Skip to content
2000
Volume 17, Issue 4
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Cancer is a major global health disease characterized by uncontrolled cell proliferation and invasiveness. The complexity of its etiology, involving genetic mutations and environmental influences as well as unhealthy lifestyles, necessitates innovative therapeutic approaches. However, peptide-based therapies will offer significant potential, their high specificity and efficacy notwithstanding, in targeting cancerous cells. Poor stability, rapid degradation, and limited bioavailability pose significant challenges to their clinical utility. Nano-particle-based delivery systems are considered a revolutionary approach for delivering therapeutic peptides with better stability, targeted delivery, and controlled release. In this comprehensive review, the recent advances in nano-carrier-based peptide delivery systems for cancer therapeutics have been discussed. Different types of nano-carriers, like lipid-based systems, namely liposomes, polymeric micelles, inorganic nanoparticles, and hybrid systems, have been discussed with their mechanisms of cellular targeting, advantages, limitations, and clinical applications. Notable formulations such as Doxil and Abraxane demonstrate the significance of nanoparticle-based therapeutic interventions in clinical settings. A significant section focuses on combination therapies, multifunctional nanoparticles, and the integration of emergent technologies to surpass biological barriers. However, many challenges remain, including toxicity, scalability, and regulatory issues. In order to maximize nanocarrier design and enhance therapeutic results, this review focusses more on personalized medicine and ongoing innovation. To sum up, nano carriers do hold revolutionary promise for cancer peptide therapy, offering enhanced efficacy, decreased side effects, and precise targeting. To turn these discoveries into broad clinical uses and usher in a new era of cancer treatment, more research is necessary.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029358553250325040749
2025-04-16
2025-10-25
Loading full text...

Full text loading...

References

  1. GuptaS. JainA. ChakrabortyM. SahniJ.K. AliJ. DangS. Oral delivery of therapeutic proteins and peptides: A review on recent developments.Drug Deliv.201320623724610.3109/10717544.2013.819611 23869787
    [Google Scholar]
  2. ParkI.S. KimS. YimY. ParkG. ChoiJ. WonC. MinD.H. Multifunctional synthetic nano-chaperone for peptide folding and intracellular delivery.Nat. Commun.2022131456810.1038/s41467‑022‑32268‑2 35931667
    [Google Scholar]
  3. KudarhaR.R. SawantK.K. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches.Mater. Sci. Eng. C20178160762610.1016/j.msec.2017.08.004 28888016
    [Google Scholar]
  4. MeiselA. PascoloS. mRNA vaccines against infectious diseases and cancer.Healthbook Times Oncol. Hematol.202193243110.36000/hbT.OH.2021.09.045
    [Google Scholar]
  5. KimH. GriffithT.S. PanyamJ. Poly(d,l-lactide-co-glycolide) nanoparticles as delivery platforms for TLR7/8 agonist-based cancer vaccine.J. Pharmacol. Exp. Ther.2019370371572410.1124/jpet.118.254953 30610006
    [Google Scholar]
  6. ZhangK. XuZ. LuJ. TangZ. ZhaoH. GoodD. WeiM. Potential for layered double hydroxides-based, innovative drug delivery systems.Int. J. Mol. Sci.20141557409742810.3390/ijms15057409 24786098
    [Google Scholar]
  7. ImaniR. ShaoW. TaherkhaniS. EmamiS.H. PrakashS. FaghihiS. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells.Colloids Surf. B Biointerfaces201614731532510.1016/j.colsurfb.2016.08.015 27543693
    [Google Scholar]
  8. WangZ. LuoH. WangH. XiaoM. JiaH. RenC. LiuJ. Peptide‐based supramolecular therapeutics for fighting major diseases.Adv. Funct. Mater.20243425231449210.1002/adfm.202314492
    [Google Scholar]
  9. LalanM. ShahP. BarveK. ParekhK. MehtaT. PatelP. Skin cancer therapeutics: Nano-drug delivery vectors—present and beyond.Future J. Pharm. Sci.2021717912510.1186/s43094‑021‑00326‑z
    [Google Scholar]
  10. RanjbariJ. MokhtarzadehA. AlibakhshiA. TabarzadM. HejaziM. RamezaniM. Anti-cancer drug delivery using carbohydrate-based polymers.Curr. Pharm. Des.201823396019603210.2174/1381612823666170505124927 28482782
    [Google Scholar]
  11. OieniJ. LevyL. Letko KhaitN. YosefL. SchoenB. FlimanM. Shalom-LuxenburgH. Malkah DayanN. D’AtriD. Cohen AnavyN. MachlufM. Nano-Ghosts: Biomimetic membranal vesicles, technology and characterization.Methods202017712613410.1016/j.ymeth.2019.11.013 31794834
    [Google Scholar]
  12. MaB. NiuF. QuX. HeW. FengC. WangS. OuyangZ. YanJ. WenY. XuD. ShaoY. MaP.X. LuW. A tetrameric protein scaffold as a nano-carrier of antitumor peptides for cancer therapy.Biomaterials201920411210.1016/j.biomaterials.2019.03.004 30861422
    [Google Scholar]
  13. BhatM. JatyanR. MittalA. MahatoR.I. ChitkaraD. Opportunities and challenges of fatty acid conjugated therapeutics.Chem. Phys. Lipids202123610505310.1016/j.chemphyslip.2021.105053 33484709
    [Google Scholar]
  14. KhanI. SaeedK. KhanI. Nanoparticles: Properties, applications and toxicities.Arab. J. Chem.201912790893110.1016/j.arabjc.2017.05.011
    [Google Scholar]
  15. SharmaG. KumarA. SharmaS. NaushadM. Prakash DwivediR. AlothmanZ.A. MolaG.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review.J. King Saud Univ. Sci.201931225726910.1016/j.jksus.2017.06.012
    [Google Scholar]
  16. YusufA. AlmotairyA.R.Z. HenidiH. AlshehriO.Y. AldughaimM.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems.Polymers (Basel)2023157159610.3390/polym15071596 37050210
    [Google Scholar]
  17. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnology202220126210.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  18. IjazI. GilaniE. NazirA. BukhariA. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles.Green Chem. Lett. Rev.202013322324510.1080/17518253.2020.1802517
    [Google Scholar]
  19. Najahi-MissaouiW. ArnoldR.D. CummingsB.S. Safe nanoparticles: Are we there yet?Int. J. Mol. Sci.202022138510.3390/ijms22010385 33396561
    [Google Scholar]
  20. XuL. WangX. LiuY. YangG. FalconerR.J. ZhaoC.X. Lipid nanoparticles for drug delivery.Adv. NanoBiomed Res.202222210010910.1002/anbr.202100109 35179344
    [Google Scholar]
  21. Barbaz-IsfahaniR. DadrasH. Saber-SamandariS. Taherzadeh-FardA. LiaghatG. A comprehensive investigation of the low-velocity impact response of enhanced GFRP composites with single and hybrid loading of various types of nanoparticles.Heliyon202395e1593010.1016/j.heliyon.2023.e15930 37168892
    [Google Scholar]
  22. GourA. JainN.K. Advances in green synthesis of nanoparticles.Artif. Cells Nanomed. Biotechnol.201947184485110.1080/21691401.2019.1577878 30879351
    [Google Scholar]
  23. SharmaD. KanchiS. BisettyK. Biogenic synthesis of nanoparticles: A review.Arab. J. Chem.20191283576360010.1016/j.arabjc.2015.11.002
    [Google Scholar]
  24. JadounS. ArifR. JangidN.K. MeenaR.K. Green synthesis of nanoparticles using plant extracts: A review.Environ. Chem. Lett.202119135537410.1007/s10311‑020‑01074‑x
    [Google Scholar]
  25. RaiM. BondeS. GolinskaP. Trzcińska-WencelJ. GadeA. Abd-ElsalamK.A. ShendeS. GaikwadS. IngleA.P. Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications.J. Fungi (Basel)20217213910.3390/jof7020139 33672011
    [Google Scholar]
  26. NaikooG.A. MustaqeemM. HassanI.U. AwanT. ArshadF. SalimH. QurashiA. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review.J. Saudi Chem. Soc.202125910130410.1016/j.jscs.2021.101304
    [Google Scholar]
  27. PatilN. BhaskarR. VyavhareV. DhadgeR. KhaireV. PatilY. Overview on methods of synthesis of nanoparticles.Int. J. Curr. Pharm. Res.2021132111610.22159/ijcpr.2021v13i2.41556
    [Google Scholar]
  28. KhodashenasB. GhorbaniH.R. Synthesis of silver nanoparticles with different shapes.Arab. J. Chem.20191281823183810.1016/j.arabjc.2014.12.014
    [Google Scholar]
  29. YingS. GuanZ. OfoegbuP.C. ClubbP. RicoC. HeF. HongJ. Green synthesis of nanoparticles: Current developments and limitations.Environ. Technol. Innov.20222610233610.1016/j.eti.2022.102336
    [Google Scholar]
  30. AswathiV.P. MeeraS. MariaC.G.A. NidhinM. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: A critical review.Nanotechnol. Environ. Eng.2023837739710.1007/s41204‑022‑00276‑8
    [Google Scholar]
  31. KhanF. ShahidA. ZhuH. WangN. JavedM.R. AhmadN. XuJ. AlamM.A. MehmoodM.A. Prospects of algae-based green synthesis of nanoparticles for environmental applications.Chemosphere202229313357110.1016/j.chemosphere.2022.133571 35026203
    [Google Scholar]
  32. SzczyglewskaP. Feliczak-GuzikA. NowakI. Nanotechnology–general aspects: A chemical reduction approach to the synthesis of nanoparticles.Molecules20232813493210.3390/molecules28134932 37446593
    [Google Scholar]
  33. KambleS. BhosaleK. MohiteM. NavaleS. Methods of preparation of nanoparticles.Int. J. Adv. Res. Sci. Commun. Technol. (IJARSCT)20232164064610.48175/IJARSCT‑9485
    [Google Scholar]
  34. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. MiaoY.B. CaiL. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.20238141810.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  35. MundekkadD. ChoW.C. Nanoparticles in clinical translation for cancer therapy.Int. J. Mol. Sci.2022233168510.3390/ijms23031685 35163607
    [Google Scholar]
  36. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: Current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  37. ÇeşmeliS. Biray AvciC. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies.J. Drug Target.201927776276610.1080/1061186X.2018.1527338 30252540
    [Google Scholar]
  38. LiC. LiY. LiG. WuS. Functional nanoparticles for enhanced cancer therapy.Pharmaceutics2022148168210.3390/pharmaceutics14081682 36015307
    [Google Scholar]
  39. GaoY. WangK. ZhangJ. DuanX. SunQ. MenK. Multifunctional nanoparticle for cancer therapy.MedComm202341e18710.1002/mco2.187 36654533
    [Google Scholar]
  40. HanH. LiJ. SantosH.A. Recent advances in Fenton and Fenton-like reaction mediated nanoparticle in cancer therapy.Biomed Technol20233405110.1016/j.bmt.2022.12.004
    [Google Scholar]
  41. GutiérrezV.P. CarrilloM.J. SalazarS.C. ParedesV.J. CoronadoG.O. Functionalized metal nanoparticles in cancer therapy.Pharmaceutics2023157193210.3390/pharmaceutics15071932 37514119
    [Google Scholar]
  42. Aghebati-MalekiA. DolatiS. AhmadiM. BaghbanzhadehA. AsadiM. FotouhiA. YousefiM. Aghebati-MalekiL. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers.J. Cell. Physiol.202023531962197210.1002/jcp.29126 31441032
    [Google Scholar]
  43. SiddiqueS. ChowJ.C.L. Gold Nanoparticles for Drug Delivery And Cancer Therapy.Appl. Sci.: Switzerland20201011382410.3390/app10113824
    [Google Scholar]
  44. FarzinA. EtesamiS.A. QuintJ. MemicA. TamayolA. Magnetic nanoparticles in cancer therapy and diagnosis.Adv. Healthc. Mater.202099190105810.1002/adhm.201901058 32196144
    [Google Scholar]
  45. MokhosiS.R. MdlaloseW. NhlapoA. SinghM. Advances in the synthesis and application of magnetic ferrite nanoparticles for cancer therapy.Pharmaceutics202214593710.3390/pharmaceutics14050937 35631523
    [Google Scholar]
  46. KimJ.Y. ChoiW.I. KimY.H. TaeG. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier.Biomaterials20133441170117810.1016/j.biomaterials.2012.09.047 23122677
    [Google Scholar]
  47. LiuM. WangF. PuC. TangW. SunQ. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier.Food Chem.202135812984010.1016/j.foodchem.2021.129840 33933956
    [Google Scholar]
  48. KumarP. Shamim MuztabaM. AliT. BalaJ. SidhuH.S. BhatiaA. Fused deposition modeling 3D-printed scaffolds for bone tissue engineering applications: A review.Ann. Biomed. Eng.20245251184119410.1007/s10439‑024‑03479‑z 38418691
    [Google Scholar]
  49. NaderinezhadS. AmoabedinyG. HaghiralsadatF. Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers.RSC Advances2017748300083001910.1039/C7RA01736G
    [Google Scholar]
  50. ChaturvediS. GargA. VermaA. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models.J. Drug Deliv. Sci. Technol.20205910189910.1016/j.jddst.2020.101899
    [Google Scholar]
  51. BhargavaA. MishraD.K. JainS.K. SrivastavaR.K. LohiyaN.K. MishraP.K. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers.Mol. Immunol.2016799811210.1016/j.molimm.2016.10.003 27764711
    [Google Scholar]
  52. AndishmandH. Azadmard-damirchiS. HamishekarH. TorbatiM. KharazmiM.S. SavageG.P. TanC. JafariS.M. Nano-delivery systems for encapsulation of phenolic compounds from pomegranate peel.Adv. Colloid Interface Sci.202331110283310.1016/j.cis.2022.102833 36610103
    [Google Scholar]
  53. DundarN.A. OzdemirS. UzunerK. ParlakE.M. SahinI.O. DagdelenF.A. SaricaogluT.F. Characterization of pomegranate peel extract loaded nanophytosomes and the enhancement of bio-accessibility and storage stability.Food Chem.202339813392110.1016/j.foodchem.2022.133921 35969988
    [Google Scholar]
  54. GhanbarzadehB. BabazadehA. HamishehkarH. Nano-phytosome as a potential food-grade delivery system.Food Biosci.20161512613510.1016/j.fbio.2016.07.006
    [Google Scholar]
  55. KothapalliP. VasanthanM. Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: A comprehensive review.Ther. Deliv.202415213515510.4155/tde‑2023‑0116 38214118
    [Google Scholar]
  56. KumarR. DivyaS. MahapatraS. DubeyV.K. ChandraP. N-acetyl-d-glucosamine decorated nano-lipid-based carriers as theranostics module for targeted anti-cancer drug delivery.Mater. Chem. Phys.202228212595610.1016/j.matchemphys.2022.125956
    [Google Scholar]
  57. LeH. DéE. Le CerfD. KarakasyanC. Using targeted nano-antibiotics to improve antibiotic efficacy against Staphylococcus aureus infections.Antibiotics (Basel)2023126106610.3390/antibiotics12061066 37370385
    [Google Scholar]
  58. ElnahtawyA.I. ElshafeiN.S. ElzoghbyA.O. Marine polymer-based nano-carriers for drug delivery applications.Marine Biomaterials. JanaS. JanaS. SingaporeSpringer2022155910.1007/978‑981‑16‑4787‑1_2
    [Google Scholar]
  59. RoyB. GhoseS. BiswasS. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma.Semin. Cell Dev. Biol.202212413414410.1016/j.semcdb.2021.04.006 33926792
    [Google Scholar]
  60. GigmesD. TrimailleT. Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery.Adv. Colloid Interface Sci.202129410248310.1016/j.cis.2021.102483 34274723
    [Google Scholar]
  61. ZhangX. LiuX.Y. YangH. ChenJ.N. LinY. HanS.Y. CaoQ. ZengH.S. YeJ.W. A polyhydroxyalkanoates-based carrier platform of bioactive substances for therapeutic applications.Front. Bioeng. Biotechnol.2022979872410.3389/fbioe.2021.798724 35071207
    [Google Scholar]
  62. YuJ. QiuH. YinS. WangH. LiY. Polymeric drug delivery system based on pluronics for cancer treatment.Molecules20212612361010.3390/molecules26123610 34204668
    [Google Scholar]
  63. ZhaoS. HuangC. YueX. LiX. ZhouP. WuA. ChenC. QuY. ZhangC. Application advance of electrosprayed micro/nanoparticles based on natural or synthetic polymers for drug delivery system.Mater. Des.202222011085010.1016/j.matdes.2022.110850
    [Google Scholar]
  64. AzizT. UllahA. AliA. ShabeerM. ShahM.N. HaqF. IqbalM. UllahR. KhanF.U. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field.J. Appl. Polym. Sci.202213929e5262410.1002/app.52624
    [Google Scholar]
  65. ZahirinejadS. HemmatiR. HomaeiA. DinariA. HosseinkhaniS. MohammadiS. VianelloF. Nano-organic supports for enzyme immobilization: Scopes and perspectives.Colloids Surf. B Biointerfaces202120411177410.1016/j.colsurfb.2021.111774 33932893
    [Google Scholar]
  66. LiuS. GuoR. LiC. LuC. YangG. WangF. NieJ. MaC. GaoM. POSS hybrid hydrogels: A brief review of synthesis, properties and applications.Eur. Polym. J.202114311018010.1016/j.eurpolymj.2020.110180
    [Google Scholar]
  67. YaacobS.F.F.S. MansorN. NizarS.A. OlasupoA. MohamedN. SuahF.B.M. Hybrid polymer inclusion membrane as anion exchange membrane for recovering Pd2+ ions in electrogenerative process.J Electrochem Sci Eng202313234736010.5599/jese.1501
    [Google Scholar]
  68. LinH. LengJ. FanP. XuZ. RuanG. Scalable production of microscopic particles for biological delivery.Mater. Adv.20234142885290810.1039/D3MA00021D
    [Google Scholar]
  69. LiY. WangY. ZhangL. DingX. LiuT. QiuQ. JiangZ. Electrospun silk fibroin/polyethylene oxide composite scaffolds with strontium or copper-doped hollow bioactive glass nanospheres for pH-triggered sustained drug release.Mater. Lett.202333613388110.1016/j.matlet.2023.133881
    [Google Scholar]
  70. RiazM. RiazM. ZhangX. LinC. WongK. ChenX. ZhangG. LuA. YangZ. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review.Int. J. Mol. Sci.201819119510.3390/ijms19010195 29315231
    [Google Scholar]
  71. RahikkalaA. PereiraS.A.P. FigueiredoP. PassosM.L.C. AraújoA.R.T.S. SaraivaM.L.M.F.S. SantosH.A. Mesoporous silica nanoparticles for targeted and stimuli‐responsive delivery of chemotherapeutics: A review.Adv. Biosyst.201827180002010.1002/adbi.201800020
    [Google Scholar]
  72. FangR.H. HuC.M.J. ChenK.N.H. LukB.T. CarpenterC.W. GaoW. LiS. ZhangD.E. LuW. ZhangL. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles.Nanoscale20135198884888810.1039/c3nr03064d 23907698
    [Google Scholar]
  73. LiuJ. LaiH. XiongZ. ChenB. ChenT. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy.Chem. Commun. (Camb.)201955679904991410.1039/C9CC04098F 31360938
    [Google Scholar]
  74. YaghoubiA. RamazaniA. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies.J. Control. Release202032719822410.1016/j.jconrel.2020.08.001 32763433
    [Google Scholar]
  75. NethiS.K. LiX. BhatnagarS. PrabhaS. Enhancing anticancer efficacy of chemotherapeutics using targeting ligand-functionalized synthetic antigen receptor-mesenchymal stem cells.Pharmaceutics2023156174210.3390/pharmaceutics15061742 37376189
    [Google Scholar]
  76. SuS. ChhabraG. SinghC.K. NdiayeM.A. AhmadN. PLK1 inhibition-based combination therapies for cancer management.Transl. Oncol.20221610133210.1016/j.tranon.2021.101332 34973570
    [Google Scholar]
  77. Minerva; Bhat, A.; Verma, S.; Chander, G.; Jamwal, R.S.; Sharma, B.; Bhat, A.; Katyal, T.; Kumar, R.; Shah, R. Cisplatin-based combination therapy for cancer.J. Cancer Res. Ther.202319353053610.4103/jcrt.jcrt_792_22 37470570
    [Google Scholar]
  78. MokhtariR.B. HomayouniT.S. BaluchN. MorgatskayaE. KumarS. DasB. YegerH. Combination therapy in combating cancer.Oncotarget2017823380223804310.18632/oncotarget.16723 28410237
    [Google Scholar]
  79. OkemA. HenstraC. LambertM. HayeshiR. A review of the pharmacodynamic effect of chemo-herbal drug combinations therapy for cancer treatment.Med. Drug Discov.20231710014710.1016/j.medidd.2022.100147
    [Google Scholar]
  80. ŠkubníkJ. PavlíčkováV.S. RumlT. RimpelováS. Vincristine in combination therapy of cancer: Emerging trends in clinics.Biology (Basel)202110984910.3390/biology10090849 34571726
    [Google Scholar]
  81. LiuN. LiuM. FuS. WangJ. TangH. IsahA.D. ChenD. WangX. Ang2-targeted combination therapy for cancer treatment.Front. Immunol.20221394955310.3389/fimmu.2022.949553 35874764
    [Google Scholar]
  82. HeC. LuJ. LinW. Hybrid nanoparticles for combination therapy of cancer.J. Control. Release201521922423610.1016/j.jconrel.2015.09.029 26387745
    [Google Scholar]
  83. WangY. LiJ. XiaL. Plant-derived natural products and combination therapy in liver cancer.Front. Oncol.202313111653210.3389/fonc.2023.1116532 36865794
    [Google Scholar]
  84. WangX. LiJ. ChenR. LiT. ChenM. Active ingredients from Chinese medicine for combination cancer therapy.Int. J. Biol. Sci.202319113499352510.7150/ijbs.77720 37497002
    [Google Scholar]
  85. MišíkO. KejíkováJ. CejpekO. MalýM. JuglA. BělkaM. MravecF. LízalF. Nebulization and in vitro upper airway deposition of liposomal carrier systems.Mol. Pharm.20242141848186010.1021/acs.molpharmaceut.3c01146 38466817
    [Google Scholar]
  86. SabaghiY. PourFarzadF. ZolghadrL. BahramiA. ShojazadehT. FarasatA. GheibiN. A nano-liposomal carrier containing p-coumaric acid for induction of targeted apoptosis on melanoma cells and kinetic modeling.Biochem. Biophys. Res. Commun.202469014921910.1016/j.bbrc.2023.149219 37995451
    [Google Scholar]
  87. BelogurovA.A.Jr StepanovA.V. SmirnovI.V. MelamedD. BaconA. MamedovA.E. BoitsovV.M. SashchenkoL.P. PonomarenkoN.A. SharanovaS.N. BoykoA.N. DubinaM.V. FribouletA. GenkinD.D. GabibovA.G. Liposome‐encapsulated peptides protect against experimental allergic encephalitis.FASEB J.201327122223110.1096/fj.12‑213975 23047895
    [Google Scholar]
  88. da Silva MalheirosP. DaroitD.J. BrandelliA. Food applications of liposome-encapsulated antimicrobial peptides.Trends Food Sci. Technol.201021628429210.1016/j.tifs.2010.03.003
    [Google Scholar]
  89. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  90. JinG.W. RejinoldN.S. ChoyJ.H. Multifunctional polymeric micelles for cancer therapy.Polymers (Basel)20221422483910.3390/polym14224839 36432965
    [Google Scholar]
  91. KadekarS. NawaleG.N. RangasamiV.K. Le JoncourV. LaakkonenP. HilbornJ. VargheseO.P. OommenO.P. Redox responsive Pluronic micelle mediated delivery of functional siRNA: A modular nano-assembly for targeted delivery.Biomater. Sci.20219113939394410.1039/D1BM00428J 34002185
    [Google Scholar]
  92. LiJ. RenH. SunY. LiuG. YangX. QiuQ. DingY. LovellJ.F. ZhangY. Magnetic metal micelles for enhanced delivery of self-immolating CD8+ T-cell epitopes for cancer immunotherapy.Chem. Mater.202133249780979410.1021/acs.chemmater.1c03681
    [Google Scholar]
  93. SanzhakovM.A. KudinovV.A. BaskaevK.K. MorozevichG.E. StepanovaD.S. TorkhovskayaT.I. TereshkinaY.A. KorotkevichE.I. TikhonovaE.G. Composite phospholipid-gold nanoparticles with targeted fragment for tumor imaging.Biomed. Pharmacother.202114211198510.1016/j.biopha.2021.111985 34352716
    [Google Scholar]
  94. PatraC.R. BhattacharyaR. MukhopadhyayD. MukherjeeP. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer.Adv. Drug Deliv. Rev.201062334636110.1016/j.addr.2009.11.007 19914317
    [Google Scholar]
  95. HalevasE. MavroidiB. KokotidouC. MoschonaA. SagnouM. MitrakiA. LitsardakisG. PelecanouM. Remdesivir-loaded bis-MPA hyperbranched dendritic nanocarriers for pulmonary delivery.J. Drug Deliv. Sci. Technol.20227510362510.1016/j.jddst.2022.103625 35966803
    [Google Scholar]
  96. KurniasihI.N. KeilitzJ. HaagR. Dendritic nanocarriers based on hyperbranched polymers.Chem. Soc. Rev.201544124145416410.1039/C4CS00333K 25980677
    [Google Scholar]
  97. GajbhiyeV. KumarV.P. TekadeK.R. JainN. Pharmaceutical and biomedical potential of PEGylated dendrimers.Curr. Pharm. Des.200713441542910.2174/138161207780162999
    [Google Scholar]
  98. GuillaudeuS.J. FoxM.E. HaidarY.M. DyE.E. SzokaF.C. FréchetJ.M.J. PEGylated dendrimers with core functionality for biological applications.Bioconjug. Chem.200819246146910.1021/bc700264g 18173227
    [Google Scholar]
  99. Mascarenhas-MeloF. MathurA. MurugappanS. SharmaA. TanwarK. DuaK. SinghS.K. MazzolaP.G. YadavD.N. RenganA.K. VeigaF. Paiva-SantosA.C. Inorganic nanoparticles in dermopharmaceutical and cosmetic products: Properties, formulation development, toxicity, and regulatory issues.Eur. J. Pharm. Biopharm.2023192254010.1016/j.ejpb.2023.09.011 37739239
    [Google Scholar]
  100. AnselmoA.C. MitragotriS. A review of clinical translation of inorganic nanoparticles.AAPS J.20151751041105410.1208/s12248‑015‑9780‑2 25956384
    [Google Scholar]
  101. GuoC. JordanJ.S. YargerJ.L. HollandG.P. Highly efficient fumed silica nanoparticles for peptide bond formation: Converting alanine to alanine anhydride.ACS Appl. Mater. Interfaces2017920176531766110.1021/acsami.7b04887 28452465
    [Google Scholar]
  102. von BaeckmannC. RubioG.M.D.M. KähligH. KurzbachD. ReithoferM.R. KleitzF. Evaporation‐induced self‐assembly of small peptide‐conjugated silica nanoparticles.Angew. Chem. Int. Ed.20216042227002270510.1002/anie.202108378 34520085
    [Google Scholar]
  103. SultanaF. ManirujjamanM. HaqueM.I-U. ArafatM. SharminS. An overview of nanogel drug delivery system.J. Appl. Pharm. Sci.201338Suppl. 1S95S10510.7324/JAPS.2013.38.S15
    [Google Scholar]
  104. ThiH.N. TheH.N. QuocT.T. NgocS.N. ThanhD.V. HoangP.V. MinhT.V. Nanogel systems based on heparin and pluronics for redox‐responsive delivery of poorly water‐soluble drugs in cancer treatment.Vietnam J. Chem.202361S312613310.1002/vjch.202300042
    [Google Scholar]
  105. DingL. JiangY. ZhangJ. KlokH.A. ZhongZ. pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: Synthesis and targeted intracellular protein delivery to CD44 positive cancer cells.Biomacromolecules201819255556210.1021/acs.biomac.7b01664 29284258
    [Google Scholar]
  106. NagelG. Sousa-HervesA. WedepohlS. CalderónM. Matrix metalloproteinase-sensitive multistage nanogels promote drug transport in 3D tumor model.Theranostics20201019110810.7150/thno.34851 31903108
    [Google Scholar]
  107. LiR. ZhangL. JiangX. LiL. WuS. YuanX. ChengH. JiangX. GouM. 3D-printed microneedle arrays for drug delivery.J. Control. Release202235093394810.1016/j.jconrel.2022.08.022 35977583
    [Google Scholar]
  108. CourtenayA.J. McAlisterE. McCruddenM.T.C. VoraL. SteinerL. LevinG. Levy-NissenbaumE. ShtermanN. KearneyM.C. McCarthyH.O. DonnellyR.F. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery.J. Control. Release202032217718610.1016/j.jconrel.2020.03.026 32200001
    [Google Scholar]
  109. KimS. NamS.N. JangA. JangM. ParkC.M. SonA. HerN. HeoJ. YoonY. Review of adsorption–membrane hybrid systems for water and wastewater treatment.Chemosphere2022286Pt 313191610.1016/j.chemosphere.2021.131916 34416582
    [Google Scholar]
  110. BaaloudjO. NasrallahN. KenfoudH. BourkebK.W. BadawiA.K. Polyaniline/Bi12TiO20 hybrid system for cefixime removal by combining adsorption and photocatalytic degradation.ChemEngineering202371410.3390/chemengineering7010004
    [Google Scholar]
  111. ModyV.V. SinghA. WesleyB. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia.Eur. J. Nanomed.201351112110.1515/ejnm‑2012‑0008
    [Google Scholar]
  112. Nowak-JaryJ. MachnickaB. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.J. Nanobiotechnology202220130510.1186/s12951‑022‑01510‑w 35761279
    [Google Scholar]
  113. SivadasanD. RamakrishnanK. MahendranJ. RanganathanH. KaruppaiahA. RahmanH. Solid lipid nanoparticles: Applications and prospects in cancer treatment.Int. J. Mol. Sci.2023247619910.3390/ijms24076199 37047172
    [Google Scholar]
  114. CaoY. Adipocyte and lipid metabolism in cancer drug resistance.J. Clin. Invest.201912983006301710.1172/JCI127201 31264969
    [Google Scholar]
  115. YamaokaT. KusumotoS. AndoK. OhbaM. OhmoriT. Receptor tyrosine kinase-targeted cancer therapy.Int. J. Mol. Sci.20181911349110.3390/ijms19113491 30404198
    [Google Scholar]
  116. WeinerG.J. Building better monoclonal antibody-based therapeutics.Nat. Rev. Cancer201515636137010.1038/nrc3930 25998715
    [Google Scholar]
  117. LiD. GaoC. KuangM. XuM. WangB. LuoY. TengL. XieJ. Nanoparticles as drug delivery systems of rnai in cancer therapy.Molecules2021268238010.3390/molecules26082380 33921892
    [Google Scholar]
  118. ParkJ. ChoJ. SongE.J. Ubiquitin–proteasome system (UPS) as a target for anticancer treatment.Arch. Pharm. Res.202043111144116110.1007/s12272‑020‑01281‑8 33165832
    [Google Scholar]
  119. JinX. DaiL. MaY. WangJ. LiuZ. Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer.Cancer Cell Int.202020127310.1186/s12935‑020‑01370‑0 32587480
    [Google Scholar]
  120. HaqueS. MorrisJ.C. Transforming growth factor-β: A therapeutic target for cancer.Hum. Vaccin. Immunother.20171381741175010.1080/21645515.2017.1327107 28575585
    [Google Scholar]
  121. SaraonP. PathmanathanS. SniderJ. LyakishevaA. WongV. StagljarI. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches.Oncogene202140244079409310.1038/s41388‑021‑01841‑2 34079087
    [Google Scholar]
  122. MartinR.D. HébertT.E. TannyJ.C. Therapeutic targeting of the general RNA polymerase II transcription machinery.Int. J. Mol. Sci.2020219335410.3390/ijms21093354 32397434
    [Google Scholar]
  123. YinJ. SuX. YanS. ShenJ. Multifunctional nanoparticles and nanopesticides in agricultural application.Nanomaterials (Basel)2023137125510.3390/nano13071255 37049348
    [Google Scholar]
  124. ActerS. MoreauM. IvkovR. ViswanathanA. NgwaW. Polydopamine nanomaterials for overcoming current challenges in cancer treatment.Nanomaterials (Basel)20231310165610.3390/nano13101656 37242072
    [Google Scholar]
  125. ZhangY. WangB. ZhaoR. ZhangQ. KongX. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy.Mater. Sci. Eng. C202011511109910.1016/j.msec.2020.111099 32600703
    [Google Scholar]
  126. VallabaniN.V.S. SinghS. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech20188627910.1007/s13205‑018‑1286‑z 29881657
    [Google Scholar]
  127. EkladiousI. ColsonY.L. GrinstaffM.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects.Nat. Rev. Drug Discov.201918427329410.1038/s41573‑018‑0005‑0 30542076
    [Google Scholar]
  128. RanaA. YadavK. JagadevanS. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity.J. Clean. Prod.202027212288010.1016/j.jclepro.2020.122880
    [Google Scholar]
  129. VermaM. Personalized medicine and cancer.J. Pers. Med.20122111410.3390/jpm2010001 25562699
    [Google Scholar]
  130. SuM. ZhangZ. ZhouL. HanC. HuangC. NiceE.C. Proteomics, personalized medicine and cancer.Cancers (Basel)20211311251210.3390/cancers13112512 34063807
    [Google Scholar]
  131. AliS. EkbbalR. SalarS. Yasheshwar AliS.A. JaiswalA.K. SinghM. YadavD.K. KumarS. Gaurav Quality standards and pharmacological interventions of natural oils: Current scenario and future perspectives.ACS Omega2023843399453996310.1021/acsomega.3c05241 37953833
    [Google Scholar]
  132. Abstracts of the 17th International Symposium on Bioluminescence and Chemiluminescence, May 28th - June 2nd, 2012, Guelph, Ontario, Canada (ISBC 2012).Luminescence20122729517810.1002/bio.2341 22505334
    [Google Scholar]
  133. EkbbalR. JaiswalA.K. AggarwalM. SinghM. AliS.A. AliS. GautamG. Indian medicinal plants for the management of endometriosis: A comprehensive review on their phytopharmacology.Nat Resour Hum Health202441758810.53365/nrfhh/174668
    [Google Scholar]
  134. XuX. LiuC. WangY. KoivistoO. ZhouJ. ShuY. ZhangH. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment.Adv. Drug Deliv. Rev.202117611389110.1016/j.addr.2021.113891
    [Google Scholar]
  135. AliS. A brief review of pathophysiology and management of different types of arthritis.Eur. Chem. Bull.2023121219923010.48047/ecb/2023.12.si12.016
    [Google Scholar]
  136. HameedS.F. PerkhdriS.K.A. SalehH.H. Effect of diffrerent concentrations of bee glue extract as replacement of antibiotic on the chemical composition of the of broiler chicken.Plant Arch.202121Suppl. 11676168010.51470/PLANTARCHIVES.2021.v21.S1.264
    [Google Scholar]
  137. AliS.A. AliS. JahanI. AliS. Allergies to Infections.Understanding the Spectrum of Conjunctivitis202314656
    [Google Scholar]
  138. EkbbalR. JaiswalA.K. AggarwalM. SinghM. AliS.A. AliS. GautamG. Indian medicinal plants for the management of endometriosis: A comprehensive review on their phytopharmacology.Natural Resources for Human Health202341758810.53365/nrfhh/174668
    [Google Scholar]
  139. AliS.A. AliS. RastogiS. PrasadJ. KondrapuP. Endometriosis: A brief review of pharmacological and non-pharmacological treatment.Researchgate Net202312121359137910.48047/ecb/2023.12.si12.123
    [Google Scholar]
  140. MandalS. TyagiP. JainA.V. YadavP. Advanced formulation and comprehensive pharmacological evaluation of a novel topical drug delivery system for the management and therapeutic intervention of Tinea Cruris (Jock Itch).J. Nursing2024713310.5281/zenodo.10811676
    [Google Scholar]
  141. AsE. VesiclesA. ModifiedF.O.R. SkinD.T.O. Ethosomes as amphiphilic vesicles for modified drug diffusion to skin.World J. Pharm. Res.2024139202493213410.20959/wjpr20249‑32134
    [Google Scholar]
  142. Rios-DoriaJ. DurhamN. WetzelL. RothsteinR. ChesebroughJ. HoloweckyjN. ZhaoW. LeowC.C. HollingsworthR. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models.Neoplasia201517866167010.1016/j.neo.2015.08.004 26408258
    [Google Scholar]
  143. BhattacharyyaJ. BellucciJ.J. WeitzhandlerI. McDanielJ.R. SpasojevicI. LiX. LinC.C. ChiJ.T.A. ChilkotiA. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models.Nat. Commun.201561793910.1038/ncomms8939 26239362
    [Google Scholar]
  144. WangX. LiuY. XuW. JiaL. ChiD. YuJ. WangJ. HeZ. LiuX. WangY. Irinotecan and berberine co-delivery liposomes showed improved efficacy and reduced intestinal toxicity compared with Onivyde for pancreatic cancer.Drug Deliv. Transl. Res.20211152186219710.1007/s13346‑020‑00884‑4 33452654
    [Google Scholar]
  145. O’ByrneK.J. ThomasA.L. SharmaR.A. DeCatrisM. ShieldsF. BeareS. StewardW.P. A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer.Br. J. Cancer2002871152010.1038/sj.bjc.6600344 12085249
    [Google Scholar]
  146. BedikianA.Y. SilvermanJ.A. PapadopoulosN.E. KimK.B. HageyA.E. VardeleonA. HwuW.J. HomsiJ. DaviesM. HwuP. Pharmacokinetics and safety of Marqibo (vincristine sulfate liposomes injection) in cancer patients with impaired liver function.J. Clin. Pharmacol.20115181205121210.1177/0091270010381499 20978276
    [Google Scholar]
  147. WangL. EvansJ.C. AhmedL. AllenC. Folate receptor targeted nanoparticles containing niraparib and doxorubicin as a potential candidate for the treatment of high grade serous ovarian cancer.Sci. Rep.2023131322610.1038/s41598‑023‑28424‑3 36828860
    [Google Scholar]
  148. KimB. ParkJ.E. ImE. ChoY. LeeJ. LeeH.J. SimD.Y. ParkW.Y. ShimB.S. KimS.H. Recent advances in nanotechnology with nano-phytochemicals: Molecular mechanisms and clinical implications in cancer progression.Int. J. Mol. Sci.2021227357110.3390/ijms22073571 33808235
    [Google Scholar]
  149. GlantzM.J. JaeckleK.A. ChamberlainM.C. PhuphanichS. RechtL. SwinnenL.J. MariaB. LaFolletteS. SchumannG.B. ColeB.F. HowellS.B. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors.Clin. Cancer Res.199951133943402 10589750
    [Google Scholar]
  150. MalekR. WuS.T. SerranoD. ThoT. UmbasR. TeohJ. LojanapiwatB. OngT.A. OnW.K. ThaiS.M. KimJ. PophaleR. ChiongE. ELIGANT: A Phase 4, interventional, safety study of leuprorelin acetate (ELIGARD®) in Asian men with prostate cancer.Transl. Androl. Urol.202211217918910.21037/tau‑21‑723 35280654
    [Google Scholar]
  151. NamS.H. LeeS.W. LeeY.J. KimY.M. Safety and tolerability of weekly genexol-PM, a cremophor-free polymeric micelle formulation of paclitaxel, with carboplatin in gynecologic cancer: A phase I study.Cancer Res. Treat.20235541346135410.4143/crt.2022.1436 37189263
    [Google Scholar]
  152. WongG. ZhangL. MajeedH. RazviY. DeAngelisC. LamE. McKenzieE. WangK. PasetkaM. A retrospective review of the real-world experience of the Pegfilgrastim biosimilar (Lapelga®) to the reference biologic (Neulasta®).J. Oncol. Pharm. Pract.202228151610.1177/1078155220974085 33215563
    [Google Scholar]
  153. RegenoldM. BanniganP. EvansJ.C. WaspeA. TempleM.J. AllenC. Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes.Nanomedicine20224010248410.1016/j.nano.2021.102484 34748961
    [Google Scholar]
  154. Cabozantinib (COMETRIQ°): In medullary thyroid cancer: More harmful than beneficial, as is Vandetanib.Prescrire Int.2016
    [Google Scholar]
  155. ReichelD. TripathiM. ButteP. SaouafR. PerezJ.M. Tumor-activatable clinical nanoprobe for cancer imaging.Nanotheranostics20193219621110.7150/ntno.34921 31183314
    [Google Scholar]
  156. VodyashkinA.A. RizkM.G.H. KezimanaP. KirichukA.A. StanishevskiyY.M. Application of gold nanoparticle-based materials in cancer therapy and diagnostics.ChemEngineering2021546910.3390/chemengineering5040069
    [Google Scholar]
  157. SinghP. PanditS. MokkapatiV.R.S.S. GargA. RavikumarV. MijakovicI. Gold nanoparticles in diagnostics and therapeutics for human cancer.Int. J. Mol. Sci.2018197197910.3390/ijms19071979 29986450
    [Google Scholar]
  158. FuZ. XiangJ. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy.Int. J. Mol. Sci.20202123912310.3390/ijms21239123 33266216
    [Google Scholar]
  159. RaheemM.A. Advances in nanoparticles-based approaches in cancer theranostics.OpenNano20231210015210.1016/j.onano.2023.100152
    [Google Scholar]
  160. KhizarS. ElkallaE. ZineN. Jaffrezic-RenaultN. ErrachidA. ElaissariA. Magnetic nanoparticles: Multifunctional tool for cancer therapy.Expert Opin. Drug Deliv.202320218920410.1080/17425247.2023.2166484 36608938
    [Google Scholar]
  161. LeeS.W.L. PaolettiC. CampisiM. OsakiT. AdrianiG. KammR.D. MattuC. ChionoV. MicroRNA delivery through nanoparticles.J. Control. Release2019313809510.1016/j.jconrel.2019.10.007 31622695
    [Google Scholar]
  162. MehtaM. BuiT.A. YangX. AksoyY. GoldysE.M. DengW. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development.ACS Mater. Au20233660061910.1021/acsmaterialsau.3c00032 38089666
    [Google Scholar]
  163. KhievD. MohamedZ.A. VichareR. PaulsonR. BhatiaS. MohapatraS. LoboG.P. ValapalaM. KerurN. PassagliaC.L. MohapatraS.S. BiswalM.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery.Nanomaterials (Basel)202111117310.3390/nano11010173 33445545
    [Google Scholar]
  164. ChanH.W. ChowS. ZhangX. ZhaoY. TongH.H.Y. ChowS.F. Inhalable nanoparticle-based dry powder formulations for respiratory diseases: Challenges and strategies for translational research.AAPS PharmSciTech20232449810.1208/s12249‑023‑02559‑y 37016029
    [Google Scholar]
  165. ZhaoZ. ZhengL. ChenW. WengW. SongJ. JiJ. Delivery strategies of cancer immunotherapy: Recent advances and future perspectives.J. Hematol. Oncol.201912112610.1186/s13045‑019‑0817‑3 31779642
    [Google Scholar]
  166. LiH. BaiG. LianY. LiY. ChenL. ZhangJ. XuS. Advances in near-infrared-activated lanthanide-doped optical nanomaterials: Imaging, sensing, and therapy.Mater. Des.202323111203610.1016/j.matdes.2023.112036
    [Google Scholar]
  167. MurthyS.K. Nanoparticles in modern medicine: State of the art and future challenges.Int. J. Nanomedicine200722129141 17722542
    [Google Scholar]
  168. KumarA. DasN. RayavarapuR.G. Role of tunable gold nanostructures in cancer nanotheranostics: Implications on synthesis, toxicity, clinical applications and their associated opportunities and challenges.J. Nanotheranostics20234113410.3390/jnt4010001
    [Google Scholar]
  169. WangY.S. KumariM. ChenG.H. HongM.H. YuanJ.P.Y. TsaiJ.L. WuH.C. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications.J. Biomed. Sci.20233018410.1186/s12929‑023‑00977‑5 37805495
    [Google Scholar]
  170. LiuG.W. GuzmanE.B. MenonN. LangerR.S. Lipid nanoparticles for nucleic acid delivery to endothelial cells.Pharm. Res.202340132510.1007/s11095‑023‑03471‑7 36735106
    [Google Scholar]
  171. MehtaM. SatijaS. PaudelK.R. MalylaV. KannaujiyaV.K. ChellappanD.K. BebawyM. HansbroP.M. WichP.R. DuaK. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives.Nanomedicine20213110230310.1016/j.nano.2020.102303 32980549
    [Google Scholar]
  172. LiL. LuoJ. LinX. TanJ. LiP. Nanomaterials for inner ear diseases: Challenges, limitations and opportunities.Materials (Basel)20221511378010.3390/ma15113780 35683076
    [Google Scholar]
  173. BeloquiA. SolinísM.Á. Rodríguez-GascónA. AlmeidaA.J. PréatV. Nanostructured lipid carriers: Promising drug delivery systems for future clinics.Nanomedicine201612114316110.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  174. TannoT. ZhangP. BaileyC. WangY. IttiprasertW. DevenportM. ZhengP. LiuY. A novel aptamer-based small RNA delivery platform and its application to cancer therapy.Genes Dis.20231031075108910.1016/j.gendis.2022.05.004 37396505
    [Google Scholar]
  175. KimK.S. KimD.H. KimD.H. Recent advances to augment NK cell cancer immunotherapy using nanoparticles.Pharmaceutics202113452510.3390/pharmaceutics13040525 33918941
    [Google Scholar]
/content/journals/mns/10.2174/0118764029358553250325040749
Loading
/content/journals/mns/10.2174/0118764029358553250325040749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test