Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1389-5575
  • E-ISSN: 1875-5607

Abstract

Carbamate has been extensively used as a scaffold in the recent era of drug discovery and is a common structural motif of many approved drugs. The carbamate moiety's unique amide-ester hybrid (-O-CO-NH-) feature offers the designing of specific drug-target interactions. Despite the discovery of numerous carbamate derivatives that act on the endocannabinoid system (ECS), the development of clinically effective carbamates remains a challenge. In this review, we highlight the therapeutic potential of carbamate inhibitors of endocannabinoid degrading enzymes as a breakthrough in discovering neurotherapeutic drugs. We discuss the design strategies and medicinal chemistry aspects involved in developing carbamate-based molecular architectures that modulate the endocannabinoid signaling pathway by interfering with fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and α/β-Hydrolase domain-containing 6 (ABHD6). Additionally, we highlight the dual activity profile of carbamates against FAAH and MAGL, FAAH and cholinesterase, and FAAH and TRPV1 channels. Furthermore, we illustrate the pharmacophores of -functionalized carbamates and N-cyclic carbamates that are crucial for FAAH and MAGL inhibitory activities, respectively.

Loading

Article metrics loading...

/content/journals/mrmc/10.2174/0113895575328120241107061303
2024-11-25
2025-12-29
Loading full text...

Full text loading...

References

  1. MatoševićA. BosakA. Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents.Arh. Hig. Rada Toksikoly.202071428529910.2478/aiht‑2020‑71‑3466 33410773
    [Google Scholar]
  2. GhoshA.K. BrindisiM. Organic carbamates in drug design and medicinal chemistry.J. Med. Chem.20155872895294010.1021/jm501371s
    [Google Scholar]
  3. KaurD. SharmaP. BharatamP.V. Amide resonance in thio- and seleno- carbamates: A theoretical study.J. Mol. Struct. Theochem20057571-314915310.1016/j.theochem.2005.09.019
    [Google Scholar]
  4. DeetzM.J. ForbesC.C. JonasM. MalerichJ.P. SmithB.D. WiestO. Unusually low barrier to carbamate C-N rotation.J. Org. Chem.200267113949395210.1021/jo025554u 12027723
    [Google Scholar]
  5. DugaveC. Chemical aspects of the restricted rotation of esters, amides, and related compounds.Cis‐trans Isomerization in Biochemistry. DugaveC. Wiley200614316610.1002/9783527609338.ch8
    [Google Scholar]
  6. Marcovici-MizrahiD. GottliebH.E. MarksV. NudelmanA. On the stabilization of the syn-rotamer of amino acid carbamate derivatives by hydrogen bonding.J. Org. Chem.199661248402840610.1021/jo961446u
    [Google Scholar]
  7. ChaturvediD. Role of organic carbamates in anticancer drug design.Chemistry and Pharmacology of Naturally Occurring Bioactive Compounds.1st ed BrahmachariG. CRC Press2013117140
    [Google Scholar]
  8. JaiswalS. AyyannanS.R. Anticancer potential of small molecule inhibitors of fatty acid amide hydrolase and monoacylglycerol lipase ‐ A mini‐review.ChemMedChem202116142172218710.1002/cmdc.202100120
    [Google Scholar]
  9. JaiswalS. Akhilesh; Uniyal, A.; Tiwari, V.; Raja Ayyannan, S. Synthesis and evaluation of dual fatty acid amide hydrolase-monoacylglycerol lipase inhibition and antinociceptive activities of 4-methylsulfonylaniline-derived semicarbazones.Bioorg. Med. Chem.20226011669810.1016/j.bmc.2022.116698 35296453
    [Google Scholar]
  10. JaiswalS. Raja AyyannanS. Discovery of isatin-based carbohydrazones as potential dual inhibitors of fatty acid amide hydrolase and monoacylglycerol lipase.ChemMedChem2021E20210088910.1002/cmdc.202100120 34637598
    [Google Scholar]
  11. NiphakisM.J. CognettaA.B. ChangJ.W. BuczynskiM.W. ParsonsL.H. ByrneF. BurstonJ.J. ChapmanV. CravattB.F. Evaluation of NHS carbamates as a potent and selective class of endocannabinoid hydrolase inhibitors.ACS Chem. Neurosci.2013491322133210.1021/cn400116z 23731016
    [Google Scholar]
  12. JaiswalS. TripathiR.K.P. AyyannanS.R. Scaffold hopping-guided design of some isatin based rigid analogs as fatty acid amide hydrolase inhibitors: Synthesis and evaluation.Biomed. Pharmacother.20181071611162310.1016/j.biopha.2018.08.125 30257379
    [Google Scholar]
  13. JaiswalS. AyyannanS.R Lead optimization study on indoline-2,3-dione derivatives as potential fatty acid amide hydrolase inhibitors.J. Biomol. Struct. Dyn.20221-199632965036379672
    [Google Scholar]
  14. FeledziakM. LambertD.M. Marchand-brynaertJ. MuccioliG.G. Inhibitors of the endocannabinoid-degrading enzymes, or how to increase endocannabinoid’s activity by preventing their hydrolysis.Recent Pat. CNS Drug Discov.2012722497010.2174/157488912798842223
    [Google Scholar]
  15. BassoE. DurantiA. MorM. PiomelliD. TontiniA. TarziaG. TraldiP. Tandem mass spectrometric data–FAAH inhibitory activity relationships of some carbamic acid O‐aryl esters.J. Mass Spectrom.200439121450145510.1002/jms.729 15578755
    [Google Scholar]
  16. MileniM. KamtekarS. WoodD.C. BensonT.E. CravattB.F. StevensR.C. Crystal structure of fatty acid amide hydrolase bound to the carbamate inhibitor URB597: Discovery of a deacylating water molecule and insight into enzyme inactivation.J. Mol. Biol.2010400474375410.1016/j.jmb.2010.05.034 20493882
    [Google Scholar]
  17. SitS.Y. ConwayC.M. XieK. BertekapR. BourinC. BurrisK.D. Oxime carbamate - Discovery of a series of novel FAAH inhibitors.Bioorg. Med. Chem. Lett.20102031272127710.1016/j.bmcl.2009.11.080 20036536
    [Google Scholar]
  18. CaprioliA. CoccurelloR. RapinoC. Di SerioS. Di TommasoM. VertechyM. VaccaV. BattistaN. PavoneF. MaccarroneM. BorsiniF. The novel reversible fatty acid amide hydrolase inhibitor ST4070 increases endocannabinoid brain levels and counteracts neuropathic pain in different animal models.J. Pharmacol. Exp. Ther.2012342118819510.1124/jpet.111.191403 22514334
    [Google Scholar]
  19. AbouabdellahA. GörlitzerJ. HamleyP. RavetA. Alkylthiazol carbamate derivatives, preparation thereof and therapeutic use thereof.US Patent 8912218B22014
  20. AbouabdellahA. CherezeN. FayolA. SaadyM. VacheJ. VeroniqueC. YaicheP. Carbamate derivatives of alkylheterocycles, preparation thereof and therapeutic use thereof.US Patent 8716289B22014
  21. AbouabdellahA. BasM. DargazanliG. HoornaertC. LiA. T. MedaiskoF. Dioxane-2-alkylcarbamates, their preparation and use as fatty acid amido hydrolase (FAAH) inhibitors for treating faah-related pathologies.2004
  22. XieK. Preparation of bis arylimidazolyl fatty acid amide hydrolase inhibitors for treatment of pain.2002WO Patent 875692002
  23. MyllymaekiM. Castillo-MelendezJ. KoskinenA. MinkkilaeA. SaarioS. NevalainenT. JaervinenT. PosoA. Salo-AhenO. Preparation of heterocyclic phenyl carbamates as novel FAAH inhibitors.WO Patent 20081291292008
  24. IshiiT. SuganeT. MaedaJ. NarazakiF. KakefudaA. SatoK. TakahashiT. KanayamaT. SaitohC. SuzukiJ. Preparation of pyridyl non-aromatic nitrogenated heterocyclic-1-carboxylate ester derivatives as FAAH inhibitors.WO Patent 20060880752006
  25. LodolaA. CastelliR. MorM. RivaraS. Fatty acid amide hydrolase inhibitors: A patent review (2009–2014).Expert Opin. Ther. Pat.201525111247126610.1517/13543776.2015.1067683
    [Google Scholar]
  26. PiomelliD. Moreno-SanzG. BandieraT. MorM. TarziaG. Meta-substituted biphenyl peripherally restricted FAAH inhibitors.US Patent 9745255B22017
  27. PiomelliD. ClapperJ. R. Moreno-SanzG. DurantiA. TontiniA. MorM. TarziaG. Peripherally restricted FAAH inhibitors.US Patent 9187413B22015
  28. TarziaG. DurantiA. TontiniA. PiersantiG. MorM. RivaraS. PlazziP.V. ParkC. KathuriaS. PiomelliD. Design, synthesis, and structure-activity relationships of alkylcarbamic acid aryl esters, a new class of fatty acid amide hydrolase inhibitors.J. Med. Chem.200346122352236010.1021/jm021119g 12773040
    [Google Scholar]
  29. MorM. RivaraS. LodolaA. PlazziP.V. TarziaG. DurantiA. TontiniA. PiersantiG. KathuriaS. PiomelliD. Cyclohexylcarbamic acid 3′- or 4′-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: Synthesis, quantitative structure-activity relationships, and molecular modeling studies.J. Med. Chem.200447214998500810.1021/jm031140x 15456244
    [Google Scholar]
  30. PiomelliD. TarziaG. DurantiA. TontiniA. MorM. ComptonT.R. DasseO. MonaghanE.P. ParrottJ.A. PutmanD. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597).CNS Drug Rev.2006121213810.1111/j.1527‑3458.2006.00021.x 16834756
    [Google Scholar]
  31. TarziaG. DurantiA. GattiG. PiersantiG. TontiniA. RivaraS. LodolaA. PlazziP.V. MorM. KathuriaS. PiomelliD. Synthesis and structure-activity relationships of FAAH inhibitors: Cyclohexylcarbamic acid biphenyl esters with chemical modulation at the proximal phenyl ring.ChemMedChem20061113013910.1002/cmdc.200500017 16892344
    [Google Scholar]
  32. MorM. LodolaA. RivaraS. VacondioF. DurantiA. TontiniA. SanchiniS. PiersantiG. ClapperJ.R. KingA.R. TarziaG. PiomelliD. Synthesis and quantitative structure-activity relationship of fatty acid amide hydrolase inhibitors: Modulation at the N-portion of biphenyl-3-yl alkylcarbamates.J. Med. Chem.200851123487349810.1021/jm701631z 18507372
    [Google Scholar]
  33. ClapperJ.R. VacondioF. KingA.R. DurantiA. TontiniA. SilvaC. SanchiniS. TarziaG. MorM. PiomelliD. A second generation of carbamate-based fatty acid amide hydrolase inhibitors with improved activity in vivo.ChemMedChem2009491505151310.1002/cmdc.200900210 19637155
    [Google Scholar]
  34. McKinneyM.K. CravattB.F. Evidence for distinct roles in catalysis for residues of the serine-serine-lysine catalytic triad of fatty acid amide hydrolase.J. Biol. Chem.200327839373933739910.1074/jbc.M303922200 12734197
    [Google Scholar]
  35. LodolaA. MorM. HermannJ.C. TarziaG. PiomelliD. MulhollandA.J. QM/MM modelling of oleamide hydrolysis in fatty acid amide hydrolase (FAAH) reveals a new mechanism of nucleophile activation.Chem. Commun. (Camb.)2005354399440110.1039/b503887a 16136230
    [Google Scholar]
  36. LodolaA. CapoferriL. RivaraS. ChudykE. SirirakJ. Dyguda-KazimierowiczE. Andrzej SokalskiW. MileniM. TarziaG. PiomelliD. MorM. MulhollandA.J. Understanding the role of carbamate reactivity in fatty acid amide hydrolase inhibition by QM/MM mechanistic modelling.Chem. Commun. (Camb.)20114792517251910.1039/c0cc04937a 21240393
    [Google Scholar]
  37. ClapperJ.R. Moreno-SanzG. RussoR. GuijarroA. VacondioF. DurantiA. TontiniA. SanchiniS. SciolinoN.R. SpradleyJ.M. HohmannA.G. CalignanoA. MorM. TarziaG. PiomelliD. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism.Nat. Neurosci.201013101265127010.1038/nn.2632 20852626
    [Google Scholar]
  38. Moreno-SanzG. SassoO. GuijarroA. OluyemiO. BertorelliR. ReggianiA. PiomelliD. Pharmacological characterization of the peripheral FAAH inhibitor URB937 in female rodents: Interaction with the Abcg2 transporter in the blood‐placenta barrier.Br. J. Pharmacol.201216781620162810.1111/j.1476‑5381.2012.02098.x 22774772
    [Google Scholar]
  39. FiorelliC. ScarpelliR. PiomelliD. BandieraT. Development of a multigram synthesis of URB937, a peripherally restricted FAAH inhibitor.Org. Process Res. Dev.201317335936710.1021/op300301u
    [Google Scholar]
  40. VozellaV. AhmedF. ChoobchianP. MerrillC.B. ZibardiC. TarziaG. MorM. DurantiA. TontiniA. RivaraS. PiomelliD. Pharmacokinetics, pharmacodynamics and safety studies on URB937, a peripherally restricted fatty acid amide hydrolase inhibitor, in rats.J. Pharm. Pharmacol.201971121762177310.1111/jphp.13166 31579946
    [Google Scholar]
  41. Moreno-SanzG. DurantiA. MelzigL. FiorelliC. RudaG.F. ColombanoG. MestichelliP. SanchiniS. TontiniA. MorM. BandieraT. ScarpelliR. TarziaG. PiomelliD. Synthesis and structure-activity relationship studies of O-biphenyl-3-yl carbamates as peripherally restricted fatty acid amide hydrolase inhibitors.J. Med. Chem.201356145917593010.1021/jm4007017 23822179
    [Google Scholar]
  42. AlexanderJ.P. CravattB.F. Mechanism of carbamate inactivation of FAAH: Implications for the design of covalent inhibitors and in vivofunctional probes for enzymes.Chem. Biol.200512111179118710.1016/j.chembiol.2005.08.011 16298297
    [Google Scholar]
  43. KäsnänenH. MyllymäkiM.J. MinkkiläA. KatajaA.O. SaarioS.M. NevalainenT. KoskinenA.M.P. PosoA. 3-Heterocycle-phenyl N-alkylcarbamates as FAAH inhibitors: Design, synthesis and 3D-QSAR studies.ChemMedChem20105221323110.1002/cmdc.200900390 20024981
    [Google Scholar]
  44. MyllymäkiM.J. SaarioS.M. KatajaA.O. Castillo-MelendezJ.A. NevalainenT. JuvonenR.O. JärvinenT. KoskinenA.M.P. Design, synthesis, and in vitro evaluation of carbamate derivatives of 2-benzoxazolyl- and 2-benzothiazolyl-(3-hydroxyphenyl)-methanones as novel fatty acid amide hydrolase inhibitors.J. Med. Chem.200750174236424210.1021/jm070501w 17665899
    [Google Scholar]
  45. MyllymäkiM.J. KäsnänenH. KatajaA.O. Lahtela-KakkonenM. SaarioS.M. PosoA. KoskinenA.M.P. Chiral 3-(4,5-dihydrooxazol-2-yl) phenyl alkylcarbamates as novel FAAH inhibitors: Insight into FAAH enantioselectivity by molecular docking and interaction fields.Eur. J. Med. Chem.200944104179419110.1016/j.ejmech.2009.05.012 19539407
    [Google Scholar]
  46. SitS.Y. ConwayC. BertekapR. XieK. BourinC. BurrisK. DengH. Novel inhibitors of fatty acid amide hydrolase.Bioorg. Med. Chem. Lett.200717123287329110.1016/j.bmcl.2007.04.009 17459705
    [Google Scholar]
  47. TerwegeT. DahlhausH. HanekampW. LehrM. ω-Heteroarylalkylcarbamates as inhibitors of fatty acid amide hydrolase (FAAH).MedChemComm20145793293610.1039/C4MD00181H
    [Google Scholar]
  48. ForsterL. Schulze ElfringhoffA. LehrM. High-performance liquid chromatographic assay with fluorescence detection for the evaluation of inhibitors against fatty acid amide hydrolase.Anal. Bioanal. Chem.200939461679168510.1007/s00216‑009‑2850‑5 19484225
    [Google Scholar]
  49. BogerD.L. SatoH. LernerA.E. HedrickM.P. FecikR.A. MiyauchiH. WilkieG.D. AustinB.J. PatricelliM.P. CravattB.F. Exceptionally potent inhibitors of fatty acid amide hydrolase: The enzyme responsible for degradation of endogenous oleamide and anandamide.Proc. Natl. Acad. Sci. USA200097105044504910.1073/pnas.97.10.5044 10805767
    [Google Scholar]
  50. TerwegeT. HanekampW. GarzinskyD. KönigS. KochO. LehrM. ω‐imidazolyl‐ and ω‐tetrazolylalkylcarbamates as inhibitors of fatty acid amide hydrolase: Biological activity and in vitro metabolic stability.ChemMedChem201611442944310.1002/cmdc.201500445 26732805
    [Google Scholar]
  51. ColombanoG. AlbaniC. OttonelloG. RibeiroA. ScarpelliR. TarozzoG. DaglianJ. JungK.M. PiomelliD. BandieraT.O. -(triazolyl) methyl carbamates as a novel and potent class of fatty acid amide hydrolase (FAAH) inhibitors.ChemMedChem201510238039510.1002/cmdc.201402374 25338703
    [Google Scholar]
  52. DahlhausH. HanekampW. LehrM. (Indolylalkyl)piperidine carbamates as inhibitors of fatty acid amide hydrolase (FAAH).MedChemComm20178361662010.1039/C6MD00683C 30108777
    [Google Scholar]
  53. BrindisiM. BorrelliG. BrogiS. GrilloA. MaramaiS. PaolinoM. BenedusiM. PecorelliA. ValacchiG. Di Cesare MannelliL. GhelardiniC. AllaràM. LigrestiA. MinettiP. CampianiG. di MarzoV. ButiniS. GemmaS. Development of potent inhibitors of fatty acid amide hydrolase useful for the treatment of neuropathic pain.ChemMedChem201813192090210310.1002/cmdc.201800397 30085402
    [Google Scholar]
  54. LamaniM. MalamasM.S. FarahS.I. ShuklaV.G. AlmeidaM.F. WeertsC.M. AndersonJ. WoodJ.T. FarizattoK.L.G. BahrB.A. MakriyannisA. Piperidine and piperazine inhibitors of fatty acid amide hydrolase targeting excitotoxic pathology.Bioorg. Med. Chem.2019272311509610.1016/j.bmc.2019.115096 31629610
    [Google Scholar]
  55. GattinoniS. SimoneC.D. DallavalleS. FezzaF. NanneiR. BattistaN. MinettiP. QuattrociocchiG. CaprioliA. BorsiniF. CabriW. PencoS. MerliniL. MaccarroneM. A new group of oxime carbamates as reversible inhibitors of fatty acid amide hydrolase.Bioorg. Med. Chem. Lett.201020154406441110.1016/j.bmcl.2010.06.050 20591666
    [Google Scholar]
  56. GattinoniS. De SimoneC. DallavalleS. FezzaF. NanneiR. AmadioD. MinettiP. QuattrociocchiG. CaprioliA. BorsiniF. CabriW. PencoS. MerliniL. MaccarroneM. Enol carbamates as inhibitors of fatty acid amide hydrolase (FAAH) endowed with high selectivity for FAAH over the other targets of the endocannabinoid system.ChemMedChem20105335736010.1002/cmdc.200900472 20112328
    [Google Scholar]
  57. Aghazadeh TabriziM. BaraldiP.G. RuggieroE. SaponaroG. BaraldiS. RomagnoliR. MartinelliA. TuccinardiT. Pyrazole phenylcyclohexylcarbamates as inhibitors of human fatty acid amide hydrolases (FAAH).Eur. J. Med. Chem.20159728930510.1016/j.ejmech.2015.04.064 26002335
    [Google Scholar]
  58. GriebelG. StemmelinJ. Lopez-GranchaM. FaucheyV. SlowinskiF. PichatP. DargazanliG. AbouabdellahA. CohenC. BergisO.E. The selective reversible FAAH inhibitor, SSR411298, restores the development of maladaptive behaviors to acute and chronic stress in rodents.Sci. Rep.201881241610.1038/s41598‑018‑20895‑z 29403000
    [Google Scholar]
  59. WilsonA.A. HicksJ.W. SadovskiO. ParkesJ. TongJ. HouleS. FowlerC.J. VasdevN. Radiosynthesis and evaluation of [11C-carbonyl]-labeled carbamates as fatty acid amide hydrolase radiotracers for positron emission tomography.J. Med. Chem.201356120120910.1021/jm301492y 23214511
    [Google Scholar]
  60. CramerS. JohnsonJ. NgoT. El-AlfyA.T. StecJ. Modulation of the endocannabinoid system via inhibition of fatty acid amide hydrolase (FAAH) by novel urea and carbamate derivatives.ChemistrySelect2019439116091161410.1002/slct.201903375
    [Google Scholar]
  61. GrilloA. FezzaF. ChemiG. ColangeliR. BrogiS. FazioD. FedericoS. PapaA. RelittiN. Di MaioR. GiorgiG. LamponiS. ValotiM. GorelliB. SaponaraS. BenedusiM. PecorelliA. MinettiP. ValacchiG. ButiniS. CampianiG. GemmaS. MaccarroneM. Di GiovanniG. Selective fatty acid amide hydrolase inhibitors as potential novel antiepileptic agents.ACS Chem. Neurosci.20211291716173610.1021/acschemneuro.1c00192 33890763
    [Google Scholar]
  62. PapaA. PasquiniS. GalvaniF. CammarotaM. ContriC. CarulloG. GemmaS. RamunnoA. LamponiS. GorelliB. SaponaraS. VaraniK. MorM. CampianiG. BosciaF. VincenziF. LodolaA. ButiniS. Development of potent and selective FAAH inhibitors with improved drug-like properties as potential tools to treat neuroinflammatory conditions.Eur. J. Med. Chem.202324611495210.1016/j.ejmech.2022.114952 36462439
    [Google Scholar]
  63. BertrandT. AugéF. HoutmannJ. RakA. ValléeF. MikolV. BerneP.F. MichotN. CheuretD. HoornaertC. MathieuM. Structural basis for human monoglyceride lipase inhibition.J. Mol. Biol.2010396366367310.1016/j.jmb.2009.11.060 19962385
    [Google Scholar]
  64. LabarG. BauvoisC. BorelF. FerrerJ.L. WoutersJ. LambertD.M. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling.ChemBioChem201011221822710.1002/cbic.200900621 19957260
    [Google Scholar]
  65. McAllisterL.A. ButlerC.R. MenteS. O’NeilS.V. FonsecaK.R. PiroJ.R. CianfrognaJ.A. FoleyT.L. GilbertA.M. HarrisA.R. HelalC.J. JohnsonD.S. MontgomeryJ.I. NasonD.M. NoellS. PanditJ. RogersB.N. SamadT.A. ShafferC.L. da SilvaR.G. UccelloD.P. WebbD. BrodneyM.A. Discovery of trifluoromethyl glycol carbamates as potent and selective covalent monoacylglycerol lipase (MAGL) inhibitors for treatment of neuroinflammation.J. Med. Chem.20186173008302610.1021/acs.jmedchem.8b00070 29498843
    [Google Scholar]
  66. LongJ.Z. JinX. AdibekianA. LiW. CravattB.F. Characterization of tunable piperidine and piperazine carbamates as inhibitors of endocannabinoid hydrolases.J. Med. Chem.20105341830184210.1021/jm9016976 20099888
    [Google Scholar]
  67. GranchiC. CaligiuriI. MinutoloF. RizzolioF. TuccinardiT. A patent review of Monoacylglycerol Lipase (MAGL) inhibitors (2013-2017).Expert Opin. Ther. Pat.201727121341135110.1080/13543776.2018.1389899
    [Google Scholar]
  68. ChangJ.W. NiphakisM.J. LumK.M. CognettaA.B. WangC. MatthewsM.L. NiessenS. BuczynskiM.W. ParsonsL.H. CravattB.F. Highly selective inhibitors of monoacylglycerol lipase bearing a reactive group that is bioisosteric with endocannabinoid substrates.Chem. Biol.201219557958810.1016/j.chembiol.2012.03.009 22542104
    [Google Scholar]
  69. SzaboM. AgostinoM. MaloneD.T. YurievE. CapuanoB. The design, synthesis and biological evaluation of novel URB602 analogues as potential monoacylglycerol lipase inhibitors.Bioorg. Med. Chem. Lett.201121226782678710.1016/j.bmcl.2011.09.038 21982493
    [Google Scholar]
  70. HohmannA.G. SuplitaR.L. BoltonN.M. NeelyM.H. FegleyD. MangieriR. KreyJ.F. Michael WalkerJ. HolmesP.V. CrystalJ.D. DurantiA. TontiniA. MorM. TarziaG. PiomelliD. An endocannabinoid mechanism for stress-induced analgesia.Nature200543570451108111210.1038/nature03658 15973410
    [Google Scholar]
  71. LongJ.Z. LiW. BookerL. BurstonJ.J. KinseyS.G. SchlosburgJ.E. SerranoA.M. SelleyD.E. ParsonsL.H. LichtmanA.H. CravattB.F. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects.Nat. Chem. Biol.200951374410.1038/nchembio.129
    [Google Scholar]
  72. KapandaC.N. MasquelierJ. MuccioliG.G. PoupaertJ.H. LambertD.M. Synthesis and pharmacological evaluation of 2,4-dinitroaryldithiocarbamate derivatives as novel monoacylglycerol lipase inhibitors.J. Med. Chem.201255125774578310.1021/jm3006004
    [Google Scholar]
  73. ChangJ.W. CognettaA.B. NiphakisM.J. CravattB.F. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition.ACS Chem. Biol.2013871590159910.1021/cb400261h 23701408
    [Google Scholar]
  74. GriebelG. PichatP. BeeskéS. LeroyT. RedonN. JacquetA. FrançonD. BertL. EvenL. Lopez-GranchaM. TolstykhT. SunF. YuQ. BrittainS. ArltH. HeT. ZhangB. WiederschainD. BertrandT. HoutmannJ. RakA. ValléeF. MichotN. AugéF. MenetV. BergisO.E. GeorgeP. AvenetP. MikolV. DidierM. EscoubetJ. Selective blockade of the hydrolysis of the endocannabinoid 2-arachidonoylglycerol impairs learning and memory performance while producing antinociceptive activity in rodents.Sci. Rep.201551764210.1038/srep07642 25560837
    [Google Scholar]
  75. CisarJ.S. WeberO.D. ClapperJ.R. BlankmanJ.L. HenryC.L. SimonG.M. AlexanderJ.P. JonesT.K. EzekowitzR.A.B. O’NeillG.P. GriceC.A. Identification of ABX-1431, a selective inhibitor of monoacylglycerol lipase and clinical candidate for treatment of neurological disorders.J. Med. Chem.201861209062908410.1021/acs.jmedchem.8b00951 30067909
    [Google Scholar]
  76. JiangM. van der SteltM. Activity-based protein profiling delivers selective drug candidate ABX-1431, a monoacylglycerol lipase inhibitor, to control lipid metabolism in neurological disorders.J. Med. Chem.201861209059906110.1021/acs.jmedchem.8b01405 30354159
    [Google Scholar]
  77. ButlerC.R. BeckE.M. HarrisA. HuangZ. McAllisterL.A. am Ende, C.W.; Fennell, K.; Foley, T.L.; Fonseca, K.; Hawrylik, S.J.; Johnson, D.S.; Knafels, J.D.; Mente, S.; Noell, G.S.; Pandit, J.; Phillips, T.B.; Piro, J.R.; Rogers, B.N.; Samad, T.A.; Wang, J.; Wan, S.; Brodney, M.A. Azetidine and piperidine carbamates as efficient, covalent inhibitors of monoacylglycerol lipase.J. Med. Chem.201760239860987310.1021/acs.jmedchem.7b01531 29148769
    [Google Scholar]
  78. JohanssonA. LöfbergC. AntonssonM. von UngeS. HayesM.A. JudkinsR. PlojK. BenthemL. LindénD. BrodinP. WennerbergM. FredenwallM. LiL. PerssonJ. BergmanR. PettersenA. GennemarkP. HognerA. Discovery of (3-(4-(2-Oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone (AZD1979), a Melanin Concentrating Hormone Receptor 1 (MCHr1) Antagonist with Favorable Physicochemical Properties.J. Med. Chem.20165962497251110.1021/acs.jmedchem.5b01654 26741166
    [Google Scholar]
  79. ChengR. MoriW. MaL. AlhouayekM. HatoriA. ZhangY. OgasawaraD. YuanG. ChenZ. ZhangX. ShiH. YamasakiT. XieL. KumataK. FujinagaM. NagaiY. MinamimotoT. SvenssonM. WangL. DuY. OndrechenM.J. VasdevN. CravattB.F. FowlerC. ZhangM.R. LiangS.H. In vitro and in vivoevaluation of 11C-labeled azetidinecarboxylates for imaging monoacylglycerol lipase by PET imaging studies.J. Med. Chem.20186162278229110.1021/acs.jmedchem.7b01400 29481079
    [Google Scholar]
  80. ZhangL. ButlerC.R. MarescaK.P. TakanoA. NagS. JiaZ. ArakawaR. PiroJ.R. SamadT. SmithD.L. NasonD.M. O’NeilS. McAllisterL. SchildknegtK. TrapaP. McCarthyT.J. VillalobosA. HalldinC. Identification and development of an irreversible monoacylglycerol lipase (MAGL) positron emission tomography (PET) radioligand with high specificity.J. Med. Chem.201962188532854310.1021/acs.jmedchem.9b00847 31483137
    [Google Scholar]
  81. BlankmanJ.L. SimonG.M. CravattB.F. A comprehensive profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol.Chem. Biol.200714121347135610.1016/j.chembiol.2007.11.006 18096503
    [Google Scholar]
  82. SavinainenJ.R. SaarioS.M. LaitinenJ.T. The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2‐arachidonoylglycerol signalling through cannabinoid receptors.Acta Physiol. (Oxf.)2012204226727610.1111/j.1748‑1716.2011.02280.x 21418147
    [Google Scholar]
  83. LiF. FeiX. XuJ. JiC. An unannotated α/β hydrolase superfamily member, ABHD6 differentially expressed among cancer cell lines.Mol. Biol. Rep.200936469169610.1007/s11033‑008‑9230‑7 18360779
    [Google Scholar]
  84. ZhaoS. MugaboY. IglesiasJ. XieL. Delghingaro-AugustoV. LussierR. PeyotM.L. JolyE. TaïbB. DavisM.A. BrownJ.M. AbousalhamA. GaisanoH. MadirajuS.R.M. PrentkiM. α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion.Cell Metab.2014196993100710.1016/j.cmet.2014.04.003 24814481
    [Google Scholar]
  85. ZhaoS. MugaboY. BallentineG. AttaneC. IglesiasJ. PoursharifiP. ZhangD. NguyenT.A. ErbH. PrentkiR. PeyotM.L. JolyE. TobinS. FultonS. BrownJ.M. MadirajuS.R.M. PrentkiM. α/β-Hydrolase domain 6 deletion induces adipose browning and prevents obesity and type 2 diabetes.Cell Rep.201614122872288810.1016/j.celrep.2016.02.076 26997277
    [Google Scholar]
  86. ZhaoS. PoursharifiP. MugaboY. LevensE.J. VivotK. AttaneC. IglesiasJ. PeyotM. JolyE. MadirajuS.R.M. PrentkiM. α/β-Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli.Mol. Metab.201541294095010.1016/j.molmet.2015.09.012 26909310
    [Google Scholar]
  87. AlhouayekM. MasquelierJ. CaniP.D. LambertD.M. MuccioliG.G. Implication of the anti-inflammatory bioactive lipid prostaglandin D2-glycerol ester in the control of macrophage activation and inflammation by ABHD6.Proc. Natl. Acad. Sci. USA201311043175581756310.1073/pnas.1314017110 24101490
    [Google Scholar]
  88. LiW. BlankmanJ.L. CravattB.F. A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases.J. Am. Chem. Soc.2007129319594959510.1021/ja073650c 17629278
    [Google Scholar]
  89. BachovchinD.A. JiT. LiW. SimonG.M. BlankmanJ.L. AdibekianA. HooverH. NiessenS. CravattB.F. Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening.Proc. Natl. Acad. Sci. USA201010749209412094610.1073/pnas.1011663107 21084632
    [Google Scholar]
  90. PatelJ.Z. NevalainenT.J. SavinainenJ.R. AdamsY. LaitinenT. RunyonR.S. VaaraM. AhenkorahS. KaczorA.A. Navia-PaldaniusD. GyntherM. AaltonenN. JoharapurkarA.A. JainM.R. HakaA.S. MaxfieldF.R. LaitinenJ.T. ParkkariT. Optimization of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors.ChemMedChem201510225326510.1002/cmdc.201402453 25504894
    [Google Scholar]
  91. LongJ.Z. NomuraD.K. VannR.E. WalentinyD.M. BookerL. JinX. BurstonJ.J. Sim-SelleyL.J. LichtmanA.H. WileyJ.L. CravattB.F. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo.Proc. Natl. Acad. Sci. USA200910648202702027510.1073/pnas.0909411106 19918051
    [Google Scholar]
  92. AhnK. JohnsonD.S. FitzgeraldL.R. LiimattaM. ArendseA. StevensonT. LundE.T. NugentR.A. NomanbhoyT.K. AlexanderJ.P. CravattB.F. Novel mechanistic class of fatty acid amide hydrolase inhibitors with remarkable selectivity.Biochemistry20074645130191303010.1021/bi701378g 17949010
    [Google Scholar]
  93. AhnK. JohnsonD.S. MileniM. BeidlerD. LongJ.Z. McKinneyM.K. WeerapanaE. SadagopanN. LiimattaM. SmithS.E. LazerwithS. StiffC. KamtekarS. BhattacharyaK. ZhangY. SwaneyS. Van BecelaereK. StevensR.C. CravattB.F. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain.Chem. Biol.200916441142010.1016/j.chembiol.2009.02.013 19389627
    [Google Scholar]
  94. AndersonW.B. GouldM.J. TorresR.D. MitchellV.A. VaughanC.W. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine inflammatory pain model.Neuropharmacology20148122423010.1016/j.neuropharm.2013.12.018 24384256
    [Google Scholar]
  95. Adamson BarnesN.S. MitchellV.A. KazantzisN.P. VaughanC.W. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model.Br. J. Pharmacol.20161731778710.1111/bph.13337 26398331
    [Google Scholar]
  96. BrindisiM. BrogiS. MaramaiS. GrilloA. BorrelliG. ButiniS. NovellinoE. AllaràM. LigrestiA. CampianiG. Di MarzoV. GemmaS. Harnessing the pyrroloquinoxaline scaffold for FAAH and MAGL interaction: Definition of the structural determinants for enzyme inhibition.RSC Advances2016669646516466410.1039/C6RA12524G
    [Google Scholar]
  97. SaarioS.M. PosoA. JuvonenR.O. JärvinenT. Salo-AhenO.M.H. Fatty acid amide hydrolase inhibitors from virtual screening of the endocannabinoid system.J. Med. Chem.200649154650465610.1021/jm060394q 16854070
    [Google Scholar]
  98. SeillierA. Dominguez AguilarD. GiuffridaA. The dual FAAH/MAGL inhibitor JZL195 has enhanced effects on endocannabinoid transmission and motor behavior in rats as compared to those of the MAGL inhibitor JZL184.Pharmacol. Biochem. Behav.201412415315910.1016/j.pbb.2014.05.022 24911644
    [Google Scholar]
  99. NiphakisM.J. JohnsonD.S. BallardT.E. StiffC. CravattB.F. O-hydroxyacetamide carbamates as a highly potent and selective class of endocannabinoid hydrolase inhibitors.ACS Chem. Neurosci.20123541842610.1021/cn200089j 22860211
    [Google Scholar]
  100. BarthM. RudolphS. KampschulzeJ. Meyer zu VilsendorfI. HanekampW. MulacD. LangerK. LehrM. Hexafluoroisopropyl carbamates as selective MAGL and dual MAGL/FAAH inhibitors: Biochemical and physicochemical properties.ChemMedChem2022179e20210075710.1002/cmdc.202100757 35072346
    [Google Scholar]
  101. JaiswalS. GuptaG. AyyannanS.R. Synthesis and evaluation of carbamate derivatives as fatty acid amide hydrolase and monoacylglycerol lipase inhibitors.Arch. Pharm. (Weinheim)202235511220008110.1002/ardp.202200081 35924298
    [Google Scholar]
  102. RampaA. BartoliniM. BisiA. BellutiF. GobbiS. AndrisanoV. LigrestiA. Di MarzoV. The first dual ChE/FAAH inhibitors: New perspectives for Alzheimer’s disease?ACS Med. Chem. Lett.20123318218610.1021/ml200313p 24900454
    [Google Scholar]
  103. MontanariS. ScalviniL. BartoliniM. BellutiF. GobbiS. AndrisanoV. LigrestiA. Di MarzoV. RivaraS. MorM. BisiA. RampaA. Fatty acid amide hydrolase (FAAH), acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE): Networked targets for the development of carbamates as potential anti-Alzheimer’s disease agents.J. Med. Chem.201659136387640610.1021/acs.jmedchem.6b00609 27309570
    [Google Scholar]
  104. RudolphS. DahlhausH. HanekampW. AlbersC. BarthM. MichelsG. FriedrichD. LehrM. ArylN. -[ω-(6-fluoroindol-1-yl) alkyl] carbamates as inhibitors of fatty acid amide hydrolase, monoacylglycerol lipase, and butyrylcholinesterase: Structure–activity relationships and hydrolytic stability.ACS Omega2021620134661348310.1021/acsomega.1c01699 34056494
    [Google Scholar]
  105. MalekiM.F. NadriH. KianfarM. EdrakiN. EisvandF. GhodsiR. MohajeriS.A. HadizadehF. Design and synthesis of new carbamates as inhibitors for fatty acid amide hydrolase and cholinesterases: Molecular dynamic, in vitro and in vivostudies.Bioorg. Chem.202110910468410.1016/j.bioorg.2021.104684 33607363
    [Google Scholar]
  106. MaioneS. De PetrocellisL. de NovellisV. MorielloA.S. PetrosinoS. PalazzoE. RossiF.S. WoodwardD.F. Di MarzoV. Analgesic actions of N‐arachidonoyl‐serotonin, a fatty acid amide hydrolase inhibitor with antagonistic activity at vanilloid TRPV1 receptors.Br. J. Pharmacol.2007150676678110.1038/sj.bjp.0707145 17279090
    [Google Scholar]
  107. GharatL. SzallasiA. Medicinal chemistry of the vanilloid (Capsaicin) TRPV1 receptor: Current knowledge and future perspectives.Drug Dev. Res.200768847749710.1002/ddr.20218
    [Google Scholar]
  108. MoreraE. De PetrocellisL. MoreraL. MorielloA.S. LigrestiA. NalliM. WoodwardD.F. Di MarzoV. OrtarG. Synthesis and biological evaluation of piperazinyl carbamates and ureas as fatty acid amide hydrolase (FAAH) and transient receptor potential (TRP) channel dual ligands.Bioorg. Med. Chem. Lett.200919236806680910.1016/j.bmcl.2009.09.033 19875281
    [Google Scholar]
  109. De SimoneA. RudaG.F. AlbaniC. TarozzoG. BandieraT. PiomelliD. CavalliA. BottegoniG. Applying a multitarget rational drug design strategy: The first set of modulators with potent and balanced activity toward dopamine D3 receptor and fatty acid amide hydrolase.Chem. Commun. (Camb.)201450384904490710.1039/C4CC00967C 24691497
    [Google Scholar]
  110. MicoliA. De SimoneA. RussoD. OttonelloG. ColombanoG. RudaG.F. BandieraT. CavalliA. BottegoniG. Aryl and heteroaryl N -[4-[4-(2,3-substituted-phenyl)piperazine-1-yl]alkyl] carbamates with improved physico-chemical properties as dual modulators of dopamine D3 receptor and fatty acid amide hydrolase.MedChemComm20167353754110.1039/C5MD00590F
    [Google Scholar]
  111. De SimoneA. RussoD. RudaG.F. MicoliA. FerraroM. Di MartinoR.M.C. OttonelloG. SummaM. ArmirottiA. BandieraT. CavalliA. BottegoniG. Design, synthesis, structure–activity relationship studies, and three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling of a series of o-biphenyl carbamates as dual modulators of dopamine d3 receptor and fatty acid amide hydrolas.J. Med. Chem.20176062287230410.1021/acs.jmedchem.6b01578 28182408
    [Google Scholar]
/content/journals/mrmc/10.2174/0113895575328120241107061303
Loading
/content/journals/mrmc/10.2174/0113895575328120241107061303
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test