900502
    [Google Scholar]
  81. VijayakumarV. SamalS.K. MohantyS. NayakS.K. Recent advancements in biopolymer and metal nanoparticle-based materials in diabetic wound healing management.Int. J. Biol. Macromol.201912213714810.1016/j.ijbiomac.2018.10.120
    [Google Scholar]
  82. DydakK. JunkaA. DydakA. BrożynaM. PalecznyJ. FijalkowskiK. KubielasG. AniołekO. BartoszewiczM. In vitro efficacy of bacterial cellulose dressings chemisorbed with antiseptics against biofilm formed by pathogens isolated from chronic wounds.Int. J. Mol. Sci.2021228399610.3390/ijms22083996
    [Google Scholar]
  83. WangL. LiJ. XiongY. WuY. YangF. GuoY. ChenZ. GaoL. DengW. Ultrashort peptides and hyaluronic acid-based injectable composite hydrogels for sustained drug release and chronic diabetic wound healing.ACS Appl. Mater. Interfaces20211349583295833910.1021/acsami.1c16738
    [Google Scholar]
  84. AlizadehgiashiM. NemrC.R. ChekiniM. Pinto RamosD. MittalN. AhmedS.U. KhuuN. KelleyS.O. KumachevaE. Multifunctional 3d-printed wound dressings.ACS Nano2021157123751238710.1021/acsnano.1c04499
    [Google Scholar]
  85. NdlovuS.P. AlvenS. HlalisaK. AderibigbeB.A. Cellulose acetate-based wound dressings loaded with bioactive agents: potential scaffolds for wound dressing and skin regeneration.Curr. Drug Deliv.202321
    [Google Scholar]
  86. LeeK.Y. MooneyD.J. Alginate: Properties and biomedical applications.Prog. Polym. Sci.201237110612610.1016/j.progpolymsci.2011.06.003
    [Google Scholar]
  87. UenoH. YamadaH. TanakaI. KabaN. MatsuuraM. OkumuraM. KadosawaT. FujinagaT. Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs.Biomaterials199920151407141410.1016/S0142‑9612(99)00046‑0
    [Google Scholar]
  88. FirlarI. AltunbekM. McCarthyC. RamalingamM. Camci-UnalG. Functional hydrogels for treatment of chronic wounds.Gels20228212710.3390/gels8020127
    [Google Scholar]
  89. ShuW. WangY. ZhangX. LiC. LeH. ChangF. Functional hydrogel dressings for treatment of burn wounds.Front. Bioeng. Biotechnol.2021978846110.3389/fbioe.2021.788461
    [Google Scholar]
  90. YegappanR. SelvaprithivirajV. AmirthalingamS. JayakumarR. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing.Carbohydr. Polym.201819838540010.1016/j.carbpol.2018.06.086
    [Google Scholar]
  91. JaipanP. NguyenA. NarayanR.J. Gelatin-based hydrogels for biomedical applications.MRS Commun.20177341642610.1557/mrc.2017.92
    [Google Scholar]
  92. TracyL.E. MinasianR.A. CatersonE.J. Extracellular matrix and dermal fibroblast function in the healing wound.Adv. Wound Care (New Rochelle)20165311913610.1089/wound.2014.0561
    [Google Scholar]
  93. KonopM. RybkaM. DrapałaA. Keratin biomaterials in skin wound healing, an old player in modern medicine: a mini review.Pharmaceutics20211312202910.3390/pharmaceutics13122029
    [Google Scholar]
  94. SpotnitzW.D. Fibrin sealant: the only approved hemostat, sealant, and adhesive—a laboratory and clinical perspective.ISRN Surg.2014201412810.1155/2014/203943
    [Google Scholar]
  95. SrivastavaC.M. PurwarR. GuptaA.P. Enhanced potential of biomimetic, silver nanoparticles functionalized Antheraea mylitta (tasar) silk fibroin nanofibrous mats for skin tissue engineering.Int. J. Biol. Macromol.201913043745310.1016/j.ijbiomac.2018.12.255
    [Google Scholar]
  96. BlauR.P. GreenbergS. LorfelR. SugarH.S. Polyglycolic acid suture in strabismus surgery.Arch. Ophthalmol.197593753853910.1001/archopht.1975.01010020554015
    [Google Scholar]
  97. RoyI. OhulchanskyyT.Y. PudavarH.E. BergeyE.J. OseroffA.R. MorganJ. DoughertyT.J. PrasadP.N. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug−carrier system for photodynamic therapy.J. Am. Chem. Soc.2003125267860786510.1021/ja0343095
    [Google Scholar]
  98. ChenC.F. ChenS.H. ChenR.F. LiuK.F. KuoY.R. WangC.K. LeeT.M. WangY.H. A Multifunctional polyethylene glycol/triethoxysilane-modified polyurethane foam dressing with high absorbency and antiadhesion properties promotes diabetic wound healing.Int. J. Mol. Sci.202324151250610.3390/ijms241512506
    [Google Scholar]
  99. O’BrienL. JonesD.J. Silicone gel sheeting for preventing and treating hypertrophic and keloid scars.Cochrane Libr.201310.1002/14651858.CD003826.pub3
    [Google Scholar]
  100. UdreaA.M. PuiaA. ShaposhnikovS. AvramS. Computational approaches of new perspectives in the treatment of depression during pregnancy.Farmacia201866468068710.31925/farmacia.2018.4.18
    [Google Scholar]
  101. AvramS. Duda-SeimanD. BorcanF. RaduB. Duda-SeimanC. MihailescuD. Evaluation of antimicrobial activity of new mastoparan derivatives using qsar and computational mutagenesis.Int. J. Pept. Res. Ther.201117171710.1007/s10989‑010‑9235‑7
    [Google Scholar]
  102. AvramS. 3D-QSAR design of new escitalopram derivatives for the treatment of major depressive disorders.Sci. Pharm.201078223324810.3797/scipharm.0912‑22
    [Google Scholar]
  103. HassanN.H. El-HawaryS.S. EmamM. RabehM.A. TantawyM.A. SeifM. Abd-ElalR.M.A. BringmannG. AbdelmohsenU.R. SelimN.M. Pectin nanoparticle-loaded soft coral nephthea sp. extract as in situ gel enhances chronic wound healing: in vitro, in vivo, and in silico studies.Pharmaceuticals (Basel)202316795710.3390/ph16070957
    [Google Scholar]
  104. TrejosM. AristizabalY. Aragón-MurielA. Oñate-GarzónJ. LiscanoY. Characterization and classification in silico of peptides with dual activity (antimicrobial and wound healing).Int. J. Mol. Sci.202324171309110.3390/ijms241713091
    [Google Scholar]
  105. BodasK.S. BagulC.D. ShindeV.M. Evaluation of wound healing effect of Mallotus philippensis (Lam.) Mull. Arg. by in silico multitargets directed for multiligand approach.In Silico Pharmacol.20221011910.1007/s40203‑022‑00134‑0
    [Google Scholar]
  106. MinehanR.L. Del BorgoM.P. Controlled release of therapeutics from enzyme-responsive biomaterials.Front. Biomater. Sci.2022191698510.3389/fbiom.2022.916985
    [Google Scholar]
  107. PeppasN.A. SahlinJ.J. Hydrogels as mucoadhesive and bioadhesive materials: a review.Biomaterials199617161553156110.1016/0142‑9612(95)00307‑X
    [Google Scholar]
  108. PeppasN. Hydrogels in pharmaceutical formulations.Eur. J. Pharm. Biopharm.2000501274610.1016/S0939‑6411(00)00090‑4
    [Google Scholar]
  109. RaoN.V. KoH. LeeJ. ParkJ.H. Recent progress and advances in stimuli-responsive polymers for cancer therapy.Front. Bioeng. Biotechnol.2018611010.3389/fbioe.2018.00110
    [Google Scholar]
  110. ZhuoS. ZhangF. YuJ. ZhangX. YangG. LiuX. ph-sensitive biomaterials for drug delivery.Molecules20202523564910.3390/molecules25235649
    [Google Scholar]
  111. SaghazadehS. RinoldiC. SchotM. KashafS.S. SharifiF. JalilianE. NuutilaK. GiatsidisG. MostafaluP. DerakhshandehH. YueK. SwieszkowskiW. MemicA. TamayolA. KhademhosseiniA. Drug delivery systems and materials for wound healing applications.Adv. Drug Deliv. Rev.201812713816610.1016/j.addr.2018.04.008
    [Google Scholar]
  112. GaoL. ZhouY. PengJ. XuC. XuQ. XingM. ChangJ. A novel dual-adhesive and bioactive hydrogel activated by bioglass for wound healing.NPG Asia Mater.20191116610.1038/s41427‑019‑0168‑0
    [Google Scholar]
  113. TuZ. ZhongY. HuH. ShaoD. HaagR. SchirnerM. LeeJ. SullengerB. LeongK.W. Design of therapeutic biomaterials to control inflammation.Nat. Rev. Mater.20227755757410.1038/s41578‑022‑00426‑z
    [Google Scholar]
  114. SerranoD.R. KaraA. YusteI. LucianoF.C. OngorenB. AnayaB.J. MolinaG. DiezL. RamirezB.I. RamirezI.O. Sánchez-GuiralesS.A. Fernández-GarcíaR. BautistaL. RuizH.K. LalatsaA. 3D printing technologies in personalized medicine, nanomedicines, and biopharmaceuticals.Pharmaceutics202315231310.3390/pharmaceutics15020313
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575314580241121080256
Loading
/content/journals/mrmc/10.2174/0113895575314580241121080256
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test