Skip to content
2000
image of Quercetin-loaded Nanoliposomes as a Novel Neuroprotective Strategy for Alzheimer’s Disease

Abstract

Introduction

Alzheimer’s disease (AD) is characterized by progressive neurodegeneration and oxidative stress. Quercetin, a natural flavonoid, shows neuroprotective potential but has limited bioavailability. This study aims to develop a quercetin-loaded nanoliposome (QUE-NL-1) to enhance brain delivery and therapeutic efficacy in AD.

Methods

QUE-NL-1 was prepared the thin-film hydration method and characterized by DLS, TEM, and zeta potential analysis. Acute oral toxicity was evaluated in rats. Alzheimer’s disease was induced in rodents using streptozotocin (STZ) and aluminum chloride (AlCl). Behavioral tests (actophotometer, elevated plus maze), biochemical assays (SOD, CAT, MDA, GSH), and histopathology were conducted.

Results

QUE-NL-1 had a mean droplet size <200 nm, PDI ~0.3, and zeta potential of -26.6 mV. No toxicity was observed at 2000 mg/kg. In both STZ and AlCl models, QUE-NL-1 improved cognitive behavior, increased SOD, CAT, and GSH levels, reduced LPO, and preserved neuronal integrity.

Discussion

The nano formulation of quercetin improved its stability, safety, and brain-targeting ability, leading to significant cognitive and antioxidative benefits in AD models. Histological analysis further confirmed neuroprotection.

Conclusion

QUE-NL-1 is a safe and effective nanocarrier formulation with promising potential for Alzheimer’s disease management. Further studies are warranted to assess pharmacokinetics and clinical applicability.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029388830250808034502
2025-09-11
2025-11-16
Loading full text...

Full text loading...

References

  1. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  2. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  3. Shah S. Dhawan V. Holm R. Nagarsenker M.S. Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020 154-155 102 122 10.1016/j.addr.2020.07.002 32650041
    [Google Scholar]
  4. Al Noman A. Dev Sharma P. Jahin Mim T. Al Azad M. Sharma H. Molecular docking and ADMET analysis of coenzyme Q10 as a potential therapeutic agent for Alzheimer’s disease. Aging Pathobiol. Ther. 2024 6 4 1 13 10.31491/APT.2024.12.155
    [Google Scholar]
  5. Müller L.K. Landfester K. Natural liposomes and synthetic polymeric structures for biomedical applications. Biochem. Biophys. Res. Commun. 2015 468 3 411 418 10.1016/j.bbrc.2015.08.088 26315266
    [Google Scholar]
  6. Liu P. Chen G. Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  7. Datta D. Colaco V. Bandi S.P. Sharma H. Dhas N. Giram P.S. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities. Polymers for Oral Drug Delivery Technologies. Elsevier 2025 263 333
    [Google Scholar]
  8. Inamdar A. Gurupadayya B. Halagali P. Tippavajhala V.K. Khan F. Pathak R. Sharma H. Unraveling neurological drug delivery: polymeric nanocarriers for enhanced blood-brain barrier penetration. Curr. Drug Targets 2025 26 4 243 266 10.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  9. Halagali P. Nayak D. Tippavajhala V.K. Rathnanand M. Biswas D. Sharma H. Navigating the nanoscopic frontier: Ethical dimensions in developing nanocarriers for neurodegenerative diseases. The Neurodegeneration Revolution: Emerging Therapies and Sustainable Solutions Academic Press 2025 399 420 10.1016/B978‑0‑443‑28822‑7.00011‑8
    [Google Scholar]
  10. Halagali P. Nayak D. Rathnanand M. Tippavajhala V.K. Sharma H. Biswas D. Synergizing sustainable green nanotechnology and AI/ML for advanced nanocarriers: A paradigm shift in the treatment of neurodegenerative diseases. The Neurodegeneration Revolution: Emerging Therapies and Sustainable Solutions Academic Press 2025 373 397 10.1016/B978‑0‑443‑28822‑7.00017‑9
    [Google Scholar]
  11. Inamdar A. Gurupadayya B. Halagali P. Nandakumar S. Pathak R. Sharma H. Cutting-edge strategies for overcoming therapeutic barriers in Alzheimer’s disease. Curr. Pharm. Des. 2024 2024 1 21
    [Google Scholar]
  12. Crommelin D.J.A. van Hoogevest P. Storm G. The role of liposomes in clinical nanomedicine development. What now? Now what? J. Control. Release 2020 318 256 263 10.1016/j.jconrel.2019.12.023 31846618
    [Google Scholar]
  13. Li M. Du C. Guo N. Teng Y. Meng X. Sun H. Li S. Yu P. Galons H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019 164 640 653 10.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  14. Cheng M. Yuan C. Ju Y. Liu Y. Shi B. Yang Y. Jin S. He X. Zhang L. Min D. Quercetin attenuates oxidative stress and apoptosis in brain tissue of APP/PS1 double transgenic AD mice by regulating Keap1/Nrf2/HO‐1 pathway to improve cognitive impairment. Behav. Neurol. 2024 2024 1 5698119 10.1155/2024/5698119 39233848
    [Google Scholar]
  15. ying, W.L.; Zang, J. Menthol-modified quercetin liposomes with brain-targeting function for the treatment of senescent Alzheimer’s disease. ACS Chem. Neurosci. 2024 15 11 2283 2295
    [Google Scholar]
  16. Sarkar S. Bhui U. Kumar B. Ashique S. Kumar P. Sharma H. Correlation between cognitive impairment and peripheral biomarkers - Significance of phosphorylated tau and amyloid-β in Alzheimer’s disease: A new insight. Curr. Psychiatry Res. Rev. 2024 2024 1 25
    [Google Scholar]
  17. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease. INDIAN DRUGS 2024 61 7 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  18. Liu X. Yu S. Lu X. Zhang Y. Zhong H. Zhou Z. Guan R. Optimization of preparation conditions for quercetin nanoliposomes using response surface methodology and evaluation of their stability. ACS Omega 2024 9 15 acsomega.3c09892 10.1021/acsomega.3c09892 38645336
    [Google Scholar]
  19. Hao J. Guo B. Yu S. Zhang W. Zhang D. Wang J. Wang Y. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. Lebensm. Wiss. Technol. 2017 85 37 44 10.1016/j.lwt.2017.06.048
    [Google Scholar]
  20. Khot K.B. Gopan G. Bandiwadekar A. Jose J. Current advancements related to phytobioactive compounds based liposomal delivery for neurodegenerative diseases. Ageing Res. Rev. 2023 83 101806 10.1016/j.arr.2022.101806 36427765
    [Google Scholar]
  21. Danaei M. Dehghankhold M. Ataei S. Davarani H.F. Javanmard R. Dokhani A. Khorasani S. Mozafari M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  22. Organisation for Economic Co-operation and Development. Development O for EC Operation And Test. no 423: Acute Oral Toxicity-acute Toxic Class Method. OECD publishing 2002
    [Google Scholar]
  23. Haley T.J. McCormick W.G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol. Chemother. 1957 12 1 12 15 10.1111/j.1476‑5381.1957.tb01354.x 13413144
    [Google Scholar]
  24. Sakurada T. Sakurada S. Katsuyama S. Sakurada C. Tan-No K. Terenius L. Nociceptin (1-7) antagonizes nociceptin‐induced hyperalgesia in mice. Br. J. Pharmacol. 1999 128 5 941 944 10.1038/sj.bjp.0702898 10556929
    [Google Scholar]
  25. Kumar A. Dogra S. Prakash A. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats. Behav. Brain Res. 2009 205 2 384 390 10.1016/j.bbr.2009.07.012 19616038
    [Google Scholar]
  26. Dews P.B. The measurement of the influence of drugs on voluntary activity in mice. Br. J. Pharmacol. Chemother. 1953 8 1 46 48 10.1111/j.1476‑5381.1953.tb00749.x 13066693
    [Google Scholar]
  27. Reddy D.S. Kulkarni S.K. Possible role of nitric oxide in the nootropic and antiamnesic effects of neurosteroids on aging- and dizocilpine-induced learning impairment. Brain Res. 1998 799 2 215 229 10.1016/S0006‑8993(98)00419‑3 9675286
    [Google Scholar]
  28. Mushtaq A. Anwar R. Ahmad M. Lavandula stoechas L alleviates dementia by preventing oxidative damage of cholinergic neurons in mice brain. Trop. J. Pharm. Res. 2018 17 8 1539 1547 10.4314/tjpr.v17i8.11
    [Google Scholar]
  29. Zhang J. Chen R. Yu Z. Xue L. Superoxide dismutase (SOD) and catalase (CAT) activity assay protocols for Caenorhabditis elegans. Bio Protoc. 2017 7 16 e2505 e2505 10.21769/BioProtoc.2505 34541169
    [Google Scholar]
  30. Hadwan M.H. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018 19 1 7 10.1186/s12858‑018‑0097‑5 30075706
    [Google Scholar]
  31. Casado Á. Encarnación López-Fernández M. Concepción Casado M. de La Torre R. Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochem. Res. 2008 33 3 450 458 10.1007/s11064‑007‑9453‑3 17721818
    [Google Scholar]
  32. Tipple T.E. Rogers L.K. Methods for the determination of plasma or tissue glutathione levels. Dev. Toxicol. Methods Protoc 2012 889 315 324 10.1007/978‑1‑61779‑867‑2_20
    [Google Scholar]
  33. Moreira-Silva D. Carrettiero D.C. Oliveira A.S.A. Rodrigues S. dos Santos-Lopes J. Canas P.M. Cunha R.A. Almeida M.C. Ferreira T.L. Anandamide effects in a streptozotocin-induced Alzheimer’s disease-like sporadic dementia in rats. Front. Neurosci. 2018 12 653 10.3389/fnins.2018.00653 30333717
    [Google Scholar]
  34. Kumar A. Lana E. Kumar R. Lithner C.U. Darreh-Shori T. Soluble Aβ42 acts as allosteric activator of the core cholinergic enzyme choline acetyltransferase. Front. Mol. Neurosci. 2018 11 327 10.3389/fnmol.2018.00327 30271321
    [Google Scholar]
/content/journals/mns/10.2174/0118764029388830250808034502
Loading
/content/journals/mns/10.2174/0118764029388830250808034502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test