Skip to content
2000
Volume 17, Issue 4
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

The health and lives of individuals are increasingly at risk due to Cardiovascular Diseases (CVDs). Even though there are numerous medicines with various modes of action that are commercially available as traditional formulations for the treatment of CVDs, these drugs still fall short of expectations due to issues with water solubility, biological effectiveness, non-targeting, and drug resistance. To overcome biological barriers, the vast majority of cardiovascular nanomedicine research has focused on preparing ligand-based nanoparticles for enhanced targeting. These micro or nanoparticles are frequently administered into the vasculature or targeted vessel for cardiac disorders like atherosclerosis, hypertension, and myocardial infarction to avoid issues with conventional drug delivery, such as adverse systemic side effects. Gene therapy holds great importance in the field of drug delivery to fight against CVD. An outlook is provided on new areas of nanotechnologies (such as in vascular, implantable, or wearable device technologies) for the management of CVD, as well as to encourage better treatment by using nanocomposites and nano-coatings. Furthermore, it is concluded that nanotechnology can reduce the burden on healthcare systems by contributing to the early detection and efficient treatment of CVDs.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029350668250520060953
2025-05-26
2025-10-25
Loading full text...

Full text loading...

References

  1. PelosoG.M. BeiserA.S. SatizabalC.L. XanthakisV. VasanR.S. PaseM.P. DestefanoA.L. SeshadriS. Cardiovascular health, genetic risk, and risk of dementia in the Framingham Heart Study.Neurology20209510e1341e135010.1212/WNL.0000000000010306 32690788
    [Google Scholar]
  2. MandviwalaT. KhalidU. DeswalA. Obesity and cardiovascular disease: A risk factor or a risk marker?Curr. Atheroscler. Rep.20161852110.1007/s11883‑016‑0575‑4 26973130
    [Google Scholar]
  3. SorrentiV. BuròI. ConsoliV. VanellaL. Recent advances in health benefits of bioactive compounds from food wastes and by-products: Biochemical aspects.Int. J. Mol. Sci.2023243201910.3390/ijms24032019 36768340
    [Google Scholar]
  4. AriasA. FeijooG. MoreiraM.T. Exploring the potential of antioxidants from fruits and vegetables and strategies for their recovery.Innov. Food Sci. Emerg. Technol.20227710297410.1016/j.ifset.2022.102974
    [Google Scholar]
  5. MariaA.G. GrazianoR. NicolantonioD.O. Carotenoids: Potential allies of cardiovascular health?Food Nutr. Res.20155912676210.3402/fnr.v59.26762 25660385
    [Google Scholar]
  6. Mohebi-NejadA. BikdeliB. Omega-3 supplements and cardiovascular diseases.Tanaffos2014131614 25191488
    [Google Scholar]
  7. Ioniță-MîndricanC.B. ZianiK. MititeluM. OpreaE. NeacșuS.M. MoroșanE. DumitrescuD.E. RoșcaA.C. DrăgănescuD. NegreiC. Therapeutic benefits and dietary restrictions of fiber intake: A state of the art review.Nutrients20221413264110.3390/nu14132641 35807822
    [Google Scholar]
  8. MensahG.A. FusterV. MurrayC.J.L. RothG.A. AbdollahiA. AbdollahiM. Global burden of cardiovascular diseases and risks, 1990-2022.J. Am. Coll. Cardiol.202382252350247310.1016/j.jacc.2023.11.007 38092509
    [Google Scholar]
  9. SafwatM.A. KandilB.A. ElblbesyM.A. SolimanG.M. ElerakyN.E. Epigallocatechin-3-gallate-loaded gold nanoparticles: Preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice.Pharmaceuticals202013925410.3390/ph13090254 32961982
    [Google Scholar]
  10. FahimfarN. FotouhiA. MansourniaM.A. MalekzadehR. SarrafzadeganN. AziziF. MansourianM. SepanlouS.G. EmamianM.H. HadaeghF. RoohafzaH. HashemiH. PoustchiH. PourshamsA. SamavatT. SharafkhahM. TalaeiM. Van KlaverenD. SteyerbergE.W. KhaliliD. Prediction of cardiovascular disease mortality in a middle eastern country: Performance of the globorisk and score functions in four population-based cohort studies of Iran.Int. J. Health Policy Manag.202011221021710.34172/ijhpm.2020.103 32668896
    [Google Scholar]
  11. MishraS. VishwakarmaP.K. TripathiM. OjhaS. TripathiS.M. Diabetic retinopathy: Clinical features, risk factors, and treatment options.Curr. Diabetes Rev.2024207e27102322287110.2174/0115733998252551231018080419 37929721
    [Google Scholar]
  12. GinsbergH.N. MacCallumP.R. The obesity, metabolic syndrome, and type 2 diabetes mellitus pandemic: Part I. Increased cardiovascular disease risk and the importance of atherogenic dyslipidemia in persons with the metabolic syndrome and type 2 diabetes mellitus.J. Cardiometab. Syndr.20094211311910.1111/j.1559‑4572.2008.00044.x 19614799
    [Google Scholar]
  13. FahedG. AounL. Bou ZerdanM. AllamS. Bou ZerdanM. BouferraaY. AssiH.I. Metabolic syndrome: Updates on pathophysiology and management in 2021.Int. J. Mol. Sci.202223278610.3390/ijms23020786 35054972
    [Google Scholar]
  14. SoodS. MittalN. SinghT.G. DeviS. Pathogenesis of obesity-associated cardiovascular diseases: Key role of biomolecules.Health Sci. Rep.2023710009810.1016/j.hsr.2023.100098
    [Google Scholar]
  15. El MeouchyP. WahoudM. AllamS. ChedidR. KaramW. KaramS. Hypertension related to obesity: Pathogenesis, characteristics and factors for control.Int. J. Mol. Sci.202223201230510.3390/ijms232012305 36293177
    [Google Scholar]
  16. StiefelP. Vallejo-VazA.J. MorilloG.S. VillarJ. Role of the renin-angiotensin system and aldosterone on cardiometabolic syndrome.Int. J. Hypertens.201120111810.4061/2011/685238 21785705
    [Google Scholar]
  17. Powell-WileyT.M. PoirierP. BurkeL.E. DesprésJ.P. Gordon-LarsenP. LavieC.J. LearS.A. NdumeleC.E. NeelandI.J. SandersP. St-OngeM.P. Obesity and cardiovascular disease: A scientific statement from the American Heart Association.Circulation202114321e984e101010.1161/CIR.0000000000000973 33882682
    [Google Scholar]
  18. KushnirA. MarksA.R. The ryanodine receptor in cardiac physiology and disease.Adv. Pharmacol.20105913010.1016/S1054‑3589(10)59001‑X 20933197
    [Google Scholar]
  19. NegreaM.O. NeamtuB. DobrotăI. SofariuC.R. CrisanR.M. CiprianB.I. DomnariuC.D. TeodoruM. Causative mechanisms of childhood and adolescent obesity leading to adult cardiometabolic disease: A literature review.Appl. Sci.202111231156510.3390/app112311565
    [Google Scholar]
  20. Galicia-GarciaU. Benito-VicenteA. JebariS. Larrea-SebalA. SiddiqiH. UribeK.B. OstolazaH. MartínC. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  21. TuneJ.D. GoodwillA.G. SassoonD.J. MatherK.J. Cardiovascular consequences of metabolic syndrome.Transl. Res.2017183577010.1016/j.trsl.2017.01.001 28130064
    [Google Scholar]
  22. YadavA. TiwariN.N. SrivastavaS.P. TripathiS.M. MishraS. Bioactive compound containing hepatoprotective activity.Curr. Bioact. Compd.2023199e11042321565810.2174/1573407219666230411111304
    [Google Scholar]
  23. Castro-BarqueroS. Ruiz-LeónA.M. Sierra-PérezM. EstruchR. CasasR. Dietary strategies for metabolic syndrome: A comprehensive review.Nutrients20201210298310.3390/nu12102983 33003472
    [Google Scholar]
  24. RameshradM. RazaviB.M. LalauJ.D. De BroeM.E. HosseinzadehH. HosseinzadehH. An overview of glucagon-like peptide-1 receptor agonists for the treatment of metabolic syndrome: A drug repositioning.Iran. J. Basic Med. Sci.202023555656810.22038/ijbms.2020.41638.9832 32742592
    [Google Scholar]
  25. KassiE. PervanidouP. KaltsasG. ChrousosG. Metabolic syndrome: Definitions and controversies.BMC Med.2011914810.1186/1741‑7015‑9‑48 21542944
    [Google Scholar]
  26. MadonnaR. BalistreriC.R. De RosaS. MuscoliS. SelvaggioS. SelvaggioG. FerdinandyP. De CaterinaR. Impact of sex differences and diabetes on coronary atherosclerosis and ischemic heart disease.J. Clin. Med.2019819810.3390/jcm8010098 30654523
    [Google Scholar]
  27. GiammancoM. MariniH.R. PallioS. GiammancoM.M. TomaselloG. CariniF. VenturellaF. LetoG. La GuardiaM. Adipokines in obesity and metabolic diseases.J. Biol. Res.202193214515710.4081/jbr.2020.8915
    [Google Scholar]
  28. SandooA. Veldhuijzen van ZantenJ.J.C.S. MetsiosG.S. CarrollD. KitasG.D. The endothelium and its role in regulating vascular tone.Open Cardiovasc. Med. J.20104130231210.2174/1874192401004010302 21339899
    [Google Scholar]
  29. FlammerA.J. AndersonT. CelermajerD.S. CreagerM.A. DeanfieldJ. GanzP. HamburgN.M. LüscherT.F. ShechterM. TaddeiS. VitaJ.A. LermanA. The assessment of endothelial function: from research into clinical practice.Circulation2012126675376710.1161/CIRCULATIONAHA.112.093245 22869857
    [Google Scholar]
  30. LittleP.J. AskewC.D. XuS. KamatoD. Endothelial dysfunction and cardiovascular disease: History and analysis of the clinical utility of the relationship.Biomedicines20219669910.3390/biomedicines9060699 34203043
    [Google Scholar]
  31. NiroumandS. KhajedalueeM. Khadem-RezaiyanM. AbrishamiM. JuyaM. KhodaeeG. DadgarmoghaddamM. Atherogenic Index of Plasma (AIP): A marker of cardiovascular disease.Med. J. Islam. Repub. Iran201529240 26793631
    [Google Scholar]
  32. KlopB. ElteJ. CabezasM. Dyslipidemia in obesity: Mechanisms and potential targets.Nutrients2013541218124010.3390/nu5041218 23584084
    [Google Scholar]
  33. GuzzaloniG. GrugniG. MinocciA. MoroD. MorabitoF. Liver steatosis in juvenile obesity: Correlations with lipid profile, hepatic biochemical parameters and glycemic and insulinemic responses to an oral glucose tolerance test.Int. J. Obes.200024677277610.1038/sj.ijo.0801224 10878685
    [Google Scholar]
  34. DesprésJ.P. LemieuxI. Abdominal obesity and metabolic syndrome.Nature2006444712188188710.1038/nature05488 17167477
    [Google Scholar]
  35. MartirosyanD.M. MiroshnichenkoL.A. KulakovaS.N. PogojevaA.V. ZoloedovV.I. Amaranth oil application for coronary heart disease and hypertension.Lipids Health Dis.200761110.1186/1476‑511X‑6‑1 17207282
    [Google Scholar]
  36. OrdovasJ.M. Genetic interactions with diet influence the risk of cardiovascular disease.Am. J. Clin. Nutr.2006832443S446S10.1093/ajcn/83.2.443S 16470010
    [Google Scholar]
  37. MathersC.D. LoncarD. Projections of global mortality and burden of disease from 2002 to 2030.PLoS Med.2006311e44210.1371/journal.pmed.0030442 17132052
    [Google Scholar]
  38. Tveden-NyborgP. BirckM.M. IpsenD.H. ThiessenT. FeldmannL.B. LindbladM.M. JensenH.E. LykkesfeldtJ. Diet-induced dyslipidemia leads to nonalcoholic fatty liver disease and oxidative stress in guinea pigs.Transl. Res.201616814616010.1016/j.trsl.2015.10.001 26518991
    [Google Scholar]
  39. Francula-ZaninovicS. NolaI.A. Management of measurable variable cardiovascular disease’ risk factors.Curr. Cardiol. Rev.201814315316310.2174/1573403X14666180222102312 29473518
    [Google Scholar]
  40. SinghA. MishraS. SharmaS. OjhaS. YagnikS. PandeyS. Ligand-mediated targeted drug delivery approaches against hepatocellular carcinoma.Curr. Cancer Drug Targets2023231187988810.2174/1568009623666230503094346 37655629
    [Google Scholar]
  41. SatohM. TakahashiY. TabuchiT. MinamiY. TamadaM. TakahashiK. ItohT. MorinoY. NakamuraM. Cellular and molecular mechanisms of statins: An update on pleiotropic effects.Clin. Sci. (Lond.)201512929310510.1042/CS20150027 25927679
    [Google Scholar]
  42. WadheraR.K. SteenD.L. KhanI. GiuglianoR.P. FoodyJ.M. A review of low-density lipoprotein cholesterol, treatment strategies, and its impact on cardiovascular disease morbidity and mortality.J. Clin. Lipidol.201610347248910.1016/j.jacl.2015.11.010 27206934
    [Google Scholar]
  43. LeeS.E. ChangH.J. SungJ.M. ParkH.B. HeoR. RizviA. LinF.Y. KumarA. HadamitzkyM. KimY.J. ConteE. AndreiniD. PontoneG. BudoffM.J. GottliebI. LeeB.K. ChunE.J. CademartiriF. MaffeiE. MarquesH. LeipsicJ.A. ShinS. ChoiJ.H. ChinnaiyanK. RaffG. VirmaniR. SamadyH. StoneP.H. BermanD.S. NarulaJ. ShawL.J. BaxJ.J. MinJ.K. Effects of statins on coronary atherosclerotic plaques.JACC Cardiovasc. Imaging201811101475148410.1016/j.jcmg.2018.04.015 29909109
    [Google Scholar]
  44. Ylä-HerttualaS. BentzonJ.F. DaemenM. FalkE. Garcia-GarciaH.M. HerrmannJ. HoeferI. JauhiainenS. JukemaJ.W. KramsR. KwakB.R. MarxN. NaruszewiczM. NewbyA. PasterkampG. SerruysP.W.J.C. WaltenbergerJ. WeberC. TokgözogluL. Stabilization of atherosclerotic plaques: An update.Eur. Heart J.201334423251325810.1093/eurheartj/eht301 23966311
    [Google Scholar]
  45. AndersonT.J. GrégoireJ. PearsonG.J. BarryA.R. CoutureP. DawesM. FrancisG.A. GenestJ. GroverS. GuptaM. HegeleR.A. LauD.C. LeiterL.A. LonnE. ManciniG.B.J. McPhersonR. NguiD. PoirierP. SievenpiperJ.L. StoneJ.A. ThanassoulisG. WardR. 2016 Canadian cardiovascular society guidelines for the management of dyslipidemia for the prevention of cardiovascular disease in the adult.Can. J. Cardiol.201632111263128210.1016/j.cjca.2016.07.510 27712954
    [Google Scholar]
  46. OjhaS. KumarB. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis.J. Cell. Immunol.201842566410.1016/j.jocit.2017.12.001
    [Google Scholar]
  47. SuH. WangY. LiuS. WangY. LiuQ. LiuG. ChenQ. Emerging transporter-targeted nanoparticulate drug delivery systems.Acta Pharm. Sin. B201991495810.1016/j.apsb.2018.10.005 30766777
    [Google Scholar]
  48. SmritiO. BabitaK. HinaC. Neuroprotective potential of dimethyl fumarate-loaded polymeric nanoparticles against multiple sclerosis.Indian J. Pharm. Sci.201981349610.36468/pharmaceutical‑sciences.535
    [Google Scholar]
  49. PalaR. AnjuV.T. DyavaiahM. BusiS. NauliS.M. Nanoparticle-mediated drug delivery for the treatment of cardiovascular diseases.Int. J. Nanomedicine2020153741376910.2147/IJN.S250872 32547026
    [Google Scholar]
  50. Hernández-PedroN.Y. Rangel-LópezE. Magaña-MaldonadoR. de la CruzV.P. Santamaría del AngelA. PinedaB. SoteloJ. Application of nanoparticles on diagnosis and therapy in gliomas.BioMed Res. Int.2013201312010.1155/2013/351031 23691498
    [Google Scholar]
  51. YangF. XueJ. WangG. DiaoQ. Nanoparticle-based drug delivery systems for the treatment of cardiovascular diseases.Front. Pharmacol.20221399940410.3389/fphar.2022.999404 36172197
    [Google Scholar]
  52. AnandA. GautamP. OjhaS. Application of nanotechnology for herbal medicine development: A review.Lett. Drug Des. Discov.20232181325133310.2174/1570180820666230308105723
    [Google Scholar]
  53. XieJ. LeeS. ChenX. Nanoparticle-based theranostic agents.Adv. Drug Deliv. Rev.201062111064107910.1016/j.addr.2010.07.009 20691229
    [Google Scholar]
  54. EdisZ. WangJ. WaqasM.K. IjazM. IjazM. Nanocarriers-mediated drug delivery systems for anticancer agents: An overview and perspectives.Int. J. Nanomedicine2021161313133010.2147/IJN.S289443 33628022
    [Google Scholar]
  55. ShiZ. ZhouY. FanT. LinY. ZhangH. MeiL. Inorganic nano-carriers based smart drug delivery systems for tumor therapy.Smart Mater. Med.20201324710.1016/j.smaim.2020.05.002
    [Google Scholar]
  56. LangH. YanarF. CarugoD. ZhangX. Hybrid nanoplatforms comprising organic nanocompartments encapsulating inorganic nanoparticles for enhanced drug delivery and bioimaging applications.Molecules20232815569410.3390/molecules28155694
    [Google Scholar]
  57. SunJ. LiuY. GeM. ZhouG. SunW. LiuD. LiangX.J. ZhangJ. A distinct endocytic mechanism of functionalized-silica nanoparticles in breast cancer stem cells.Sci. Rep.2017711623610.1038/s41598‑017‑16591‑z 29176652
    [Google Scholar]
  58. SanitàG. CarreseB. LambertiA. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization.Front. Mol. Biosci.2020758701210.3389/fmolb.2020.587012 33324678
    [Google Scholar]
  59. IafiscoM. AlognaA. MiragoliM. CatalucciD. Cardiovascular nanomedicine: The route ahead.Nanomedicine (Lond.)201914182391239410.2217/nnm‑2019‑0228 31456471
    [Google Scholar]
  60. PatelA. Exploring polymeric nano-particles as targeted pulmonary delivery of Rifampicin, Ethambutol and Ofloxacin against inh-resistant tuberculosis.J. Lung Pulm. Respir. Res.20174111610.15406/jlprr.2017.04.00116
    [Google Scholar]
  61. LiuP. ChenG. ZhangJ. A review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules27041372 35209162
    [Google Scholar]
  62. MishraS. ShahH. PatelA. TripathiS.M. MalviyaR. PrajapatiB.G. Applications of bioengineered polymer in the field of nano-based drug delivery.ACS Omega202491819610.1021/acsomega.3c07356 38222544
    [Google Scholar]
  63. AbdelmoneemM.A. ElnaggarM.A. HammadyR.S. KamelS.M. HelmyM.W. AbdulkaderM.A. ZakyA. FangJ.Y. ElkhodairyK.A. ElzoghbyA.O. Dual-targeted lactoferrin shell-oily core nanocapsules for synergistic targeted/herbal therapy of hepatocellular carcinoma.ACS Appl. Mater. Interfaces20191130267312674410.1021/acsami.9b10164 31268657
    [Google Scholar]
  64. NakamuraK. AkagiS. EjiriK. YoshidaM. MiyoshiT. TohN. NakagawaK. TakayaY. MatsubaraH. ItoH. Current treatment strategies and nanoparticle-mediated drug delivery systems for pulmonary arterial hypertension.Int. J. Mol. Sci.20192023588510.3390/ijms20235885 31771203
    [Google Scholar]
  65. MadiganM. AtouiR. Therapeutic use of stem cells for myocardial infarction.Bioengineering2018522810.3390/bioengineering5020028 29642402
    [Google Scholar]
  66. Shum-TimD. PaulA. KhanA.A. PrakashS. Shum-TimD. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model.Int. J. Nanomedicine201162667267810.2147/IJN.S25175 22114497
    [Google Scholar]
  67. ZhuK. LiJ. WangY. LaiH. WangC. Nanoparticles-assisted stem cell therapy for ischemic heart disease.Stem Cells Int.201620161138465810.1155/2016/1384658 26839552
    [Google Scholar]
  68. GalagudzaM. KorolevD. PostnovV. NaumishevaE. Uskov, I; Grigorova, Y.; Shlyakhto, E. Passive targeting of ischemic-reperfused myocardium with adenosine-loaded silica nanoparticles.Int. J. Nanomedicine201271671167810.2147/IJN.S29511 22619519
    [Google Scholar]
  69. TakahamaH. ShigematsuH. AsaiT. MatsuzakiT. SanadaS. FuH.Y. OkudaK. YamatoM. AsanumaH. AsanoY. AsakuraM. OkuN. KomuroI. KitakazeM. MinaminoT. Liposomal amiodarone augments anti-arrhythmic effects and reduces hemodynamic adverse effects in an ischemia/reperfusion rat model.Cardiovasc. Drugs Ther.201327212513210.1007/s10557‑012‑6437‑6 23344929
    [Google Scholar]
  70. LobattoM.E. FayadZ.A. SilveraS. VucicE. CalcagnoC. ManiV. DicksonS.D. NicolayK. BanciuM. SchiffelersR.M. MetselaarJ.M. van BlooisL. WuH.S. FallonJ.T. RuddJ.H. FusterV. FisherE.A. StormG. MulderW.J.M. Multimodal clinical imaging to longitudinally assess a nanomedical anti-inflammatory treatment in experimental atherosclerosis.Mol. Pharm.2010762020202910.1021/mp100309y 21028895
    [Google Scholar]
  71. HeH. YuanQ. BieJ. WallaceR.L. YannieP.J. WangJ. LancinaM.G. ZolotarskayaO.Y. KorzunW. YangH. GhoshS. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: Use of this platform to modulate atherosclerosis.Transl. Res.2018193133010.1016/j.trsl.2017.10.008 29172034
    [Google Scholar]
  72. NguyenT.H. BryantH. ShapsaA. StreetH. ManiV. FayadZ.A. FrankJ.A. TsimikasS. Briley-SaeboK.C. Manganese G8 dendrimers targeted to oxidation‐specific epitopes: In vivo MR imaging of atherosclerosis.J. Magn. Reson. Imaging201541379780510.1002/jmri.24606 24610640
    [Google Scholar]
  73. ZhangZ. RunaA. WuJ. ZhangH. LiX. HeZ. Bioresponsive nanogated ensemble based on structure-switchable aptamer directed assembly and disassembly of gold nanoparticles from mesoporous silica supports.Chin. Chem. Lett.201930377978210.1016/j.cclet.2018.10.019
    [Google Scholar]
  74. HuP.P. LuoS.X. FanX.Q. LiD. TongX.Y. Macrophage-targeted nanomedicine for the diagnosis and management of atherosclerosis.Front. Pharmacol.202213100031610.3389/fphar.2022.1000316 36160452
    [Google Scholar]
  75. DouY. GuoJ. ChenY. HanS. XuX. ShiQ. JiaY. LiuY. DengY. WangR. LiX. ZhangJ. Sustained delivery by a cyclodextrin material-based nanocarrier potentiates antiatherosclerotic activity of rapamycin via selectively inhibiting mTORC1 in mice.J. Control. Release2016235486210.1016/j.jconrel.2016.05.049 27235978
    [Google Scholar]
  76. GutmanD. GolombG. Liposomal alendronate for the treatment of restenosis.J. Control. Release2012161261962710.1016/j.jconrel.2011.11.037 22178594
    [Google Scholar]
  77. ChornyM. FishbeinI. YellenB.B. AlferievI.S. BakayM. GantaS. AdamoR. AmijiM. FriedmanG. LevyR.J. Targeting stents with local delivery of paclitaxel-loaded magnetic nanoparticles using uniform fields.Proc. Natl. Acad. Sci. USA2010107188346835110.1073/pnas.0909506107 20404175
    [Google Scholar]
  78. LiuJ. GuC. CabigasE.B. PendergrassK.D. BrownM.E. LuoY. DavisM.E. Functionalized dendrimer-based delivery of angiotensin type 1 receptor siRNA for preserving cardiac function following infarction.Biomaterials201334143729373610.1016/j.biomaterials.2013.02.008 23433774
    [Google Scholar]
  79. MyersonJ. HeL. LanzaG. TollefsenD. WicklineS. Thrombin‐inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis.J. Thromb. Haemost.2011971292130010.1111/j.1538‑7836.2011.04339.x 21605330
    [Google Scholar]
  80. PechanovaO. BartaA. KonerackaM. ZavisovaV. KubovcikovaM. KlimentovaJ. TӧrӧkJ. ZemancikovaA. CebovaM. Protective effects of nanoparticle-loaded aliskiren on cardiovascular system in spontaneously hypertensive rats.Molecules20192415271010.3390/molecules24152710 31349653
    [Google Scholar]
  81. QumbarM. Ameeduzzafar ImamS.S. AliJ. AhmadJ. AliA. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: In-vitro characterization and in-vivo activity.Biomed. Pharmacother.20179325526610.1016/j.biopha.2017.06.043 28738502
    [Google Scholar]
  82. AhadA. AqilM. KohliK. SultanaY. MujeebM. Nano vesicular lipid carriers of angiotensin II receptor blocker: Anti-hypertensive and skin toxicity study in focus.Artif. Cells Nanomed. Biotechnol.20154431610.3109/21691401.2015.1008509 25707444
    [Google Scholar]
  83. CabralesP. HanG. RocheC. NacharajuP. FriedmanA.J. FriedmanJ.M. Sustained release nitric oxide from long-lived circulating nanoparticles.Free Radic. Biol. Med.201049453053810.1016/j.freeradbiomed.2010.04.034 20460149
    [Google Scholar]
  84. ScottR.C. RosanoJ.M. IvanovZ. WangB. ChongP.L.G. IssekutzA.C. CrabbeD.L. KianiM.F. Targeting VEGF‐encapsulated immunoliposomes to MI heart improves vascularity and cardiac function.FASEB J.200923103361336710.1096/fj.08‑127373 19535683
    [Google Scholar]
  85. MaranhãoR. GuidoM.C. Derisio de LimaA. Rufo TavaresE. Franca MarquesA. Dantas Tavares de MeloM. NicolauJ.C. SalemiV. Kalil-FilhoR. Methotrexate carried in lipid core nanoparticles reduces myocardial infarction size and improves cardiac function in rats.Int. J. Nanomedicine2017123767378410.2147/IJN.S129324 28553113
    [Google Scholar]
  86. KimD. HongJ. MoonH.H. NamH.Y. MokH. JeongJ.H. KimS.W. ChoiD. KimS.H. Anti-apoptotic cardioprotective effects of SHP-1 gene silencing against ischemia–reperfusion injury: Use of deoxycholic acid-modified low molecular weight polyethyleneimine as a cardiac siRNA-carrier.J. Control. Release2013168212513410.1016/j.jconrel.2013.02.031 23500061
    [Google Scholar]
  87. SmithB.R. EdelmanE.R. Nanomedicines for cardiovascular disease.Nat. Cardiovasc. Res.20232435136710.1038/s44161‑023‑00232‑y 39195953
    [Google Scholar]
  88. XueY. GaoY. MengF. LuoL. Recent progress of nanotechnology-based theranostic systems in cancer treatments.Cancer Biol. Med.202118233635110.20892/j.issn.2095‑3941.2020.0510 33861527
    [Google Scholar]
  89. KrishnanK.M. Biomedical nanomagnetics: A spin through possibilities in imaging, diagnostics, and therapy.IEEE Trans. Magn.20104672523255810.1109/TMAG.2010.2046907 20930943
    [Google Scholar]
  90. ParkS. AalipourA. VermeshO. YuJ.H. GambhirS.S. Towards clinically translatable in vivo nanodiagnostics.Nat. Rev. Mater.2017251701410.1038/natrevmats.2017.14 29876137
    [Google Scholar]
  91. Al-HadiH.A. FoxK.A. Cardiac markers in the early diagnosis and management of patients with acute coronary syndrome.Sultan Qaboos Univ. Med. J.200993231246 21509305
    [Google Scholar]
  92. RameshM. JananiR. DeepaC. RajeshkumarL. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications.Biosensors20221314010.3390/bios13010040 36671875
    [Google Scholar]
  93. HuynhK.H. PhamX.H. KimJ. LeeS.H. ChangH. RhoW.Y. JunB.H. Synthesis, properties, and biological applications of metallic alloy nanoparticles.Int. J. Mol. Sci.20202114517410.3390/ijms21145174 32708351
    [Google Scholar]
  94. Soler-BotijaC. Gálvez-MontónC. Bayés-GenísA. Epigenetic biomarkers in cardiovascular diseases.Front. Genet.20191095010.3389/fgene.2019.00950 31649728
    [Google Scholar]
  95. HeerbothS. LapinskaK. SnyderN. LearyM. RollinsonS. SarkarS. Use of epigenetic drugs in disease: An overview. Genet. Epigenet,20146GEG.S1227010.4137/GEG.S12270 25512710
    [Google Scholar]
  96. DhingraR. VasanR.S. Biomarkers in cardiovascular disease: Statistical assessment and section on key novel heart failure biomarkers.Trends Cardiovasc. Med.201727212313310.1016/j.tcm.2016.07.005 27576060
    [Google Scholar]
  97. GabrR.E. El-SharkawyA.M.M. SchärM. PanjrathG.S. GerstenblithG. WeissR.G. BottomleyP.A. Cardiac work is related to creatine kinase energy supply in human heart failure: A cardiovascular magnetic resonance spectroscopy study.J. Cardiovasc. Magn. Reson.20182018110.1186/s12968‑018‑0491‑6 30526611
    [Google Scholar]
  98. DakhilA.S. Assessment of Novel Cardiovascular biomarkers in patients with chronic heart failures.Int. J. Pharma Sci.20191043728373210.26452/ijrps.v10i4.1761
    [Google Scholar]
  99. ThupakulaS. NimmalaS.S.R. RavulaH. ChekuriS. PadiyaR. Emerging biomarkers for the detection of cardiovascular diseases.Egypt. Heart J.20227417710.1186/s43044‑022‑00317‑2 36264449
    [Google Scholar]
  100. SunH.J. WuZ.Y. NieX.W. BianJ.S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide.Front. Pharmacol.202010156810.3389/fphar.2019.01568 32038245
    [Google Scholar]
  101. SibalL. C AgarwalS. D HomeP. H BogerR. The role of Asymmetric Dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease.Curr. Cardiol. Rev.201062829010.2174/157340310791162659 21532773
    [Google Scholar]
  102. HaraJ. FriasJ. NashR. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters.Mar. Pollut. Bull.202015211090510.1016/j.marpolbul.2020.110905 31957681
    [Google Scholar]
  103. MuellerC. MöckelM. GiannitsisE. HuberK. MairJ. PlebaniM. ThygesenK. JaffeA.S. LindahlB. Use of copeptin for rapid rule-out of acute myocardial infarction.Eur. Heart J. Acute Cardiovasc. Care20187657057610.1177/2048872617710791 28593800
    [Google Scholar]
  104. Ward-CavinessC.K. RussellA.G. WeaverA.M. SlawskyE. DhingraR. KweeL.C. JiangR. NeasL.M. Diaz-SanchezD. DevlinR.B. CascioW.E. OldenK. HauserE.R. ShahS.H. KrausW.E. Accelerated epigenetic age as a biomarker of cardiovascular sensitivity to traffic-related air pollution.Aging (Albany NY)20201223241412415510.18632/aging.202341 33289704
    [Google Scholar]
  105. RiccardiM MyhrePL ZelnikerTA MetraM JanuzziJL InciardiRM Soluble ST2 in heart failure: A clinical role beyond B-type natriuretic peptide. J. Cardiovasc. Dev. Dis.,202310:46810.3390/jcdd10110468
    [Google Scholar]
  106. ManeeratY. PrasongsukarnK. BenjathummarakS. DechkhajornW. ChaisriU. Increased alpha-defensin expression is associated with risk of coronary heart disease: A feasible predictive inflammatory biomarker of coronary heart disease in hyperlipidemia patients.Lipids Health Dis.201615111710.1186/s12944‑016‑0285‑5 27430968
    [Google Scholar]
  107. RochetteL. Emerging new biomarkers for cardiovascular disease.Int. J. Mol. Sci.2022236327410.3390/ijms23063274 35328695
    [Google Scholar]
  108. ColpaertR.M.W. CaloreM. MicroRNAs in cardiac diseases.Cells20198773710.3390/cells8070737 31323768
    [Google Scholar]
  109. SunT. ChenM. ShenH. PingYin FanL. ChenX. WuJ. XuZ. ZhangJ. Predictive value of LDL/HDL ratio in coronary atherosclerotic heart disease.BMC Cardiovasc. Disord.202222127310.1186/s12872‑022‑02706‑6 35715736
    [Google Scholar]
  110. Vázquez-LorenteH. Jurado-FasoliL. KohlerI. DiX. YangW. Osuna-PrietoF.J. AsadovS. Frias-RodríguezJ.F. Castillo-GarzónM.J. Amaro-GaheteF.J. Linoleic acid-derived oxylipins and isoprostanes plasma levels are influenced by 1,25-Dihydroxyvitamin D levels in middle-aged sedentary adults: The FIT-AGEING study.Exp. Gerontol.202216911195410.1016/j.exger.2022.111954 36122595
    [Google Scholar]
  111. MadjidM. Safavi-NaeiniP. SolomonS.D. VardenyO. Potential effects of coronaviruses on the cardiovascular system.JAMA Cardiol.20205783184010.1001/jamacardio.2020.1286 32219363
    [Google Scholar]
  112. SinghN. RathoreV. MahatR.K. RastogiP. Glycogen phosphorylase BB: A more sensitive and specific marker than other cardiac markers for early diagnosis of acute myocardial infarction.Indian J. Clin. Biochem.201833335636010.1007/s12291‑017‑0685‑y 30072837
    [Google Scholar]
  113. DaiY. WangR. ChenF. ZhangY. LiuY. HuangH. YangP. ZhangR. ZhengB. GaoC. ChenY. TaoL. Clinical outcomes in 2481 unselected real-world patients treated with a polymer-free sirolimus-eluting stent: 3 years results from the NANO multicenter Registry.BMC Cardiovasc. Disord.202121153710.1186/s12872‑021‑02356‑0 34772347
    [Google Scholar]
  114. SteigenT.K. MaengM. WisethR. ErglisA. KumsarsI. NarbuteI. GunnesP. MannsverkJ. MeyerdierksO. RotevatnS. NiemeläM. KervinenK. JensenJ.S. GalløeA. NikusK. VikmanS. RavkildeJ. JamesS. AarøeJ. YlitaloA. HelqvistS. SjögrenI. ThayssenP. VirtanenK. PuhakkaM. AiraksinenJ. LassenJ.F. ThuesenL. Randomized study on simple versus complex stenting of coronary artery bifurcation lesions: The Nordic bifurcation study.Circulation2006114181955196110.1161/CIRCULATIONAHA.106.664920 17060387
    [Google Scholar]
  115. SteinerS. HontonB. LanghoffR. ChiesaR. KahlbergA. ThiemeM. ZellerT. GarotP. CommeauP. CremonesiA. MaroneE.M. SauguetA. ScheinertD. 2-year results with a sirolimus-eluting self-expanding stent for femoropopliteal lesions.JACC Cardiovasc. Interv.202215661862610.1016/j.jcin.2021.12.034 35219622
    [Google Scholar]
  116. KandzariD.E. KiniA.S. KarmpaliotisD. MosesJ.W. TummalaP.E. GranthamJ.A. OrrC. LombardiW. NicholsonW.J. LemboN.J. PopmaJ.J. WangJ. LarracasC. RutledgeD.R. Safety and effectiveness of everolimus-eluting stents in chronic total coronary occlusion revascularization: Results from the EXPERT CTO multicenter trial (evaluation of the XIENCE coronary stent, performance, and technique in chronic total occlusions).JACC Cardiovasc. Interv.20158676176910.1016/j.jcin.2014.12.238 25912400
    [Google Scholar]
  117. KharlamovA.N. GabinskyJ.L. Plasmonic photothermic and stem cell therapy of atherosclerotic plaque as a novel nanotool for angioplasty and artery remodeling.Rejuvenation Res.201215222223010.1089/rej.2011.1305 22533437
    [Google Scholar]
/content/journals/mns/10.2174/0118764029350668250520060953
Loading
/content/journals/mns/10.2174/0118764029350668250520060953
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Cardiac; dyslipidemia; nanocarrier; nanotechnology; theranostic; wearable device
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test