Skip to content
2000
image of A Comprehensive Review on Advancements in Nanocarriers-Based Peptide Delivery for Cancer Therapeutics

Abstract

Cancer is a major global health disease characterized by uncontrolled cell proliferation and invasiveness. The complexity of its etiology, involving genetic mutations and environmental influences as well as unhealthy lifestyles, necessitates innovative therapeutic approaches. However, peptide-based therapies will offer significant potential, their high specificity and efficacy notwithstanding, in targeting cancerous cells. Poor stability, rapid degradation, and limited bioavailability pose significant challenges to their clinical utility. Nano-particle-based delivery systems are considered a revolutionary approach for delivering therapeutic peptides with better stability, targeted delivery, and controlled release. In this comprehensive review, the recent advances in nano-carrier-based peptide delivery systems for cancer therapeutics have been discussed. Different types of nano-carriers, like lipid-based systems, namely liposomes, polymeric micelles, inorganic nanoparticles, and hybrid systems, have been discussed with their mechanisms of cellular targeting, advantages, limitations, and clinical applications. Notable formulations such as Doxil and Abraxane demonstrate the significance of nanoparticle-based therapeutic interventions in clinical settings. A significant section focuses on combination therapies, multifunctional nanoparticles, and the integration of emergent technologies to surpass biological barriers. However, many challenges remain, including toxicity, scalability, and regulatory issues. In order to maximize nanocarrier design and enhance therapeutic results, this review focusses more on personalized medicine and ongoing innovation. To sum up, nano carriers do hold revolutionary promise for cancer peptide therapy, offering enhanced efficacy, decreased side effects, and precise targeting. To turn these discoveries into broad clinical uses and usher in a new era of cancer treatment, more research is necessary.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029358553250325040749
2025-04-16
2025-08-16
Loading full text...

Full text loading...

References

  1. Gupta S. Jain A. Chakraborty M. Sahni J.K. Ali J. Dang S. Oral delivery of therapeutic proteins and peptides: A review on recent developments. Drug Deliv. 2013 20 6 237 246 10.3109/10717544.2013.819611 23869787
    [Google Scholar]
  2. Park I.S. Kim S. Yim Y. Park G. Choi J. Won C. Min D.H. Multifunctional synthetic nano-chaperone for peptide folding and intracellular delivery. Nat. Commun. 2022 13 1 4568 10.1038/s41467‑022‑32268‑2 35931667
    [Google Scholar]
  3. Kudarha R.R. Sawant K.K. Albumin based versatile multifunctional nanocarriers for cancer therapy: Fabrication, surface modification, multimodal therapeutics and imaging approaches. Mater. Sci. Eng. C 2017 81 607 626 10.1016/j.msec.2017.08.004 28888016
    [Google Scholar]
  4. Meisel A. Pascolo S. mRNA vaccines against infectious diseases and cancer. Healthbook Times Oncol. Hematol. 2021 9 3 24 31 10.36000/hbT.OH.2021.09.045
    [Google Scholar]
  5. Kim H. Griffith T.S. Panyam J. Poly(d,l-lactide-co-glycolide) nanoparticles as delivery platforms for TLR7/8 agonist-based cancer vaccine. J. Pharmacol. Exp. Ther. 2019 370 3 715 724 10.1124/jpet.118.254953 30610006
    [Google Scholar]
  6. Zhang K. Xu Z. Lu J. Tang Z. Zhao H. Good D. Wei M. Potential for layered double hydroxides-based, innovative drug delivery systems. Int. J. Mol. Sci. 2014 15 5 7409 7428 10.3390/ijms15057409 24786098
    [Google Scholar]
  7. Imani R. Shao W. Taherkhani S. Emami S.H. Prakash S. Faghihi S. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids Surf. B Biointerfaces 2016 147 315 325 10.1016/j.colsurfb.2016.08.015 27543693
    [Google Scholar]
  8. Wang Z. Luo H. Wang H. Xiao M. Jia H. Ren C. Liu J. Peptide‐based supramolecular therapeutics for fighting major diseases. Adv. Funct. Mater. 2024 34 25 2314492 10.1002/adfm.202314492
    [Google Scholar]
  9. Lalan M. Shah P. Barve K. Parekh K. Mehta T. Patel P. Skin cancer therapeutics: Nano-drug delivery vectors—present and beyond. Future J. Pharm. Sci. 2021 7 179 1 25 10.1186/s43094‑021‑00326‑z
    [Google Scholar]
  10. Ranjbari J. Mokhtarzadeh A. Alibakhshi A. Tabarzad M. Hejazi M. Ramezani M. Anti-cancer drug delivery using carbohydrate-based polymers. Curr. Pharm. Des. 2018 23 39 6019 6032 10.2174/1381612823666170505124927 28482782
    [Google Scholar]
  11. Oieni J. Levy L. Letko Khait N. Yosef L. Schoen B. Fliman M. Shalom-Luxenburg H. Malkah Dayan N. D’Atri D. Cohen Anavy N. Machluf M. Nano-Ghosts: Biomimetic membranal vesicles, technology and characterization. Methods 2020 177 126 134 10.1016/j.ymeth.2019.11.013 31794834
    [Google Scholar]
  12. Ma B. Niu F. Qu X. He W. Feng C. Wang S. Ouyang Z. Yan J. Wen Y. Xu D. Shao Y. Ma P.X. Lu W. A tetrameric protein scaffold as a nano-carrier of antitumor peptides for cancer therapy. Biomaterials 2019 204 1 12 10.1016/j.biomaterials.2019.03.004 30861422
    [Google Scholar]
  13. Bhat M. Jatyan R. Mittal A. Mahato R.I. Chitkara D. Opportunities and challenges of fatty acid conjugated therapeutics. Chem. Phys. Lipids 2021 236 105053 10.1016/j.chemphyslip.2021.105053 33484709
    [Google Scholar]
  14. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  15. Sharma G. Kumar A. Sharma S. Naushad M. Prakash Dwivedi R. Alothman Z.A. Mola G.T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. Sci. 2019 31 2 257 269 10.1016/j.jksus.2017.06.012
    [Google Scholar]
  16. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers (Basel) 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  17. Joudeh N. Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022 20 1 262 10.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  18. Ijaz I. Gilani E. Nazir A. Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020 13 3 223 245 10.1080/17518253.2020.1802517
    [Google Scholar]
  19. Najahi-Missaoui W. Arnold R.D. Cummings B.S. Safe nanoparticles: Are we there yet? Int. J. Mol. Sci. 2020 22 1 385 10.3390/ijms22010385 33396561
    [Google Scholar]
  20. Xu L. Wang X. Liu Y. Yang G. Falconer R.J. Zhao C.X. Lipid nanoparticles for drug delivery. Adv. NanoBiomed Res. 2022 2 2 2100109 10.1002/anbr.202100109 35179344
    [Google Scholar]
  21. Barbaz-Isfahani R. Dadras H. Saber-Samandari S. Taherzadeh-Fard A. Liaghat G. A comprehensive investigation of the low-velocity impact response of enhanced GFRP composites with single and hybrid loading of various types of nanoparticles. Heliyon 2023 9 5 e15930 10.1016/j.heliyon.2023.e15930 37168892
    [Google Scholar]
  22. Gour A. Jain N.K. Advances in green synthesis of nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019 47 1 844 851 10.1080/21691401.2019.1577878 30879351
    [Google Scholar]
  23. Sharma D. Kanchi S. Bisetty K. Biogenic synthesis of nanoparticles: A review. Arab. J. Chem. 2019 12 8 3576 3600 10.1016/j.arabjc.2015.11.002
    [Google Scholar]
  24. Jadoun S. Arif R. Jangid N.K. Meena R.K. Green synthesis of nanoparticles using plant extracts: A review. Environ. Chem. Lett. 2021 19 1 355 374 10.1007/s10311‑020‑01074‑x
    [Google Scholar]
  25. Rai M. Bonde S. Golinska P. Trzcińska-Wencel J. Gade A. Abd-Elsalam K.A. Shende S. Gaikwad S. Ingle A.P. Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications. J. Fungi (Basel) 2021 7 2 139 10.3390/jof7020139 33672011
    [Google Scholar]
  26. Naikoo G.A. Mustaqeem M. Hassan I.U. Awan T. Arshad F. Salim H. Qurashi A. Bioinspired and green synthesis of nanoparticles from plant extracts with antiviral and antimicrobial properties: A critical review. J. Saudi Chem. Soc. 2021 25 9 101304 10.1016/j.jscs.2021.101304
    [Google Scholar]
  27. Patil N. Bhaskar R. Vyavhare V. Dhadge R. Khaire V. Patil Y. Overview on methods of synthesis of nanoparticles. Int. J. Curr. Pharm. Res. 2021 13 2 11 16 10.22159/ijcpr.2021v13i2.41556
    [Google Scholar]
  28. Khodashenas B. Ghorbani H.R. Synthesis of silver nanoparticles with different shapes. Arab. J. Chem. 2019 12 8 1823 1838 10.1016/j.arabjc.2014.12.014
    [Google Scholar]
  29. Ying S. Guan Z. Ofoegbu P.C. Clubb P. Rico C. He F. Hong J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022 26 102336 10.1016/j.eti.2022.102336
    [Google Scholar]
  30. Aswathi V.P. Meera S. Maria C.G.A. Nidhin M. Green synthesis of nanoparticles from biodegradable waste extracts and their applications: A critical review. Nanotechnol. Environ. Eng. 2023 8 377 397 10.1007/s41204‑022‑00276‑8
    [Google Scholar]
  31. Khan F. Shahid A. Zhu H. Wang N. Javed M.R. Ahmad N. Xu J. Alam M.A. Mehmood M.A. Prospects of algae-based green synthesis of nanoparticles for environmental applications. Chemosphere 2022 293 133571 10.1016/j.chemosphere.2022.133571 35026203
    [Google Scholar]
  32. Szczyglewska P. Feliczak-Guzik A. Nowak I. Nanotechnology–general aspects: A chemical reduction approach to the synthesis of nanoparticles. Molecules 2023 28 13 4932 10.3390/molecules28134932 37446593
    [Google Scholar]
  33. Kamble S. Bhosale K. Mohite M. Navale S. Methods of preparation of nanoparticles. Int. J. Adv. Res. Sci. Commun. Technol. (IJARSCT) 2023 2 1 640 646 10.48175/IJARSCT‑9485
    [Google Scholar]
  34. Sun L. Liu H. Ye Y. Lei Y. Islam R. Tan S. Tong R. Miao Y.B. Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 418 10.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  35. Mundekkad D. Cho W.C. Nanoparticles in clinical translation for cancer therapy. Int. J. Mol. Sci. 2022 23 3 1685 10.3390/ijms23031685 35163607
    [Google Scholar]
  36. Gavas S. Quazi S. Karpiński T.M. Nanoparticles for cancer therapy: Current progress and challenges. Nanoscale Res. Lett. 2021 16 1 173 10.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  37. Çeşmeli S. Biray Avci C. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J. Drug Target. 2019 27 7 762 766 10.1080/1061186X.2018.1527338 30252540
    [Google Scholar]
  38. Li C. Li Y. Li G. Wu S. Functional nanoparticles for enhanced cancer therapy. Pharmaceutics 2022 14 8 1682 10.3390/pharmaceutics14081682 36015307
    [Google Scholar]
  39. Gao Y. Wang K. Zhang J. Duan X. Sun Q. Men K. Multifunctional nanoparticle for cancer therapy. MedComm 2023 4 1 e187 10.1002/mco2.187 36654533
    [Google Scholar]
  40. Han H. Li J. Santos H.A. Recent advances in Fenton and Fenton-like reaction mediated nanoparticle in cancer therapy. Biomed Technol 2023 3 40 51 10.1016/j.bmt.2022.12.004
    [Google Scholar]
  41. Villalobos Gutiérrez P. Muñoz Carrillo J. Sandoval Salazar C. Viveros Paredes J. Gutiérrez Coronado O. Functionalized metal nanoparticles in cancer therapy. Pharmaceutics 2023 15 7 1932 10.3390/pharmaceutics15071932 37514119
    [Google Scholar]
  42. Aghebati-Maleki A. Dolati S. Ahmadi M. Baghbanzhadeh A. Asadi M. Fotouhi A. Yousefi M. Aghebati-Maleki L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol. 2020 235 3 1962 1972 10.1002/jcp.29126 31441032
    [Google Scholar]
  43. Siddique S. Chow J.C.L. Gold Nanoparticles for Drug Delivery And Cancer Therapy. Switzerland Applied Sciences 2020 10.3390/app10113824
    [Google Scholar]
  44. Farzin A. Etesami S.A. Quint J. Memic A. Tamayol A. Magnetic nanoparticles in cancer therapy and diagnosis. Adv. Healthc. Mater. 2020 9 9 1901058 10.1002/adhm.201901058 32196144
    [Google Scholar]
  45. Mokhosi S.R. Mdlalose W. Nhlapo A. Singh M. Advances in the synthesis and application of magnetic ferrite nanoparticles for cancer therapy. Pharmaceutics 2022 14 5 937 10.3390/pharmaceutics14050937 35631523
    [Google Scholar]
  46. Kim J.Y. Choi W.I. Kim Y.H. Tae G. Brain-targeted delivery of protein using chitosan- and RVG peptide-conjugated, pluronic-based nano-carrier. Biomaterials 2013 34 4 1170 1178 10.1016/j.biomaterials.2012.09.047 23122677
    [Google Scholar]
  47. Liu M. Wang F. Pu C. Tang W. Sun Q. Nanoencapsulation of lutein within lipid-based delivery systems: Characterization and comparison of zein peptide stabilized nano-emulsion, solid lipid nanoparticle, and nano-structured lipid carrier. Food Chem. 2021 358 129840 10.1016/j.foodchem.2021.129840 33933956
    [Google Scholar]
  48. Kumar P. Shamim; Muztaba, M.; Ali, T.; Bala, J.; Sidhu, H.S.; Bhatia, A. Fused deposition modeling 3D-printed scaffolds for bone tissue engineering applications: A review. Ann. Biomed. Eng. 2024 52 5 1184 1194 10.1007/s10439‑024‑03479‑z 38418691
    [Google Scholar]
  49. Naderinezhad S. Amoabediny G. Haghiralsadat F. Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC Advances 2017 7 48 30008 30019 10.1039/C7RA01736G
    [Google Scholar]
  50. Chaturvedi S. Garg A. Verma A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J. Drug Deliv. Sci. Technol. 2020 59 101899 10.1016/j.jddst.2020.101899
    [Google Scholar]
  51. Bhargava A. Mishra D.K. Jain S.K. Srivastava R.K. Lohiya N.K. Mishra P.K. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers. Mol. Immunol. 2016 79 98 112 10.1016/j.molimm.2016.10.003 27764711
    [Google Scholar]
  52. Andishmand H. Azadmard-damirchi S. Hamishekar H. Torbati M. Kharazmi M.S. Savage G.P. Tan C. Jafari S.M. Nano-delivery systems for encapsulation of phenolic compounds from pomegranate peel. Adv. Colloid Interface Sci. 2023 311 102833 10.1016/j.cis.2022.102833 36610103
    [Google Scholar]
  53. Neslihan Dundar A. Ozdemir S. Uzuner K. Ekrem Parlak M. Irmak Sahin O. Fatih Dagdelen A. Turker Saricaoglu F. Characterization of pomegranate peel extract loaded nanophytosomes and the enhancement of bio-accessibility and storage stability. Food Chem. 2023 398 133921 10.1016/j.foodchem.2022.133921 35969988
    [Google Scholar]
  54. Ghanbarzadeh B. Babazadeh A. Hamishehkar H. Nano-phytosome as a potential food-grade delivery system. Food Biosci. 2016 15 126 135 10.1016/j.fbio.2016.07.006
    [Google Scholar]
  55. Kothapalli P. Vasanthan M. Lipid-based nanocarriers for enhanced delivery of plant-derived bioactive molecules: A comprehensive review. Ther. Deliv. 2024 15 2 135 155 10.4155/tde‑2023‑0116 38214118
    [Google Scholar]
  56. Kumar R. Divya S. Mahapatra S. Dubey V.K. Chandra P. N-acetyl-d-glucosamine decorated nano-lipid-based carriers as theranostics module for targeted anti-cancer drug delivery. Mater. Chem. Phys. 2022 282 125956 10.1016/j.matchemphys.2022.125956
    [Google Scholar]
  57. Le H. Dé E. Le Cerf D. Karakasyan C. Using targeted nano-antibiotics to improve antibiotic efficacy against Staphylococcus aureus infections. Antibiotics (Basel) 2023 12 6 1066 10.3390/antibiotics12061066 37370385
    [Google Scholar]
  58. Elnahtawy A.I. Elshafei N.S. Elzoghby A.O. Marine Polymer-Based Nano-carriers for Drug Delivery Applications. Marine Biomaterials. Jana S. Jana S. Singapore Springer 2022 10.1007/978‑981‑16‑4787‑1_2
    [Google Scholar]
  59. Roy B. Ghose S. Biswas S. Therapeutic strategies for miRNA delivery to reduce hepatocellular carcinoma. Semin. Cell Dev. Biol. 2022 124 134 144 10.1016/j.semcdb.2021.04.006 33926792
    [Google Scholar]
  60. Gigmes D. Trimaille T. Advances in amphiphilic polylactide/vinyl polymer based nano-assemblies for drug delivery. Adv. Colloid Interface Sci. 2021 294 102483 10.1016/j.cis.2021.102483 34274723
    [Google Scholar]
  61. Zhang X. Liu X.Y. Yang H. Chen J.N. Lin Y. Han S.Y. Cao Q. Zeng H.S. Ye J.W. A polyhydroxyalkanoates-based carrier platform of bioactive substances for therapeutic applications. Front. Bioeng. Biotechnol. 2022 9 798724 10.3389/fbioe.2021.798724 35071207
    [Google Scholar]
  62. Yu J. Qiu H. Yin S. Wang H. Li Y. Polymeric drug delivery system based on pluronics for cancer treatment. Molecules 2021 26 12 3610 10.3390/molecules26123610 34204668
    [Google Scholar]
  63. Zhao S. Huang C. Yue X. Li X. Zhou P. Wu A. Chen C. Qu Y. Zhang C. Application advance of electrosprayed micro/nanoparticles based on natural or synthetic polymers for drug delivery system. Mater. Des. 2022 220 110850 10.1016/j.matdes.2022.110850
    [Google Scholar]
  64. Aziz T. Ullah A. Ali A. Shabeer M. Shah M.N. Haq F. Iqbal M. Ullah R. Khan F.U. Manufactures of bio‐degradable and bio‐based polymers for bio‐materials in the pharmaceutical field. J. Appl. Polym. Sci. 2022 139 29 e52624 10.1002/app.52624
    [Google Scholar]
  65. Zahirinejad S. Hemmati R. Homaei A. Dinari A. Hosseinkhani S. Mohammadi S. Vianello F. Nano-organic supports for enzyme immobilization: Scopes and perspectives. Colloids Surf. B Biointerfaces 2021 204 111774 10.1016/j.colsurfb.2021.111774 33932893
    [Google Scholar]
  66. Liu S. Guo R. Li C. Lu C. Yang G. Wang F. Nie J. Ma C. Gao M. POSS hybrid hydrogels: A brief review of synthesis, properties and applications. Eur. Polym. J. 2021 143 110180 10.1016/j.eurpolymj.2020.110180
    [Google Scholar]
  67. Yaacob S.F.F.S. Mansor N. Nizar S.A. Olasupo A. Mohamed N. Suah F.B.M. Hybrid polymer inclusion membrane as anion exchange membrane for recovering Pd2+ ions in electrogenerative process. J Electrochem Sci Eng 2023 13 2 347 360 10.5599/jese.1501
    [Google Scholar]
  68. Lin H. Leng J. Fan P. Xu Z. Ruan G. Scalable production of microscopic particles for biological delivery. Mater. Adv. 2023 4 14 2885 2908 10.1039/D3MA00021D
    [Google Scholar]
  69. Li Y. Wang Y. Zhang L. Ding X. Liu T. Qiu Q. Jiang Z. Electrospun silk fibroin/polyethylene oxide composite scaffolds with strontium or copper-doped hollow bioactive glass nanospheres for pH-triggered sustained drug release. Mater. Lett. 2023 336 133881 10.1016/j.matlet.2023.133881
    [Google Scholar]
  70. Riaz M. Riaz M. Zhang X. Lin C. Wong K. Chen X. Zhang G. Lu A. Yang Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci. 2018 19 1 195 10.3390/ijms19010195 29315231
    [Google Scholar]
  71. Rahikkala A. Pereira S.A.P. Figueiredo P. Passos M.L.C. Araújo A.R.T.S. Saraiva M.L.M.F.S. Santos H.A. Mesoporous silica nanoparticles for targeted and stimuli‐responsive delivery of chemotherapeutics: A review. Adv. Biosyst. 2018 2 7 1800020 10.1002/adbi.201800020
    [Google Scholar]
  72. Fang R.H. Hu C.M.J. Chen K.N.H. Luk B.T. Carpenter C.W. Gao W. Li S. Zhang D.E. Lu W. Zhang L. Lipid-insertion enables targeting functionalization of erythrocyte membrane-cloaked nanoparticles. Nanoscale 2013 5 19 8884 8888 10.1039/c3nr03064d 23907698
    [Google Scholar]
  73. Liu J. Lai H. Xiong Z. Chen B. Chen T. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chem. Commun. (Camb.) 2019 55 67 9904 9914 10.1039/C9CC04098F 31360938
    [Google Scholar]
  74. Yaghoubi A. Ramazani A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J. Control. Release 2020 327 198 224 10.1016/j.jconrel.2020.08.001 32763433
    [Google Scholar]
  75. Nethi S.K. Li X. Bhatnagar S. Prabha S. Enhancing anticancer efficacy of chemotherapeutics using targeting ligand-functionalized synthetic antigen receptor-mesenchymal stem cells. Pharmaceutics 2023 15 6 1742 10.3390/pharmaceutics15061742 37376189
    [Google Scholar]
  76. Su S. Chhabra G. Singh C.K. Ndiaye M.A. Ahmad N. PLK1 inhibition-based combination therapies for cancer management. Transl. Oncol. 2022 16 101332 10.1016/j.tranon.2021.101332 34973570
    [Google Scholar]
  77. Minerva; Bhat, A.; Verma, S.; Chander, G.; Jamwal, R.S.; Sharma, B.; Bhat, A.; Katyal, T.; Kumar, R.; Shah, R. Cisplatin-based combination therapy for cancer. J. Cancer Res. Ther. 2023 19 3 530 536 10.4103/jcrt.jcrt_792_22 37470570
    [Google Scholar]
  78. Mokhtari R.B. Homayouni T.S. Baluch N. Morgatskaya E. Kumar S. Das B. Yeger H. Combination therapy in combating cancer. Oncotarget 2017 8 23 38022 38043 10.18632/oncotarget.16723 28410237
    [Google Scholar]
  79. Okem A. Henstra C. Lambert M. Hayeshi R. A review of the pharmacodynamic effect of chemo-herbal drug combinations therapy for cancer treatment. Med. Drug Discov. 2023 17 100147 10.1016/j.medidd.2022.100147
    [Google Scholar]
  80. Škubník J. Pavlíčková V.S. Ruml T. Rimpelová S. Vincristine in combination therapy of cancer: Emerging trends in clinics. Biology (Basel) 2021 10 9 849 10.3390/biology10090849 34571726
    [Google Scholar]
  81. Liu N. Liu M. Fu S. Wang J. Tang H. Isah A.D. Chen D. Wang X. Ang2-targeted combination therapy for cancer treatment. Front. Immunol. 2022 13 949553 10.3389/fimmu.2022.949553 35874764
    [Google Scholar]
  82. He C. Lu J. Lin W. Hybrid nanoparticles for combination therapy of cancer. J. Control. Release 2015 219 224 236 10.1016/j.jconrel.2015.09.029 26387745
    [Google Scholar]
  83. Wang Y. Li J. Xia L. Plant-derived natural products and combination therapy in liver cancer. Front. Oncol. 2023 13 1116532 10.3389/fonc.2023.1116532 36865794
    [Google Scholar]
  84. Wang X. Li J. Chen R. Li T. Chen M. Active ingredients from Chinese medicine for combination cancer therapy. Int. J. Biol. Sci. 2023 19 11 3499 3525 10.7150/ijbs.77720 37497002
    [Google Scholar]
  85. Mišík O. Kejíková J. Cejpek O. Malý M. Jugl A. Bělka M. Mravec F. Lízal F. Nebulization and in vitro upper airway deposition of liposomal carrier systems. Mol. Pharm. 2024 21 4 1848 1860 10.1021/acs.molpharmaceut.3c01146 38466817
    [Google Scholar]
  86. Sabaghi Y. PourFarzad F. Zolghadr L. Bahrami A. Shojazadeh T. Farasat A. Gheibi N. A nano-liposomal carrier containing p-coumaric acid for induction of targeted apoptosis on melanoma cells and kinetic modeling. Biochem. Biophys. Res. Commun. 2024 690 149219 10.1016/j.bbrc.2023.149219 37995451
    [Google Scholar]
  87. Belogurov A.A. Jr Stepanov A.V. Smirnov I.V. Melamed D. Bacon A. Mamedov A.E. Boitsov V.M. Sashchenko L.P. Ponomarenko N.A. Sharanova S.N. Boyko A.N. Dubina M.V. Friboulet A. Genkin D.D. Gabibov A.G. Liposome‐encapsulated peptides protect against experimental allergic encephalitis. FASEB J. 2013 27 1 222 231 10.1096/fj.12‑213975 23047895
    [Google Scholar]
  88. da Silva Malheiros P. Daroit D.J. Brandelli A. Food applications of liposome-encapsulated antimicrobial peptides. Trends Food Sci. Technol. 2010 21 6 284 292 10.1016/j.tifs.2010.03.003
    [Google Scholar]
  89. Ghezzi M. Pescina S. Padula C. Santi P. Del Favero E. Cantù L. Nicoli S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release 2021 332 312 336 10.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  90. Jin G.W. Rejinold N.S. Choy J.H. Multifunctional polymeric micelles for cancer therapy. Polymers (Basel) 2022 14 22 4839 10.3390/polym14224839 36432965
    [Google Scholar]
  91. Kadekar S. Nawale G.N. Rangasami V.K. Le Joncour V. Laakkonen P. Hilborn J. Varghese O.P. Oommen O.P. Redox responsive Pluronic micelle mediated delivery of functional siRNA: A modular nano-assembly for targeted delivery. Biomater. Sci. 2021 9 11 3939 3944 10.1039/D1BM00428J 34002185
    [Google Scholar]
  92. Li J. Ren H. Sun Y. Liu G. Yang X. Qiu Q. Ding Y. Lovell J.F. Zhang Y. Magnetic metal micelles for enhanced delivery of self-immolating CD8+ T-cell epitopes for cancer immunotherapy. Chem. Mater. 2021 33 24 9780 9794 10.1021/acs.chemmater.1c03681
    [Google Scholar]
  93. Sanzhakov M.A. Kudinov V.A. Baskaev K.K. Morozevich G.E. Stepanova D.S. Torkhovskaya T.I. Tereshkina Y.A. Korotkevich E.I. Tikhonova E.G. Composite phospholipid-gold nanoparticles with targeted fragment for tumor imaging. Biomed. Pharmacother. 2021 142 111985 10.1016/j.biopha.2021.111985 34352716
    [Google Scholar]
  94. Patra C.R. Bhattacharya R. Mukhopadhyay D. Mukherjee P. Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv. Drug Deliv. Rev. 2010 62 3 346 361 10.1016/j.addr.2009.11.007 19914317
    [Google Scholar]
  95. Halevas E. Mavroidi B. Kokotidou C. Moschona A. Sagnou M. Mitraki A. Litsardakis G. Pelecanou M. Remdesivir-loaded bis-MPA hyperbranched dendritic nanocarriers for pulmonary delivery. J. Drug Deliv. Sci. Technol. 2022 75 103625 10.1016/j.jddst.2022.103625 35966803
    [Google Scholar]
  96. Kurniasih I.N. Keilitz J. Haag R. Dendritic nanocarriers based on hyperbranched polymers. Chem. Soc. Rev. 2015 44 12 4145 4164 10.1039/C4CS00333K 25980677
    [Google Scholar]
  97. Gajbhiye V. Vijayaraj Kumar P. Kumar Tekade R. Jain N. Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr. Pharm. Des. 2007 13 4 415 429 10.2174/138161207780162999
    [Google Scholar]
  98. Guillaudeu S.J. Fox M.E. Haidar Y.M. Dy E.E. Szoka F.C. Fréchet J.M.J. PEGylated dendrimers with core functionality for biological applications. Bioconjug. Chem. 2008 19 2 461 469 10.1021/bc700264g 18173227
    [Google Scholar]
  99. Mascarenhas-Melo F. Mathur A. Murugappan S. Sharma A. Tanwar K. Dua K. Singh S.K. Mazzola P.G. Yadav D.N. Rengan A.K. Veiga F. Paiva-Santos A.C. Inorganic nanoparticles in dermopharmaceutical and cosmetic products: Properties, formulation development, toxicity, and regulatory issues. Eur. J. Pharm. Biopharm. 2023 192 25 40 10.1016/j.ejpb.2023.09.011 37739239
    [Google Scholar]
  100. Anselmo A.C. Mitragotri S. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015 17 5 1041 1054 10.1208/s12248‑015‑9780‑2 25956384
    [Google Scholar]
  101. Guo C. Jordan J.S. Yarger J.L. Holland G.P. Highly efficient fumed silica nanoparticles for peptide bond formation: Converting alanine to alanine anhydride. ACS Appl. Mater. Interfaces 2017 9 20 17653 17661 10.1021/acsami.7b04887 28452465
    [Google Scholar]
  102. von Baeckmann C. Rubio G.M.D.M. Kählig H. Kurzbach D. Reithofer M.R. Kleitz F. Evaporation‐induced self‐assembly of small peptide‐conjugated silica nanoparticles. Angew. Chem. Int. Ed. 2021 60 42 22700 22705 10.1002/anie.202108378 34520085
    [Google Scholar]
  103. Sultana F. Manirujjaman M. Haque M.I-U. Arafat M. Sharmin S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci. 2013 3 8 Suppl. 1 S95 S105 10.7324/JAPS.2013.38.S15
    [Google Scholar]
  104. Thi H.N. The H.N. Quoc T.T. Ngoc S.N. Thanh D.V. Hoang P.V. Minh T.V. Nanogel systems based on heparin and pluronics for redox‐responsive delivery of poorly water‐soluble drugs in cancer treatment. Vietnam J. Chem. 2023 61 S3 126 133 10.1002/vjch.202300042
    [Google Scholar]
  105. Ding L. Jiang Y. Zhang J. Klok H.A. Zhong Z. pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: Synthesis and targeted intracellular protein delivery to CD44 positive cancer cells. Biomacromolecules 2018 19 2 555 562 10.1021/acs.biomac.7b01664 29284258
    [Google Scholar]
  106. Nagel G. Sousa-Herves A. Wedepohl S. Calderón M. Matrix metalloproteinase-sensitive multistage nanogels promote drug transport in 3D tumor model. Theranostics 2020 10 1 91 108 10.7150/thno.34851 31903108
    [Google Scholar]
  107. Li R. Zhang L. Jiang X. Li L. Wu S. Yuan X. Cheng H. Jiang X. Gou M. 3D-printed microneedle arrays for drug delivery. J. Control. Release 2022 350 933 948 10.1016/j.jconrel.2022.08.022 35977583
    [Google Scholar]
  108. Courtenay A.J. McAlister E. McCrudden M.T.C. Vora L. Steiner L. Levin G. Levy-Nissenbaum E. Shterman N. Kearney M.C. McCarthy H.O. Donnelly R.F. Hydrogel-forming microneedle arrays as a therapeutic option for transdermal esketamine delivery. J. Control. Release 2020 322 177 186 10.1016/j.jconrel.2020.03.026 32200001
    [Google Scholar]
  109. Kim S. Nam S.N. Jang A. Jang M. Park C.M. Son A. Her N. Heo J. Yoon Y. Review of adsorption–membrane hybrid systems for water and wastewater treatment. Chemosphere 2022 286 Pt 3 131916 10.1016/j.chemosphere.2021.131916 34416582
    [Google Scholar]
  110. Baaloudj O. Nasrallah N. Kenfoud H. Bourkeb K.W. Badawi A.K. Polyaniline/Bi12TiO20 hybrid system for cefixime removal by combining adsorption and photocatalytic degradation. ChemEngineering 2023 7 1 4 10.3390/chemengineering7010004
    [Google Scholar]
  111. Mody V.V. Singh A. Wesley B. Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. Eur. J. Nanomed. 2013 5 1 11 21 10.1515/ejnm‑2012‑0008
    [Google Scholar]
  112. Nowak-Jary J. Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J. Nanobiotechnology 2022 20 1 305 10.1186/s12951‑022‑01510‑w 35761279
    [Google Scholar]
  113. Sivadasan D. Ramakrishnan K. Mahendran J. Ranganathan H. Karuppaiah A. Rahman H. Solid lipid nanoparticles: Applications and prospects in cancer treatment. Int. J. Mol. Sci. 2023 24 7 6199 10.3390/ijms24076199 37047172
    [Google Scholar]
  114. Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J. Clin. Invest. 2019 129 8 3006 3017 10.1172/JCI127201 31264969
    [Google Scholar]
  115. Yamaoka T. Kusumoto S. Ando K. Ohba M. Ohmori T. Receptor tyrosine kinase-targeted cancer therapy. Int. J. Mol. Sci. 2018 19 11 3491 10.3390/ijms19113491 30404198
    [Google Scholar]
  116. Weiner G.J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 2015 15 6 361 370 10.1038/nrc3930 25998715
    [Google Scholar]
  117. Li D. Gao C. Kuang M. Xu M. Wang B. Luo Y. Teng L. Xie J. Nanoparticles as drug delivery systems of rnai in cancer therapy. Molecules 2021 26 8 2380 10.3390/molecules26082380 33921892
    [Google Scholar]
  118. Park J. Cho J. Song E.J. Ubiquitin–proteasome system (UPS) as a target for anticancer treatment. Arch. Pharm. Res. 2020 43 11 1144 1161 10.1007/s12272‑020‑01281‑8 33165832
    [Google Scholar]
  119. Jin X. Dai L. Ma Y. Wang J. Liu Z. Implications of HIF-1α in the tumorigenesis and progression of pancreatic cancer. Cancer Cell Int. 2020 20 1 273 10.1186/s12935‑020‑01370‑0 32587480
    [Google Scholar]
  120. Haque S. Morris J.C. Transforming growth factor-β: A therapeutic target for cancer. Hum. Vaccin. Immunother. 2017 13 8 1741 1750 10.1080/21645515.2017.1327107 28575585
    [Google Scholar]
  121. Saraon P. Pathmanathan S. Snider J. Lyakisheva A. Wong V. Stagljar I. Receptor tyrosine kinases and cancer: Oncogenic mechanisms and therapeutic approaches. Oncogene 2021 40 24 4079 4093 10.1038/s41388‑021‑01841‑2 34079087
    [Google Scholar]
  122. Martin R.D. Hébert T.E. Tanny J.C. Therapeutic targeting of the general RNA polymerase II transcription machinery. Int. J. Mol. Sci. 2020 21 9 3354 10.3390/ijms21093354 32397434
    [Google Scholar]
  123. Yin J. Su X. Yan S. Shen J. Multifunctional nanoparticles and nanopesticides in agricultural application. Nanomaterials (Basel) 2023 13 7 1255 10.3390/nano13071255 37049348
    [Google Scholar]
  124. Acter S. Moreau M. Ivkov R. Viswanathan A. Ngwa W. Polydopamine nanomaterials for overcoming current challenges in cancer treatment. Nanomaterials (Basel) 2023 13 10 1656 10.3390/nano13101656 37242072
    [Google Scholar]
  125. Zhang Y. Wang B. Zhao R. Zhang Q. Kong X. Multifunctional nanoparticles as photosensitizer delivery carriers for enhanced photodynamic cancer therapy. Mater. Sci. Eng. C 2020 115 111099 10.1016/j.msec.2020.111099 32600703
    [Google Scholar]
  126. Vallabani N.V.S. Singh S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 2018 86279 10.1007/s13205‑018‑1286‑z 29881657
    [Google Scholar]
  127. Ekladious I. Colson Y.L. Grinstaff M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov. 2019 18 4 273 294 10.1038/s41573‑018‑0005‑0 30542076
    [Google Scholar]
  128. Rana A. Yadav K. Jagadevan S. A comprehensive review on green synthesis of nature-inspired metal nanoparticles: Mechanism, application and toxicity. J. Clean. Prod. 2020 272 122880 10.1016/j.jclepro.2020.122880
    [Google Scholar]
  129. Verma M. Personalized medicine and cancer. J. Pers. Med. 2012 2 1 1 14 10.3390/jpm2010001 25562699
    [Google Scholar]
  130. Su M. Zhang Z. Zhou L. Han C. Huang C. Nice E.C. Proteomics, personalized medicine and cancer. Cancers (Basel) 2021 13 11 2512 10.3390/cancers13112512 34063807
    [Google Scholar]
  131. Ali S. Ekbbal R. Salar S. Yasheshwar; Ali, S.A.; Jaiswal, A.K.; Singh, M.; Yadav, D.K.; Kumar, S.; Gaurav, Quality standards and pharmacological interventions of natural oils: Current scenario and future perspectives. ACS Omega 2023 8 43 39945 39963 10.1021/acsomega.3c05241 37953833
    [Google Scholar]
  132. Abstracts of the 17th International Symposium on Bioluminescence and Chemiluminescence, May 28th - June 2nd, 2012, Guelph, Ontario, Canada (ISBC 2012). Luminescence 2012 27 2 95 178 10.1002/bio.2341 22505334
    [Google Scholar]
  133. Ekbbal R. Jaiswal A.K. Aggarwal M. Singh M. Ali S.A. Ali S. Gautam G. Indian medicinal plants for the management of endometriosis: A comprehensive review on their phytopharmacology. Nat Resour Hum Health 2024 4 1 75 88 10.53365/nrfhh/174668
    [Google Scholar]
  134. Alopecia Areata Geneesmiddelenbulletin 1995 299101102
    [Google Scholar]
  135. Ali S. A brief review of pathophysiology and management of different types of arthritis. Eur. Chem. Bull. 2023 12 12 199 230 10.48047/ecb/2023.12.si12.016
    [Google Scholar]
  136. Hameed S.F. Perkhdri S.K.A. Saleh H.H. Effect of diffrerent concentrations of bee glue extract as replacement of antibiotic on the chemical composition of the of broiler chicken. Plant Arch. 2021 21 Suppl. 1 1676 1680 10.51470/PLANTARCHIVES.2021.v21.S1.264
    [Google Scholar]
  137. Ali S.A. Ali S. Jahan I. Ali S. Allergies to Infections. Understanding the Spectrum of Conjunctivitis 2023 1 46 56
    [Google Scholar]
  138. Ekbbal R. Jaiswal A.K. Aggarwal M. Singh M. Ali S.A. Ali S. Gautam G. Indian medicinal plants for the management of endometriosis: A comprehensive review on their phytopharmacology. Natural Resources for Human Health 2023 4 1 75 88 10.53365/nrfhh/174668
    [Google Scholar]
  139. Ali S.A. Ali S. Rastogi S. Prasad J. Kondrapu P. Endometriosis: A brief review of pharmacological and non-pharmacological treatment. Researchgate Net 2023 12 12 1359 1379 10.48047/ecb/2023.12.si12.123
    [Google Scholar]
  140. Mandal S. Tyagi P. Jain A.V. Yadav P. Advanced formulation and comprehensive pharmacological evaluation of a novel topical drug delivery system for the management and therapeutic intervention of Tinea Cruris (Jock Itch). J. Nursing 2024 71 3 3 10.5281/zenodo.10811676
    [Google Scholar]
  141. As E. Vesicles A. Modified F.O.R. Skin D.T.O. Ethosomes as amphiphilic vesicles for modified drug diffusion to skin. World J. Pharm. Res. 2024 13 9 20249 32134 10.20959/wjpr20249‑32134
    [Google Scholar]
  142. Rios-Doria J. Durham N. Wetzel L. Rothstein R. Chesebrough J. Holoweckyj N. Zhao W. Leow C.C. Hollingsworth R. Doxil synergizes with cancer immunotherapies to enhance antitumor responses in syngeneic mouse models. Neoplasia 2015 17 8 661 670 10.1016/j.neo.2015.08.004 26408258
    [Google Scholar]
  143. Bhattacharyya J. Bellucci J.J. Weitzhandler I. McDaniel J.R. Spasojevic I. Li X. Lin C.C. Chi J.T.A. Chilkoti A. A paclitaxel-loaded recombinant polypeptide nanoparticle outperforms Abraxane in multiple murine cancer models. Nat. Commun. 2015 6 1 7939 10.1038/ncomms8939 26239362
    [Google Scholar]
  144. Wang X. Liu Y. Xu W. Jia L. Chi D. Yu J. Wang J. He Z. Liu X. Wang Y. Irinotecan and berberine co-delivery liposomes showed improved efficacy and reduced intestinal toxicity compared with Onivyde for pancreatic cancer. Drug Deliv. Transl. Res. 2021 11 5 2186 2197 10.1007/s13346‑020‑00884‑4 33452654
    [Google Scholar]
  145. O’Byrne K.J. Thomas A.L. Sharma R.A. DeCatris M. Shields F. Beare S. Steward W.P. A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer. Br. J. Cancer 2002 87 1 15 20 10.1038/sj.bjc.6600344 12085249
    [Google Scholar]
  146. Bedikian A.Y. Silverman J.A. Papadopoulos N.E. Kim K.B. Hagey A.E. Vardeleon A. Hwu W.J. Homsi J. Davies M. Hwu P. Pharmacokinetics and safety of Marqibo (vincristine sulfate liposomes injection) in cancer patients with impaired liver function. J. Clin. Pharmacol. 2011 51 8 1205 1212 10.1177/0091270010381499 20978276
    [Google Scholar]
  147. Wang L. Evans J.C. Ahmed L. Allen C. Folate receptor targeted nanoparticles containing niraparib and doxorubicin as a potential candidate for the treatment of high grade serous ovarian cancer. Sci. Rep. 2023 13 1 3226 10.1038/s41598‑023‑28424‑3 36828860
    [Google Scholar]
  148. Kim B. Park J.E. Im E. Cho Y. Lee J. Lee H.J. Sim D.Y. Park W.Y. Shim B.S. Kim S.H. Recent advances in nanotechnology with nano-phytochemicals: Molecular mechanisms and clinical implications in cancer progression. Int. J. Mol. Sci. 2021 22 7 3571 10.3390/ijms22073571 33808235
    [Google Scholar]
  149. Glantz M.J. Jaeckle K.A. Chamberlain M.C. Phuphanich S. Recht L. Swinnen L.J. Maria B. LaFollette S. Schumann G.B. Cole B.F. Howell S.B. A randomized controlled trial comparing intrathecal sustained-release cytarabine (DepoCyt) to intrathecal methotrexate in patients with neoplastic meningitis from solid tumors. Clin. Cancer Res. 1999 5 11 3394 3402 10589750
    [Google Scholar]
  150. Malek R. Wu S.T. Serrano D. Tho T. Umbas R. Teoh J. Lojanapiwat B. Ong T.A. On W.K. Thai S.M. Kim J. Pophale R. Chiong E. ELIGANT: A Phase 4, interventional, safety study of leuprorelin acetate (ELIGARD®) in Asian men with prostate cancer. Transl. Androl. Urol. 2022 11 2 179 189 10.21037/tau‑21‑723 35280654
    [Google Scholar]
  151. Nam S.H. Lee S.W. Lee Y.J. Kim Y.M. Safety and tolerability of weekly genexol-PM, a cremophor-free polymeric micelle formulation of paclitaxel, with carboplatin in gynecologic cancer: A phase I study. Cancer Res. Treat. 2023 55 4 1346 1354 10.4143/crt.2022.1436 37189263
    [Google Scholar]
  152. Wong G. Zhang L. Majeed H. Razvi Y. DeAngelis C. Lam E. McKenzie E. Wang K. Pasetka M. A retrospective review of the real-world experience of the Pegfilgrastim biosimilar (Lapelga®) to the reference biologic (Neulasta®). J. Oncol. Pharm. Pract. 2022 28 1 5 16 10.1177/1078155220974085 33215563
    [Google Scholar]
  153. Regenold M. Bannigan P. Evans J.C. Waspe A. Temple M.J. Allen C. Turning down the heat: The case for mild hyperthermia and thermosensitive liposomes. Nanomedicine 2022 40 102484 10.1016/j.nano.2021.102484 34748961
    [Google Scholar]
  154. Cabozantinib (COMETRIQ°): In medullary thyroid cancer: More harmful than beneficial, as is Vandetanib. Prescrire Int. 2016
    [Google Scholar]
  155. Reichel D. Tripathi M. Butte P. Saouaf R. Perez J.M. Tumor-activatable clinical nanoprobe for cancer imaging. Nanotheranostics 2019 3 2 196 211 10.7150/ntno.34921 31183314
    [Google Scholar]
  156. Vodyashkin A.A. Rizk M.G.H. Kezimana P. Kirichuk A.A. Stanishevskiy Y.M. Application of gold nanoparticle-based materials in cancer therapy and diagnostics. ChemEngineering 2021 5 4 69 10.3390/chemengineering5040069
    [Google Scholar]
  157. Singh P. Pandit S. Mokkapati V.R.S.S. Garg A. Ravikumar V. Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 2018 19 7 1979 10.3390/ijms19071979 29986450
    [Google Scholar]
  158. Fu Z. Xiang J. Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. Int. J. Mol. Sci. 2020 21 23 9123 10.3390/ijms21239123 33266216
    [Google Scholar]
  159. Raheem M.A. Advances in nanoparticles-based approaches in cancer theranostics. OpenNano 2023 12 100152 10.1016/j.onano.2023.100152
    [Google Scholar]
  160. Khizar S. Elkalla E. Zine N. Jaffrezic-Renault N. Errachid A. Elaissari A. Magnetic nanoparticles: Multifunctional tool for cancer therapy. Expert Opin. Drug Deliv. 2023 20 2 189 204 10.1080/17425247.2023.2166484 36608938
    [Google Scholar]
  161. Lee S.W.L. Paoletti C. Campisi M. Osaki T. Adriani G. Kamm R.D. Mattu C. Chiono V. MicroRNA delivery through nanoparticles. J. Control. Release 2019 313 80 95 10.1016/j.jconrel.2019.10.007 31622695
    [Google Scholar]
  162. Mehta M. Bui T.A. Yang X. Aksoy Y. Goldys E.M. Deng W. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater. Au 2023 3 6 600 619 10.1021/acsmaterialsau.3c00032 38089666
    [Google Scholar]
  163. Khiev D. Mohamed Z.A. Vichare R. Paulson R. Bhatia S. Mohapatra S. Lobo G.P. Valapala M. Kerur N. Passaglia C.L. Mohapatra S.S. Biswal M.R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials (Basel) 2021 11 1 173 10.3390/nano11010173 33445545
    [Google Scholar]
  164. Chan H.W. Chow S. Zhang X. Zhao Y. Tong H.H.Y. Chow S.F. Inhalable nanoparticle-based dry powder formulations for respiratory diseases: Challenges and strategies for translational research. AAPS PharmSciTech 2023 24 4 98 10.1208/s12249‑023‑02559‑y 37016029
    [Google Scholar]
  165. Zhao Z. Zheng L. Chen W. Weng W. Song J. Ji J. Delivery strategies of cancer immunotherapy: Recent advances and future perspectives. J. Hematol. Oncol. 2019 12 1 126 10.1186/s13045‑019‑0817‑3 31779642
    [Google Scholar]
  166. Li H. Bai G. Lian Y. Li Y. Chen L. Zhang J. Xu S. Advances in near-infrared-activated lanthanide-doped optical nanomaterials: Imaging, sensing, and therapy. Mater. Des. 2023 231 112036 10.1016/j.matdes.2023.112036
    [Google Scholar]
  167. Murthy S.K. Nanoparticles in modern medicine: State of the art and future challenges. Int. J. Nanomedicine 2007 2 2 129 141 17722542
    [Google Scholar]
  168. Kumar A. Das N. Rayavarapu R.G. Role of tunable gold nanostructures in cancer nanotheranostics: Implications on synthesis, toxicity, clinical applications and their associated opportunities and challenges. J. Nanotheranostics 2023 4 1 1 34 10.3390/jnt4010001
    [Google Scholar]
  169. Wang Y.S. Kumari M. Chen G.H. Hong M.H. Yuan J.P.Y. Tsai J.L. Wu H.C. mRNA-based vaccines and therapeutics: An in-depth survey of current and upcoming clinical applications. J. Biomed. Sci. 2023 30 1 84 10.1186/s12929‑023‑00977‑5 37805495
    [Google Scholar]
  170. Liu G.W. Guzman E.B. Menon N. Langer R.S. Lipid nanoparticles for nucleic acid delivery to endothelial cells. Pharm. Res. 2023 40 1 3 25 10.1007/s11095‑023‑03471‑7 36735106
    [Google Scholar]
  171. Mehta M. Satija S. Paudel K.R. Malyla V. Kannaujiya V.K. Chellappan D.K. Bebawy M. Hansbro P.M. Wich P.R. Dua K. Targeting respiratory diseases using miRNA inhibitor based nanotherapeutics: Current status and future perspectives. Nanomedicine 2021 31 102303 10.1016/j.nano.2020.102303 32980549
    [Google Scholar]
  172. Li L. Luo J. Lin X. Tan J. Li P. Nanomaterials for inner ear diseases: Challenges, limitations and opportunities. Materials (Basel) 2022 15 11 3780 10.3390/ma15113780 35683076
    [Google Scholar]
  173. Beloqui A. Solinís M.Á. Rodríguez-Gascón A. Almeida A.J. Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016 12 1 143 161 10.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  174. Tanno T. Zhang P. Bailey C. Wang Y. Ittiprasert W. Devenport M. Zheng P. Liu Y. A novel aptamer-based small RNA delivery platform and its application to cancer therapy. Genes Dis. 2023 10 3 1075 1089 10.1016/j.gendis.2022.05.004 37396505
    [Google Scholar]
  175. Kim K.S. Kim D.H. Kim D.H. Recent advances to augment NK cell cancer immunotherapy using nanoparticles. Pharmaceutics 2021 13 4 525 10.3390/pharmaceutics13040525 33918941
    [Google Scholar]
/content/journals/mns/10.2174/0118764029358553250325040749
Loading
/content/journals/mns/10.2174/0118764029358553250325040749
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test