Skip to content
2000
Volume 17, Issue 2
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Aerosols are fine particles in the atmosphere produced by nature or man-made like fog, forest exudates, industrial emissions, biomass burning, and dust. Aerosols can change the earth's climate, and the formation of clouds, and may reduce the rain as they circulate in the atmosphere. Black carbon, also called soot is the dominant form of particles in the atmosphere which absorb light. They are fine particles and are smaller than dust and mold particles. Poly-aromatic hydrocarbons in soot particles result in substantial health complications even at small concentrations. Atmospheric pollution is an interesting subject as it is related to the problem of global warming. Particularly carbon aerosols can decide the condition of climate since the oxidation of these particles will result in the toxicity of atmospheric particulates. The processes involved in the atmosphere can be predicted through the analysis of these aerosols. Black carbon absorbs light of short wavelengths, and it enters into the stratosphere which causes climate change. The properties of black carbon obtained from various measurements provide information about the atmosphere's constituents. Raman spectroscopy is widely used for the identification of functional groups of atmospheric aerosols. The formation and properties of carbon aerosols obtained through these techniques will be used to explain the oxidation and particle-phase reactions of carbon aerosols. Carbon aerosols affect human health because of various factors such as chemical aging. In this review article, carbon nanoparticles present in the atmosphere, the analysis of those particles using Raman spectroscopy, and their implications on human health as well as climate change are discussed through various reports.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029350394241204150316
2024-12-20
2025-11-02
Loading full text...

Full text loading...

References

  1. RiemerN. AultA.P. WestM. CraigR.L. CurtisJ.H. Aerosol mixing state: Measurements, modeling, and impacts.Rev. Geophys.201957218724910.1029/2018RG000615
    [Google Scholar]
  2. SantarpiaJ.L. HerreraV.L. RiveraD.N. Ratnesar-ShumateS. ReidS.P. AckermanD.N. DentonP.W. MartensJ.W.S. FangY. ConoanN. CallahanM.V. LawlerJ.V. Brett-MajorD.M. LoweJ.J. The size and culturability of patient-generated SARS-CoV-2 aerosol.J. Expo. Sci. Environ. Epidemiol.202232570671110.1038/s41370‑021‑00376‑834408261
    [Google Scholar]
  3. BauerP.S. AmenitschH. BaumgartnerB. KöberlG. RentenbergerC. WinklerP.M. In-situ aerosol nanoparticle characterization by small angle X-ray scattering at ultra-low volume fraction.Nat. Commun.2019101112210.1038/s41467‑019‑09066‑430850597
    [Google Scholar]
  4. LackD.A. MoosmüllerH. McMeekingG.R. ChakrabartyR.K. BaumgardnerD. Characterizing elemental, equivalent black, and refractory black carbon aerosol particles: A review of techniques, their limitations and uncertainties.Anal. Bioanal. Chem.201440619912210.1007/s00216‑013‑7402‑324297322
    [Google Scholar]
  5. KholghyM.R. VeshkiniA. ThomsonM.J. The core–shell internal nanostructure of soot – A criterion to model soot maturity.Carbon201610050853610.1016/j.carbon.2016.01.022
    [Google Scholar]
  6. WangY. DuanH. ZhangJ. WangQ. PengT. YeX. ChengZ. LiX. YAP1 protects against PM2.5-induced lung toxicity by suppressing pyroptosis and ferroptosis.Ecotoxicol. Environ. Saf.202325311470810.1016/j.ecoenv.2023.11470836863160
    [Google Scholar]
  7. YaoS. HuY. LiG. A one-step sonoelectrochemical preparation method of pure blue fluorescent carbon nanoparticles under a high intensity electric field.Carbon201466778310.1016/j.carbon.2013.08.044
    [Google Scholar]
  8. RabhaS. SaikiaB.K. An environmental evaluation of carbonaceous aerosols in PM10 at micro- and nano-scale levels reveals the formation of carbon nanodots.Chemosphere202024412551910.1016/j.chemosphere.2019.12551931812765
    [Google Scholar]
  9. XuW. SegallM.L. LiZ. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends.Front. Environ. Sci. Eng.20201458610.1007/s11783‑020‑1265‑6
    [Google Scholar]
  10. TangY. HuangY. ZhuK. Optical properties of black carbon aerosols with different coating models.Photonics20229535910.3390/photonics9050359
    [Google Scholar]
  11. AveryA.M. WilliamsL.R. FortnerE.C. RobinsonW.A. OnaschT.B. Particle detection using the dual-vaporizer configuration of the soot particle aerosol mass spectrometer (SP-AMS).Aerosol Sci. Technol.202155325426710.1080/02786826.2020.1844132
    [Google Scholar]
  12. BisiauxM.M. EdwardsR. HeyvaertA.C. ThomasJ.M. FitzgeraldB. SusfalkR.B. SchladowS.G. ThawM. Stormwater and fire as sources of black carbon nanoparticles to Lake Tahoe.Environ. Sci. Technol.20114562065207110.1021/es103819v21348466
    [Google Scholar]
  13. WenH. ZhouY. XuX. WangT. ChenQ. ChenQ. LiW. WangZ. HuangZ. ZhouT. ShiJ. BiJ. JiM. WangX. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources.Sci. Total Environ.202178914797110.1016/j.scitotenv.2021.14797134082197
    [Google Scholar]
  14. GuoK. LiN. BaoL. LuX. Fullerenes and derivatives as electrocatalysts: Promises and challenges.Green Energy & Environment20249172710.1016/j.gee.2022.11.002
    [Google Scholar]
  15. Dorner-ReiselA. RitterU. MojeJ. FreibergerE. ScharffP. Effect of fullerene C60 thermal and tribomechanical loading on Raman signals.Diam. Rel. Mat.202212610903610.1016/j.diamond.2022.109036
    [Google Scholar]
  16. EncinasD. Gómez-de-BalugeraZ. Fullerene C 60 in atmospheric aerosol and its relationship to combustion processes.Arch. Environ. Contam. Toxicol.201875461662410.1007/s00244‑018‑0524‑z29651501
    [Google Scholar]
  17. SpellerE.M. The significance of fullerene electron acceptors in organic solar cell photo-oxidation.Mater. Sci. Technol.201733892493310.1080/02670836.2016.1215840
    [Google Scholar]
  18. MumyatovA.V. TroshinP.A. A review on fullerene derivatives with reduced electron affinity as acceptor materials for organic solar cells.Energies2023164192410.3390/en16041924
    [Google Scholar]
  19. TkacikD.S. LambeA.T. JatharS. LiX. PrestoA.A. ZhaoY. BlakeD. MeinardiS. JayneJ.T. CroteauP.L. RobinsonA.L. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.Environ. Sci. Technol.20144819112351124210.1021/es502239v25188317
    [Google Scholar]
  20. MitrooD. WuJ. CollettiP.F. LeeS.S. WalkerM.J. BruneW.H. WilliamsB.J. FortnerJ.D. Atmospheric reactivity of fullerene (C60) aerosols.ACS Earth Space Chem.2018229510210.1021/acsearthspacechem.7b00116
    [Google Scholar]
  21. JoH. J. KangM. S. JangH. J. RajaI. S. LimD. KimB. HanD. W. Advanced approaches with combination of 2D nanomaterials and 3D printing for exquisite neural tissue engineering.Mater. Sci. Addit. Manuf.202322062010.36922/msam.0620
    [Google Scholar]
  22. LiH. XuC. LuX. A case report of refractory pulmonary adenocarcinoma.Adv. Radiother. Nucl. Med.202311088310.36922/arnm.0883
    [Google Scholar]
  23. Kolosnjaj-TabiJ. SzwarcH. MoussaF. Carbon nanotubes: Culprit or witness of air pollution?Nano Today201715111410.1016/j.nantod.2017.04.010
    [Google Scholar]
  24. Kolosovas-MachucaE.S. Vera-RevelesG. Rodríguez-ArandaM.C. Ortiz-DosalL.C. Segura-CardenasE. GonzalezF.J. Resistance-based biosensor of multi-walled carbon nanotubes.J. Immunoassay Immunochem.201536214214810.1080/15321819.2014.90812924689811
    [Google Scholar]
  25. NeubauerN. KasperG. Detection of airborne carbon nanotubes based on the reactivity of the embedded catalyst.J. Occup. Environ. Hyg.201512318218810.1080/15459624.2014.96057425271474
    [Google Scholar]
  26. ValleR.P. WuT. ZuoY.Y. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.ACS Nano2015955413542110.1021/acsnano.5b0118125929264
    [Google Scholar]
  27. SzeS. SiddiqueN. SloanJ.J. EscribanoR. Raman spectroscopic characterization of carbonaceous aerosols.Atmos. Environ.200135356156810.1016/S1352‑2310(00)00325‑3
    [Google Scholar]
  28. ManghnaniM.H. HushurA. SekineT. WuJ. StebbinsJ.F. WilliamsQ. Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass.J. Appl. Phys.20111091111350910.1063/1.3592346
    [Google Scholar]
  29. ParkJ.S. ReinaA. SaitoR. KongJ. DresselhausG. DresselhausM.S. G ′ band Raman spectra of single, double and triple layer graphene.Carbon20094751303131010.1016/j.carbon.2009.01.009
    [Google Scholar]
  30. CatelaniT. PratesiG. ZoppiM. Raman characterization of ambient airborne soot and associated mineral phases.Aerosol Sci. Technol.2014481132110.1080/02786826.2013.847270
    [Google Scholar]
  31. ZiołaN. BanasikK. JabłońskaM. JaneczekJ. BłaszczakB. KlejnowskiK. MathewsB. Seasonality of the airborne ambient soot predominant emission sources determined by Raman microspectroscopy and thermo-optical method.Atmosphere202112676810.3390/atmos12060768
    [Google Scholar]
  32. FerrugiariA. TommasiniM. ZerbiG. Raman spectroscopy of carbonaceous particles of environmental interest.J. Raman Spectrosc.201546121215122410.1002/jrs.4753
    [Google Scholar]
  33. FierceL. OnaschT.B. CappaC.D. MazzoleniC. ChinaS. BhandariJ. DavidovitsP. FischerD.A. HelgestadT. LambeA.T. SedlacekA.J.III SmithG.D. WolffL. Radiative absorption enhancements by black carbon controlled by particle-to-particle heterogeneity in composition.Proc. Natl. Acad. Sci. USA2020117105196520310.1073/pnas.191972311732098848
    [Google Scholar]
  34. TollefsonJ. Soot a major contributor to climate change.Nature2013151510103810.1038/nature.2013.12225
    [Google Scholar]
  35. De MarchiL. NetoV. PrettiC. FigueiraE. ChielliniF. MorelliA. SoaresA.M.V.M. FreitasR. The impacts of seawater acidification on Ruditapes philippinarum sensitivity to carbon nanoparticles.Environ. Sci. Nano2017481692170410.1039/C7EN00335H
    [Google Scholar]
  36. GopinathN. Artificial intelligence and neuroscience: An update on fascinating relationships.Process Biochem.202312511312010.1016/j.procbio.2022.12.011
    [Google Scholar]
  37. NiranjanR. ThakurA.K. The toxicological mechanisms of environmental soot (black carbon) and carbon black: Focus on oxidative stress and inflammatory pathways.Front. Immunol.2017876310.3389/fimmu.2017.0076328713383
    [Google Scholar]
  38. JiD. GaoM. MaenhautW. HeJ. WuC. ChengL. GaoW. SunY. SunJ. XinJ. WangL. WangY. The carbonaceous aerosol levels still remain a challenge in the Beijing-Tianjin-Hebei region of China: Insights from continuous high temporal resolution measurements in multiple cities.Environ. Int.201912617118310.1016/j.envint.2019.02.03430798198
    [Google Scholar]
  39. GopinathN. Artificial intelligence: Potential tool to subside SARS-CoV-2 pandemic.Process Biochem.2021110949910.1016/j.procbio.2021.08.00134366689
    [Google Scholar]
  40. PhairuangW. SuwattigaP. HongtieabS. InerbM. FuruuchiM. HataM. Characteristics, sources, and health risks of ambient nanoparticles (PM0.1) bound metal in Bangkok, Thailand.Atmos. Environ. X20211210014110.1016/j.aeaoa.2021.100141
    [Google Scholar]
  41. PhairuangW. PiriyakarnsakulS. InerbM. HongtieabS. ThongyenT. ChomaneeJ. BoonglaY. SuriyawongP. SamaeH. ChanonmuangP. SuwattigaP. ChetiyanukornkulT. PanyametheekulS. AminM. HataM. FuruuchiM. Ambient nanoparticles (PM0. 1) mapping in Thailand.Atmosphere 20221416610.3390/atmos14010066
    [Google Scholar]
  42. BongaertsE. MamiaK. RoodaI. BjörvangR.D. PapaikonomouK. GidlöfS.B. OlofssonJ.I. AmelootM. Alfaro-MorenoE. NawrotT.S. DamdimopoulouP. Ambient black carbon particles in human ovarian tissue and follicular fluid.Environ. Int.202317910814110.1016/j.envint.2023.10814137603992
    [Google Scholar]
  43. VanbrabantK. Van DamD. BongaertsE. VermeirenY. BovéH. HellingsN. AmelootM. PlusquinM. De DeynP.P. NawrotT.S. Accumulation of ambient black carbon particles within key memory-related brain regions.JAMA Netw. Open202474e245678e24567810.1001/jamanetworkopen.2024.567838592718
    [Google Scholar]
  44. AnandA. TouréN.D.E. BahinoJ. GnamienS. HughesA.F. ArkuR.E. TawiahV.O. AsfawA. MamoT. HasheminassabS. BililignS. MoschosV. WesterveltD.M. PrestoA.A. Low-cost hourly ambient black carbon measurements at multiple cities in Africa.Environ. Sci. Technol.20245828125751258410.1021/acs.est.4c0229738952258
    [Google Scholar]
  45. TanL.L. OngW.J. ChaiS.P. MohamedA.R. Growth of carbon nanotubes over non-metallic based catalysts: A review on the recent developments.Catal. Today201321711210.1016/j.cattod.2012.10.023
    [Google Scholar]
/content/journals/mns/10.2174/0118764029350394241204150316
Loading
/content/journals/mns/10.2174/0118764029350394241204150316
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Aerosols; Carbon; climate change; particulate matter; Raman analysis; Raman spectroscopy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test