Skip to content
2000
image of Phytochemical and Biological Biodiversity of Tomato (Solanum lycopersicum L.) (2010-2022)

Abstract

Tomato ( L.) is one of the most common vegetable plants in the world. It is also named . It serves as a model plant for the Solanaceae family, especially for plants that produce fleshy fruits. Various studies have shown that fruits, seeds, leaves, roots, in addition to tomato waste, constitute sources of vital bioactive substances such as lycopene, flavonoids, vitamins, and minerals. Consequently, tomatoes have powerful antioxidant activities in addition to cardiovascular protection, anticancer, antimutagenic, anti-inflammatory, antimicrobial, neuroprotective, antidiabetic, radioprotective, gut modulating activities, vision effect, and hepatoprotective. The current review illuminates the different isolated phytochemicals and medicinal value, as well as the pharmacological activities of .

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575347047250506102300
2025-05-09
2025-09-15
Loading full text...

Full text loading...

References

  1. Gerszberg A. Hnatuszko-Konka K. Kowalczyk T. Kononowicz A.K. Tomato (Solanum lycopersicum L.) in the service of biotechnology. Plant Cell Tissue Organ Cult. 2015 120 3 881 902 10.1007/s11240‑014‑0664‑4
    [Google Scholar]
  2. Perveen R. Suleria H.A.R. Anjum F.M. Butt M.S. Pasha I. Ahmad S. Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; Metabolism, absorption, nutrition and allied health claims-A comprehensive review. Crit. Rev. Food Sci. Nutr. 2015 55 7 919 929 10.1080/10408398.2012.657809 24915375
    [Google Scholar]
  3. Concha-Meyer A. Palomo I. Plaza A. Gadioli Tarone A. Junior M.R.M. Sáyago-Ayerdi S.G. Fuentes E. Platelet anti-aggregant activity and bioactive compounds of ultrasound-assisted extracts from whole and seedless tomato pomace. Foods 2020 9 11 1564 10.3390/foods9111564 33126732
    [Google Scholar]
  4. Silva Y.P.A. Borba B.C. Pereira V.A. Reis M.G. Caliari M. Brooks M.S. Ferreira T.A.P.C. Characterization of tomato processing by-product for use as a potential functional food ingredient: Nutritional composition, antioxidant activity and bioactive compounds. Int. J. Food Sci. Nutr. 2019 70 2 150 160 10.1080/09637486.2018.1489530 30014726
    [Google Scholar]
  5. Liao J. Xie L. Liu T. Mo C. Cui S. Jia X. Huang X. Luo Z. Ma X. Heterologous biosynthesis of health-promoting baicalein in Lycopersicon esculentum. Molecules 2022 27 10 3086 10.3390/molecules27103086 35630564
    [Google Scholar]
  6. Kumar M. Tomar M. Bhuyan D.J. Punia S. Grasso S. Sá A.G.A. Carciofi B.A.M. Arrutia F. Changan S. Radha; Singh, S.; Dhumal, S.; Senapathy, M.; Satankar, V.; Anitha, T.; Sharma, A.; Pandiselvam, R.; Amarowicz, R.; Mekhemar, M. Tomato (Solanum lycopersicum L.) seed: A review on bioactives and biomedical activities. Biomed. Pharmacother. 2021 142 112018 10.1016/j.biopha.2021.112018 34449317
    [Google Scholar]
  7. Olsen K.M. Hehn A. Jugdé H. Slimestad R. Larbat R. Bourgaud F. Lillo C. Identification and characterisation of CYP75A31, a new flavonoid 3‘,5′-hydroxylase, isolated from Solanum lycopersicum. BMC Plant Biol. 2010 10 1 21 10.1186/1471‑2229‑10‑21 20128892
    [Google Scholar]
  8. Gonzali S. Perata P. Anthocyanins from purple tomatoes as novel antioxidants to promote human health. Antioxidants 2020 9 10 1017 10.3390/antiox9101017 33092051
    [Google Scholar]
  9. Ha H.T.N. Van Tai N. Thuy N.M. Physicochemical characteristics and bioactive compounds of new black cherry tomato (Solanum lycopersicum) varieties grown in Vietnam. Plants 2021 10 10 2134 10.3390/plants10102134 34685943
    [Google Scholar]
  10. Seong S.H. Jung H.A. Choi J.S. Discovery of flazin, an alkaloid isolated from cherry tomato juice, as a novel non-enzymatic protein glycation inhibitor via in vitro and in silico studies. J. Agric. Food Chem. 2021 69 12 3647 3657 10.1021/acs.jafc.0c07486 33739098
    [Google Scholar]
  11. Hövelmann Y. Steinert K. Hübner F. Humpf H.U. Identification of a novel N-caprylhistamine-β-glucoside from tomato fruits and LC-MS/MS-based food screening for imidazole alkaloids. Food Chem. 2020 312 126068 10.1016/j.foodchem.2019.126068 31918364
    [Google Scholar]
  12. Kim S.P. Nam S.H. Friedman M. The tomato glycoalkaloid α-tomatine induces caspase-independent cell death in mouse colon cancer CT-26 cells and transplanted tumors in mice. J. Agric. Food Chem. 2015 63 4 1142 1150 10.1021/jf5040288 25614934
    [Google Scholar]
  13. Al Sinani S.S.S. Eltayeb E.A. The steroidal glycoalkaloids solamargine and solasonine in Solanum plants. S. Afr. J. Bot. 2017 112 253 269 10.1016/j.sajb.2017.06.002
    [Google Scholar]
  14. Meher H.C. Gajbhiye V.T. Singh G. A liquid chromatography method for determination of selected amino acids, coenzymes, growth regulators, and vitamins from Cicer arietinum (L.) and Solanum lycopersicum (L.). J. AOAC Int. 2012 95 4 1142 1152 10.5740/jaoacint.11‑054 22970584
    [Google Scholar]
  15. Ali M.Y. Sina A.A.I. Khandker S.S. Neesa L. Tanvir E.M. Kabir A. Khalil M.I. Gan S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 2020 10 1 45 10.3390/foods10010045 33375293
    [Google Scholar]
  16. Izzo L. Castaldo L. Lombardi S. Gaspari A. Grosso M. Ritieni A. Bioaccessibility and antioxidant capacity of bioactive compounds from various typologies of canned tomatoes. Front. Nutr. 2022 9 849163 10.3389/fnut.2022.849163 35350409
    [Google Scholar]
  17. Shukla P. Bajpai K. Tripathi S. Kumar S. Gautam G.K. A review on the taxonomy, ethnobotany, chemistry and pharmacology of Solanum Lycopersicum Linn. Int. J. Chem. Pharm. Sci. 2013 1 8 521 527
    [Google Scholar]
  18. Nityasree B.R. Chalannavar R.K. Ghosh S.K. Divakar M.S. Sowmyashree K. Effect of Solanum lycopersicum leaf extracts against larvicidal activity of Aedes aegypti L. Biomedicine 2020 40 4 467 473
    [Google Scholar]
  19. Lima T.S.P. Borges M.M. Buarque F.S. Souza R.L. Soares C.M.F. Lima Á.S. Purification of vitamins from tomatoes (Solanum lycopersicum) using ethanolic two-phases systems based on ionic liquids and polypropylene glycol. Fluid Phase Equilib. 2022 557 113434 10.1016/j.fluid.2022.113434
    [Google Scholar]
  20. Afifah E.N. Murti R.H. Nuringtyas T.R. Metabolomics approach for the analysis of resistance of four tomato genotypes (Solanum lycopersicum L.) to root-knot nematodes (Meloidogyne incognita). Open Life Sci. 2019 14 1 141 149 10.1515/biol‑2019‑0016 33817146
    [Google Scholar]
  21. Kim Y.I. Hirai S. Takahashi H. Goto T. Ohyane C. Tsugane T. Konishi C. Fujii T. Inai S. Iijima Y. Aoki K. Shibata D. Takahashi N. Kawada T. 9‐oxo‐10(E),12(E)‐octadecadienoic acid derived from tomato is a potent PPAR α agonist to decrease triglyceride accumulation in mouse primary hepatocytes. Mol. Nutr. Food Res. 2011 55 4 585 593 10.1002/mnfr.201000264 21462326
    [Google Scholar]
  22. Murillo Pulgarín J.A. García Bermejo L.F. Becedas Rodríguez S. Direct determination of gibberellic acid in tomato and fruit by using photochemically induced fluorescence. J. Agric. Food Chem. 2013 61 41 9769 9775 10.1021/jf403264f 24102243
    [Google Scholar]
  23. Flores I.R. Vásquez-Murrieta M.S. Franco-Hernández M.O. Márquez-Herrera C.E. Ponce-Mendoza A. del Socorro López-Cortéz M. Bioactive compounds in tomato (Solanum lycopersicum) variety saladette and their relationship with soil mineral content. Food Chem. 2021 344 128608 10.1016/j.foodchem.2020.128608 33229147
    [Google Scholar]
  24. Yang G. Zhou B. Zhang X. Zhang Z. Wu Y. Zhang Y. Lü S. Zou Q. Gao Y. Teng L. Effects of tomato root exudates on Meloidogyne incognita. PLoS One 2016 11 4 e0154675 10.1371/journal.pone.0154675 27128659
    [Google Scholar]
  25. Tikunov Y.M. de Vos R.C.H. Gonzaݩlez Paramaݩs, A.M.; Hall, R.D.; Bovy, A.G. A role for differential glycoconjugation in the emission of phenylpropanoid volatiles from tomato fruit discovered using a metabolic data fusion approach. Plant Physiol. 2009 152 1 55 70 10.1104/pp.109.146670 19889876
    [Google Scholar]
  26. Ramya S. Chandran M. King I.J. Jayakumararaj R. Loganathan T. Pandiarajan G. Kaliraj P. Grace Lydial Pushpalatha G. Abraham G.C. Vijaya V. Aruna D. Sutha S. Dhakar R.C. Phytochemical screening, GCMS and FTIR profile of bioactive compounds in Solanum lycopersicum wild fruits collected from palani hill ranges of the western ghats. J. Drug Deliv. Ther. 2022 12 6 56 64 10.22270/jddt.v12i6.5665
    [Google Scholar]
  27. Cheng G. Chang P. Shen Y. Wu L. El-Sappah A.H. Zhang F. Liang Y. Comparing the flavor characteristics of 71 tomato (Solanum lycopersicum) accessions in Central Shaanxi. Front. Plant Sci. 2020 11 586834 10.3389/fpls.2020.586834 33362814
    [Google Scholar]
  28. Elya B. Dewi R. Budiman M.H. Antioxidant cream of Solanum lycopersicum L. Int. J. Pharm. Tech. Res. 2013 5 233 238
    [Google Scholar]
  29. Li H. Deng Z. Liu R. Loewen S. Tsao R. Bioaccessibility, in vitro antioxidant activities and in vivo anti-inflammatory activities of a purple tomato (Solanum lycopersicum L.). Food Chem. 2014 159 353 360 10.1016/j.foodchem.2014.03.023 24767066
    [Google Scholar]
  30. Hraishawi R.M.O. Abdul-Razak A.S. Al-Hayder M.N. Al-wafi H. Investigation the antimicrobial and antioxidant activity of lycopene extraction from Solanum Lycopersicum. Eurasia J. Biosci. 2020 14 2 5305 5310
    [Google Scholar]
  31. Jing S. Lasheng Z. Wang S. Shi H. Effect of ultra-high pressure technology on isomerization and antioxidant activity of lycopene in Solanum Lycopersicum. Am. J. Biochem. Biotechnol. 2020 16 2 270 279 10.3844/ajbbsp.2020.270.279
    [Google Scholar]
  32. Azabou S. Sebii H. Taheur F. Phytochemical profle and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refned olive oils. Food Biosci. 2020 36 100664 10.1016/j.fbio.2020.100664
    [Google Scholar]
  33. Ćetković G. Savatović S. Čanadanović-Brunet J. Djilas S. Vulić J. Mandić A. Četojević-Simin D. Valorisation of phenolic composition, antioxidant and cell growth activities of tomato waste. Food Chem. 2012 133 3 938 945 10.1016/j.foodchem.2012.02.007
    [Google Scholar]
  34. Fuentes E. Carle R. Astudillo L. Guzmán L. Gutiérrez M. Carrasco G. Palomo I. Antioxidant and antiplatelet activities in extracts from green and fully ripe tomato fruits (Solanum lycopersicum) and pomace from industrial tomato processing. Evid. Based Complement. Alternat. Med. 2013 2013 1 1 9 10.1155/2013/867578 23476707
    [Google Scholar]
  35. Ilahy R. Piro G. Tlili I. Riahi A. Sihem R. Ouerghi I. Hdider C. Lenucci M.S. Fractionate analysis of the phytochemical composition and antioxidant activities in advanced breeding lines of high-lycopene tomatoes. Food Funct. 2016 7 1 574 583 10.1039/C5FO00553A 26462607
    [Google Scholar]
  36. Meshginfar N. Mahoonak A.S. Hosseinian F. Tsopmo A. Physicochemical, antioxidant, calcium binding, and angiotensin converting enzyme inhibitory properties of hydrolyzed tomato seed proteins. J. Food Biochem. 2019 43 2 e12721 10.1111/jfbc.12721 31353665
    [Google Scholar]
  37. Stajčić S. Ćetković G. Čanadanović-Brunet J. Djilas S. Mandić A. Četojević-Simin D. Tomato waste: Carotenoids content, antioxidant and cell growth activities. Food Chem. 2015 172 225 232 10.1016/j.foodchem.2014.09.069 25442547
    [Google Scholar]
  38. Szabo K. Diaconeasa Z. Cătoi A.F. Vodnar D.C. Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. Antioxidants 2019 8 8 292 10.3390/antiox8080292 31398838
    [Google Scholar]
  39. Tommonaro G. Caporale A. De Martino L. Popolo A. De Prisco R. Nicolaus B. Abbamondi G.R. Saturnino C. Antioxidant and cytotoxic activities investigation of tomato seed extracts. Nat. Prod. Res. 2014 28 10 764 768 10.1080/14786419.2013.879474 24483342
    [Google Scholar]
  40. Valdez-Morales M. Espinosa-Alonso L.G. Espinoza-Torres L.C. Delgado-Vargas F. Medina-Godoy S. Phenolic content and antioxidant and antimutagenic activities in tomato peel, seeds, and byproducts. J. Agric. Food Chem. 2014 62 23 5281 5289 10.1021/jf5012374 24792924
    [Google Scholar]
  41. Szabo K. Dulf F.V. Diaconeasa Z. Vodnar D.C. Antimicrobial and antioxidant properties of tomato processing byproducts and their correlation with the biochemical composition. LWT - Food Sci Technol. 2019 116 108558 10.1016/j.lwt.2019.108558
    [Google Scholar]
  42. Choe U. Sun J. Bailoni E. Chen P. Li Y. Gao B. Wang T.T.Y. Rao J. Yu L.L. Chemical composition of tomato seed flours and their radical scavenging, anti-inflammatory and gut microbiota modulating properties. Molecules 2021 26 5 1478 10.3390/molecules26051478 33803186
    [Google Scholar]
  43. Elbadrawy E. Sello A. Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arab. J. Chem. 2016 9 S1010 S1018 10.1016/j.arabjc.2011.11.011
    [Google Scholar]
  44. Sani-e-Zahra Iqbal, M.S.; Abbas, K.; Qadir, M.I. Synthesis, characterization and evaluation of biological properties of selenium nanoparticles from Solanum lycopersicum. Arab. J. Chem. 2022 15 7 103901 10.1016/j.arabjc.2022.103901
    [Google Scholar]
  45. Vlaisavljević S. Colmán Martínez M. Stojanović A. Martínez-Huélamo M. Grung B. Lamuela Raventós R.M. Characterisation of bioactive compounds and assessment of antioxidant activity of different traditional Lycopersicum esculentum L. varieties: Chemometric analysis. Int. J. Food Sci. Nutr. 2019 70 7 813 824 10.1080/09637486.2019.1587742 30969141
    [Google Scholar]
  46. Figueiredo-González M. Valentão P. Pereira D.M. Andrade P.B. Further insights on tomato plant: Cytotoxic and antioxidant activity of leaf extracts in human gastric cells. Food Chem. Toxicol. 2017 109 Pt 1 386 392 10.1016/j.fct.2017.09.018 28899774
    [Google Scholar]
  47. Abbasi-Parizad P. De Nisi P. Adani F. Pepé Sciarria T. Squillace P. Scarafoni A. Iametti S. Scaglia B. Antioxidant and anti-inflammatory activities of the crude extracts of raw and fermented tomato pomace and their correlations with aglycate-polyphenols. Antioxidants 2020 9 2 179 10.3390/antiox9020179 32098217
    [Google Scholar]
  48. Savatović S. Ćetković G. Čanadanović-Brunet J. Djilas S. Tomato waste: A potential source of hydrophilic antioxidants. Int. J. Food Sci. Nutr. 2012 63 2 129 137 10.3109/09637486.2011.606211 21809907
    [Google Scholar]
  49. Takashima M. Shichiri M. Hagihara Y. Yoshida Y. Niki E. Capacity of peroxyl radical scavenging and inhibition of lipid peroxidation by β-carotene, lycopene, and commercial tomato juice. Food Funct. 2012 3 11 1153 1160 10.1039/c2fo30119a 22875157
    [Google Scholar]
  50. Palomo I. Fuentes E. Padró T. Badimon L. Platelets and atherogenesis: Platelet anti-aggregation activity and endothelial protection from tomatoes (Solanum lycopersicum L.). Exp. Ther. Med. 2012 3 4 577 584 10.3892/etm.2012.477 22969932
    [Google Scholar]
  51. Fuentes E. Castro R. Astudillo L. Carrasco G. Alarcón M. Gutiérrez M. Palomo I. Bioassay-guided isolation and HPLC determination of bioactive compound that relate to the antiplatelet activity (adhesion, secretion and aggregation) from Solanum lycopersicum. Evid. Based Complement. Alternat. Med. 2012 2012 1 147031 23227097
    [Google Scholar]
  52. Fuentes E. Alarcón M. Astudillo L. Valenzuela C. Gutiérrez M. Palomo I. Protective mechanisms of guanosine from Solanum lycopersicum on agonist-induced platelet activation: role of sCD40L. Molecules 2013 18 7 8120 8135 10.3390/molecules18078120 23846753
    [Google Scholar]
  53. Biswas D. Uddin M.M. Dizdarevic L.L. Jørgensen A. Duttaroy A.K. Inhibition of angiotensin-converting enzyme by aqueous extract of tomato. Eur. J. Nutr. 2014 53 8 1699 1706 10.1007/s00394‑014‑0676‑1 24573416
    [Google Scholar]
  54. Alam P. Raka M.A. Khan S. Sarker J. Ahmed N. Nath P.D. Hasan N. Mohib M.M. Tisha A. Taher Sagor M.A. A clinical review of the effectiveness of tomato (Solanum lycopersicum) against cardiovascular dysfunction and related metabolic syndrome. J. Herb. Med. 2019 16 100235 10.1016/j.hermed.2018.09.006
    [Google Scholar]
  55. Fuentes E.J. Astudillo L.A. Gutiérrez M.I. Contreras S.O. Bustamante L.O. Rubio P.I. Moore-Carrasco R. Alarcón M.A. Fuentes J.A. González D.E. Palomo I.F. Fractions of aqueous and methanolic extracts from tomato (Solanum lycopersicum L.) present platelet antiaggregant activity. Blood Coagul. Fibrinolysis 2012 23 2 109 117 10.1097/MBC.0b013e32834d78dd 22185934
    [Google Scholar]
  56. He W.S. Li L. Rui J. Li J. Sun Y. Cui D. Xu B. Tomato seed oil attenuates hyperlipidemia and modulates gut microbiota in C57BL/6J mice. Food Funct. 2020 11 5 4275 4290 10.1039/D0FO00133C 32356546
    [Google Scholar]
  57. Palomo I. Concha-Meyer A. Lutz M. Said M. Sáez B. Vásquez A. Fuentes E. Chemical characterization and antiplatelet potential of bioactive extract from tomato pomace (byproduct of tomato paste). Nutrients 2019 11 2 456 10.3390/nu11020456 30813256
    [Google Scholar]
  58. Rodríguez-Azúa R. Treuer A. Moore-Carrasco R. Cortacáns D. Gutiérrez M. Astudillo L. Fuentes E. Palomo I. Effect of tomato industrial processing (different hybrids, paste, and pomace) on inhibition of platelet function in vitro, ex vivo, and in vivo. J. Med. Food 2014 17 4 505 511 10.1089/jmf.2012.0243 24325459
    [Google Scholar]
  59. Shao D. Bartley G.E. Yokoyama W. Pan Z. Zhang H. Zhang A. Plasma and hepatic cholesterol-lowering effects of tomato pomace, tomato seed oil and defatted tomato seed in hamsters fed with high-fat diets. Food Chem. 2013 139 1-4 589 596 10.1016/j.foodchem.2013.01.043 23561149
    [Google Scholar]
  60. Przybylska S. Tokarczyk G. Lycopene in the prevention of cardiovascular diseases. Int. J. Mol. Sci. 2022 23 4 1957 10.3390/ijms23041957 35216071
    [Google Scholar]
  61. Li H. Chen A. Zhao L. Bhagavathula A.S. Amirthalingam P. Rahmani J. Salehisahlabadi A. Abdulazeem H.M. Adebayo O. Yin X. Effect of tomato consumption on fasting blood glucose and lipid profiles: A systematic review and meta‐analysis of randomized controlled trials. Phytother. Res. 2020 34 8 1956 1965 10.1002/ptr.6660 32243013
    [Google Scholar]
  62. Marcolongo P. Gamberucci A. Tamasi G. Pardini A. Bonechi C. Rossi C. Giunti R. Barone V. Borghini A. Fiorenzani P. Frosini M. Valoti M. Pessina F. Chemical characterisation and antihypertensive effects of locular gel and serum of Lycopersicum esculentum L. var.“Camone” tomato in spontaneously hypertensive rats. Molecules 2020 25 16 3758 10.3390/molecules25163758 32824747
    [Google Scholar]
  63. Mazidi M. Katsiki N. George E.S. Banach M. Tomato and lycopene consumption is inversely associated with total and cause-specific mortality: A population-based cohort study, on behalf of the International Lipid Expert Panel (ILEP). Br. J. Nutr. 2020 124 12 1303 1310 10.1017/S0007114519002150 31434581
    [Google Scholar]
  64. Chiva-Blanch G. Jiménez C. Pinyol M. Herreras Z. Catalán M. Martínez-Huélamo M. Lamuela-Raventos R.M. Sala-Vila A. Cofán M. Gilabert R. Jiménez A. Ortega E. 5-CIS-, trans-and total lycopene plasma concentrations inversely relate to atherosclerotic plaque burden in newly diagnosed type 2 diabetes subjects. Nutrients 2020 12 6 1696 10.3390/nu12061696 32517202
    [Google Scholar]
  65. Elvira-Torales L.I. Navarro-González I. Rodrigo-García J. Seva J. García-Alonso J. Periago-Castón M.J. Consumption of spinach and tomato modifies lipid metabolism, reducing hepatic steatosis in rats. Antioxidants 2020 9 11 1041 10.3390/antiox9111041 33114278
    [Google Scholar]
  66. Bernal C. Martín-Pozuelo G. Lozano A.B. Sevilla Á. García-Alonso J. Canovas M. Periago M.J. Lipid biomarkers and metabolic effects of lycopene from tomato juice on liver of rats with induced hepatic steatosis. J. Nutr. Biochem. 2013 24 11 1870 1881 10.1016/j.jnutbio.2013.05.003 23972952
    [Google Scholar]
  67. Ghavipour M. Saedisomeolia A. Djalali M. Sotoudeh G. Eshraghyan M.R. Moghadam A.M. Wood L.G. Tomato juice consumption reduces systemic inflammation in overweight and obese females. Br. J. Nutr. 2013 109 11 2031 2035 10.1017/S0007114512004278 23069270
    [Google Scholar]
  68. Choi K.M. Lee Y.S. Shin D.M. Lee S. Yoo K.S. Lee M.K. Lee J.H. Kim S.Y. Lee Y.M. Hong J.T. Yun Y.P. Yoo H.S. Green tomato extract attenuates high-fat-diet-induced obesity through activation of the AMPK pathway in C57BL/6 mice. J. Nutr. Biochem. 2013 24 1 335 342 10.1016/j.jnutbio.2012.06.018 22974972
    [Google Scholar]
  69. Upaganlawar A. Patel V. Balaraman R. Tomato lycopene attenuates myocardial infarction induced by isoproterenol: Electrocardiographic, biochemical and anti–apoptotic study. Asian Pac. J. Trop. Biomed. 2012 2 5 345 351 10.1016/S2221‑1691(12)60054‑9 23569928
    [Google Scholar]
  70. Yoshimura M. Toyoshi T. Sano A. Izumi T. Fujii T. Konishi C. Inai S. Matsukura C. Fukuda N. Ezura H. Obata A. Antihypertensive effect of a γ-aminobutyric acid rich tomato cultivar ‘DG03-9’ in spontaneously hypertensive rats. J. Agric. Food Chem. 2010 58 1 615 619 10.1021/jf903008t 20050705
    [Google Scholar]
  71. Ferron A.J.T. Francisqueti-Ferron F.V. Silva C.C.V.A. Bazan S.G.Z. Campos D.H.S. Garcia J.L. Ghiraldeli L. Minatel I.O. Correa C.R. Moreto F. Ferreira A.L.A. Tomato-oleoresin anti-inflammatory effect recovers obesity-induced cardiac dysfunction by modulating myocardial calcium handling. Cell. Physiol. Biochem. 2020 54 5 1013 1025 10.33594/000000284 33021750
    [Google Scholar]
  72. Shidfar F. Froghifar N. Vafa M. Rajab A. Hosseini S. Shidfar S. Gohari M. The effects of tomato consumption on serum glucose, apolipoprotein B, apolipoprotein A-I, homocysteine and blood pressure in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2011 62 3 289 294 10.3109/09637486.2010.529072 21138408
    [Google Scholar]
  73. Ademosun O.T. Adebayo A.H. Ajanaku K.O. Solanum lycopersicum and Daucus carota: effective anticancer agents (a mini review). J. Phys. Conf. Ser. 2021 1943 1 012169 10.1088/1742‑6596/1943/1/012169
    [Google Scholar]
  74. Carvalho I.P.S. Miranda M.A. Silva L.B. Chrysostomo-Massaro T.N. Paschoal J.A.R. Bastos J.K. Marcato P.D.D. In vitro anticancer activity and physicochemical properties of Solanum lycocarpum alkaloidic extract loaded in natural lipid-based nanoparticles. Colloid Interface Sci. Commun. 2019 28 5 14 10.1016/j.colcom.2018.11.001
    [Google Scholar]
  75. Arfin N. Podder M.K. Kabir S.R. Asaduzzaman A.K.M. Hasan I. Antibacterial, antifungal and in vivo anticancer activities of chitin-binding lectins from Tomato (Solanum lycopersicum) fruits. Arab. J. Chem. 2022 15 8 104001 10.1016/j.arabjc.2022.104001
    [Google Scholar]
  76. Guil-Guerrero J.L. Ramos-Bueno R. Rodríguez-García I. López-Sánchez C. Cytotoxicity screening of several tomato extracts. J. Med. Food 2011 14 1-2 40 45 10.1089/jmf.2010.0051 21138360
    [Google Scholar]
  77. Li B. Terazono Y. Hirasaki N. Tatemichi Y. Kinoshita E. Obata A. Matsui T. Inhibition of glucose transport by tomatoside A, a tomato seed steroidal saponin, through the suppression of GLUT2 expression in Caco-2 cells. J. Agric. Food Chem. 2018 66 6 1428 1434 10.1021/acs.jafc.7b06078 29355315
    [Google Scholar]
  78. Tan H.L. Thomas-Ahner J.M. Grainger E.M. Wan L. Francis D.M. Schwartz S.J. Erdman J.W. Clinton S.K. Tomato-based food products for prostate cancer prevention: What have we learned? Cancer Metastasis Rev. 2010 29 3 553 568 10.1007/s10555‑010‑9246‑z 20803054
    [Google Scholar]
  79. Ngo T.H. Park J. Jo Y.D. Jin C.H. Jung C.H. Nam B. Han A.R. Nam J.W. Content of two major steroidal glycoalkaloids in tomato (Solanum lycopersicum cv. Micro-Tom) mutant lines at different ripening stages. Plants 2022 11 21 2895 10.3390/plants11212895 36365348
    [Google Scholar]
  80. Lindshield B.L. Ford N.A. Canene-Adams K. Diamond A.M. Wallig M.A. Erdman J.W. Selenium, but not lycopene or vitamin E, decreases growth of transplantable dunning R3327-H rat prostate tumors. PLoS One 2010 5 4 e10423 10.1371/journal.pone.0010423 20454690
    [Google Scholar]
  81. Tang Y. Parmakhtiar B. Simoneau A.R. Xie J. Fruehauf J. Lilly M. Zi X. Lycopene enhances docetaxel’s effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. Neoplasia 2011 13 2 108 119 10.1593/neo.101092 21403837
    [Google Scholar]
  82. Yang C.M. Yen Y.T. Huang C.S. Hu M.L. Growth inhibitory efficacy of lycopene and β‐carotene against androgen‐independent prostate tumor cells xenografted in nude mice. Mol. Nutr. Food Res. 2011 55 4 606 612 10.1002/mnfr.201000308 21462328
    [Google Scholar]
  83. Kolberg M. Pedersen S. Bastani N.E. Carlsen H. Blomhoff R. Paur I. Tomato paste alters NF-κB and cancer-related mRNA expression in prostate cancer cells, xenografts, and xenograft microenvironment. Nutr. Cancer 2015 67 2 305 315 10.1080/01635581.2015.990575 25664890
    [Google Scholar]
  84. Jiang L.N. Liu Y.B. Li B.H. Lycopene exerts anti-inflammatory effect to inhibit prostate cancer progression. Asian J. Androl. 2019 21 1 80 85 10.4103/aja.aja_70_18 30198495
    [Google Scholar]
  85. Ramos-Bueno R.P. Romero-González R. González-Fernández M.J. Guil-Guerrero J.L. Phytochemical composition and in vitro anti-tumour activities of selected tomato varieties. J. Sci. Food Agric. 2017 97 2 488 496 10.1002/jsfa.7750 27060896
    [Google Scholar]
  86. Thomas C.E. Luu H.N. Wang R. Adams-Haduch J. Jin A. Koh W.P. Yuan J.M. Association between dietary tomato intake and the risk of hepatocellular carcinoma: The singapore chinese health study. Cancer Epidemiol. Biomarkers Prev. 2020 29 7 1430 1435 10.1158/1055‑9965.EPI‑20‑0051 32284341
    [Google Scholar]
  87. Fukushi Y. Mariya Y. Yamada K. Yoshida K. Sasa A. Saito H. Hirai A. Suzuki S. Aizawa K. Suganuma H. Itaki C. Tomato juice consumption could improve breast skin adverse effects of radiotherapy in breast cancer patients. In Vivo 2020 34 5 3013 3021 10.21873/invivo.12133 32871845
    [Google Scholar]
  88. Fraser G.E. Jacobsen B.K. Knutsen S.F. Mashchak A. Lloren J.I. Tomato consumption and intake of lycopene as predictors of the incidence of prostate cancer: The adventist health study-2. Cancer Causes Control 2020 31 4 341 351 10.1007/s10552‑020‑01279‑z 32100191
    [Google Scholar]
  89. Koul A. Bansal M.P. Aniqa A. Chaudhary H. Chugh N.A. Lycopene enriched tomato extract suppresses chemically induced skin tumorigenesis in mice. Int. J. Vitam. Nutr. Res. 2020 90 5-6 493 513 10.1024/0300‑9831/a000597 31303127
    [Google Scholar]
  90. Mazidi M. Ferns G.A. Banach M. A high consumption of tomato and lycopene is associated with a lower risk of cancer mortality: results from a multi-ethnic cohort. Public Health Nutr. 2020 23 9 1569 1575 10.1017/S1368980019003227 32102720
    [Google Scholar]
  91. Mekuria A.N. Tura A.K. Hagos B. Sisay M. Abdela J. Mishore K.M. Motbaynor B. Anti-cancer effects of lycopene in animal models of hepatocellular carcinoma: A systematic review and meta-analysis. Front. Pharmacol. 2020 11 1306 10.3389/fphar.2020.01306 32982734
    [Google Scholar]
  92. Rekha U.V. Anita M. Bhuminathan S. Sadhana K. Molecular docking analysis of human JAK2 with compounds from tomatoes. Bioinformation 2020 16 10 742 747 10.6026/97320630016742 34675459
    [Google Scholar]
  93. Yang T. Yang X. Wang X. Wang Y. Song Z. The role of tomato products and lycopene in the prevention of gastric cancer: A meta-analysis of epidemiologic studies. Med. Hypotheses 2013 80 4 383 388 10.1016/j.mehy.2013.01.005 23352874
    [Google Scholar]
  94. Gupta P. Bansal M.P. Koul A. Spectroscopic characterization of lycopene extract from Lycopersicum esculentum (Tomato) and its evaluation as a chemopreventive agent against experimental hepatocarcinogenesis in mice. Phytother. Res. 2013 27 3 448 456 10.1002/ptr.4741 22628278
    [Google Scholar]
  95. Koul A. Shubrant; Gupta, P. Phytomodulatory potential of lycopene from Lycopersicum esculentum against doxorubicin induced nephrotoxicity. Indian J. Exp. Biol. 2013 51 8 635 645 24228387
    [Google Scholar]
  96. Pannellini T. Iezzi M. Liberatore M. Sabatini F. Iacobelli S. Rossi C. Alberti S. Di Ilio C. Vitaglione P. Fogliano V. Piantelli M. A dietary tomato supplement prevents prostate cancer in TRAMP mice. Cancer Prev. Res. 2010 3 10 1284 1291 10.1158/1940‑6207.CAPR‑09‑0237 20716635
    [Google Scholar]
  97. Polívková Z. Šmerák P. Demová H. Houška M. Antimutagenic effects of lycopene and tomato purée. J. Med. Food 2010 13 6 1443 1450 10.1089/jmf.2009.0277 20874227
    [Google Scholar]
  98. Lee S.T. Wong P.F. Hooper J.D. Mustafa M.R. Alpha-tomatine synergises with paclitaxel to enhance apoptosis of androgen-independent human prostate cancer PC-3 cells in vitro and in vivo. Phytomedicine 2013 20 14 1297 1305 10.1016/j.phymed.2013.07.002 23920276
    [Google Scholar]
  99. Amid A. Semail S. Jamal P. Tomato leaves methanol extract possesses antiinflammatory activity via inhibition of lipopolysacharide (LPS)-induced prostaglandin (PGE2). Afr. J. Biotechnol. 2011 10 81 18674 18678
    [Google Scholar]
  100. Navarrete S. Alarcón M. Palomo I. Aqueous extract of tomato (Solanum lycopersicum L.) and ferulic acid reduce the expression of TNF-α and IL-1β in LPS-activated macrophages. Molecules 2015 20 8 15319 15329 10.3390/molecules200815319 26307961
    [Google Scholar]
  101. Nascimento G.E. Baggio C.H. Werner M.F.P. Iacomini M. Cordeiro L.M.C. Arabinoxylan from mucilage of tomatoes (Solanum lycopersicum L.): Structure and antinociceptive effect in mouse models. J. Agric. Food Chem. 2016 64 6 1239 1244 10.1021/acs.jafc.5b05134 26824871
    [Google Scholar]
  102. Kim Y. Mohri S. Hirai S. Lin S. Goto T. Ohyane C. Sakamoto T. Takahashi H. Shibata D. Takahashi N. Kawada T. Tomato extract suppresses the production of proinflammatory mediators induced by interaction between adipocytes and macrophages. Biosci. Biotechnol. Biochem. 2015 79 1 82 87 10.1080/09168451.2014.962472 25603813
    [Google Scholar]
  103. Takeda S. Miyasaka K. Shrestha S. Manse Y. Morikawa T. Shimoda H. Lycoperoside H, a tomato seed saponin, improves epidermal dehydration by increasing ceramide in the stratum corneum and steroidal anti-inflammatory effect. Molecules 2021 26 19 5860 10.3390/molecules26195860 34641404
    [Google Scholar]
  104. Armoza A. Haim Y. Basiri A. Wolak T. Paran E. Tomato extract and the carotenoids lycopene and lutein improve endothelial function and attenuate inflammatory NF-κB signaling in endothelial cells. J. Hypertens. 2013 31 3 521 529 10.1097/HJH.0b013e32835c1d01 23235359
    [Google Scholar]
  105. Taveira M. Silva L.R. Vale-Silva L.A. Pinto E. Valentão P. Ferreres F. Guedes de Pinho P. Andrade P.B. Lycopersicon esculentum seeds: An industrial byproduct as an antimicrobial agent. J. Agric. Food Chem. 2010 58 17 9529 9536 10.1021/jf102215g 20707344
    [Google Scholar]
  106. Sajet AL-Oqaili R. M. In vitro antibacterial activity of Solanum lycopersicum extract against some pathogenic bacteria. Food Sci. Qual. Manag. 2014 27 12 17
    [Google Scholar]
  107. Maiti S. Banerjee A. Epigallocatechin gallate and theaflavin gallate interaction in SARS‐CoV ‐2 spike‐protein central channel with reference to the hydroxychloroquine interaction: Bioinformatics and molecular docking study. Drug Dev. Res. 2021 82 1 86 96 10.1002/ddr.21730 32770567
    [Google Scholar]
  108. Ngwa W. Kumar R. Thompson D. Lyerly W. Moore R. Reid T.E. Lowe H. Toyang N. Potential of flavonoid-inspired phytomedicines against COVID-19. Molecules 2020 25 11 2707 10.3390/molecules25112707 32545268
    [Google Scholar]
  109. Vissiennon C. Nieber K. Kelber O. Butterweck V. Route of administration determines the anxiolytic activity of the flavonols kaempferol, quercetin and myricetin - are they prodrugs? J. Nutr. Biochem. 2012 23 7 733 740 10.1016/j.jnutbio.2011.03.017 21840194
    [Google Scholar]
  110. Krishna G. Muralidhara. Aqueous extract of tomato seeds attenuates rotenone‐induced oxidative stress and neurotoxicity in Drosophila melanogaster. J. Sci. food agric. 2016 96 5 1745 1755 10.1002/jsfa.7281 26033662
    [Google Scholar]
  111. Gokul K Muralidhara Aqueous extract of tomato seeds attenuates rotenone-induced oxidative stress and neurotoxicity in Drosophila melanogaster. J. Sci. Food Agric. 2016 96 5 1745 1755 10.1007/s11064‑014‑1323‑1 24831121
    [Google Scholar]
  112. Marjoni R. Antidiabetes effects-Combination of cowpea juice (Vigna sinensis L.), tomato juice (Solanum lycopersicum L.) and green apple juice (Malus sylvestris Mill.) in white male mice. Int. J. Green Pharm. 2018 12 3 633 638
    [Google Scholar]
  113. Kermani J. Goodarzi N. Bakhtiari M. An experimental study to evaluate the protective effects of Solanum lycopersicum seed essential oil on diabetes-induced testicular injuries. Medicina (Kaunas) 2019 55 8 499 10.3390/medicina55080499 31430882
    [Google Scholar]
  114. Hashimoto N. Tominaga N. Wakagi M. Ishikawa-Takano Y. Consumption of lycopene-rich tomatoes improved glucose homeostasis in rats via an increase in leptin levels. J. Nat. Med. 2020 74 1 252 256 10.1007/s11418‑019‑01341‑4 31267355
    [Google Scholar]
  115. Quilliot D. Forbes A. Dubois F. Gueant J-L. Ziegler O. Carotenoid deficiency in chronic pancreatitis: The effect of an increase in tomato consumption. Eur. J. Clin. Nutr. 2011 65 2 262 268 10.1038/ejcn.2010.232 21119697
    [Google Scholar]
  116. Ezz M.K. Ibrahim N.K. Said M.M. Farrag M.A. The benefcial radioprotective effect of tomato seed oil against gamma radiation-induced damage in male rats. J. Diet. Suppl. 2018 15 6 923 938 10.1080/19390211.2017.1406427 29336631
    [Google Scholar]
  117. Rizwan M. Rodriguez-Blanco I. Harbottle A. Birch-Machin M.A. Watson R.E.B. Rhodes L.E. Tomato paste rich in lycopene protects against cutaneous photodamage in humans in vivo: A randomized controlled trial. Br. J. Dermatol. 2011 164 1 154 162 10.1111/j.1365‑2133.2010.10057.x 20854436
    [Google Scholar]
  118. Walallawita U.S. Wolber F.M. Ziv-Gal A. Kruger M.C. Heyes J.A. Potential role of lycopene in the prevention of postmenopausal bone loss: Evidence from molecular to clinical studies. Int. J. Mol. Sci. 2020 21 19 7119 10.3390/ijms21197119 32992481
    [Google Scholar]
  119. Nirmala F.S. Lee H. Kim J.S. Ha T. Jung C.H. Ahn J. Green tomato extract prevents bone loss in ovariectomized rats, a model of osteoporosis. Nutrients 2020 12 10 3210 10.3390/nu12103210 33096661
    [Google Scholar]
  120. Nwokocha C.R. Nwokocha M.I. Aneto I. Obi J. Udekweleze D.C. Olatunde B. Owu D.U. Iwuala M.O. Comparative analysis on the effect of Lycopersicon esculentum (tomato) in reducing cadmium, mercury and lead accumulation in liver. Food Chem. Toxicol. 2012 50 6 2070 2073 10.1016/j.fct.2012.03.079 22507840
    [Google Scholar]
  121. Paulino S.L.J. Adrián Á.T.G. Gabriela E.A.L. Maribel V.M. Sergio M.G. Nutraceutical potential of flours from tomato by-product and tomato field waste. J. Food Sci. Technol. 2020 57 9 3525 3531 10.1007/s13197‑020‑04585‑1 32713964
    [Google Scholar]
  122. Müller L. Catalano A. Simone R. Cittadini A. Fröhlich K. Böhm V. Palozza P. Antioxidant capacity of tomato seed oil in solution and its redox properties in cultured macrophages. J. Agric. Food Chem. 2013 61 2 346 354 10.1021/jf302748z 23205576
    [Google Scholar]
  123. Adalid A.M. Roselló S. Nuez F. Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. J. Food Compos. Anal. 2010 23 6 613 618 10.1016/j.jfca.2010.03.001
    [Google Scholar]
  124. Salehi B. Sharifi-Rad R. Sharopov F. Namiesnik J. Roointan A. Kamle M. Kumar P. Martins N. Sharifi-Rad J. Beneficial effects and potential risks of tomato consumption for human health: An overview. Nutrition 2019 62 201 208 10.1016/j.nut.2019.01.012 30925445
    [Google Scholar]
  125. Giuffrè A.M. Capocasale M. Sterol composition of tomato (Solanum lycopersicum L.) seed oil: the effect of cultivar. Int. Food Res. J. 2016 23 1 116
    [Google Scholar]
  126. Gumus Z.P. Argon Z.U. Celenk V.U. Timur S. In:Cold pressed tomato (Lycopersicon esculentum L.) seed oil. Cold pressed oils. Academic Press 2020 449 458 10.1016/B978‑0‑12‑818188‑1.00040‑2]
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575347047250506102300
Loading
/content/journals/mrmc/10.2174/0113895575347047250506102300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test