Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2211-5366
  • E-ISSN: 2211-5374

Abstract

Metabolic rates of cancer cells are faster compared to normal cells. This faster rate yields aberrant protein folding and causes loss of protein function. Therefore, cancer cells need more Heat Shock Proteins (HSPs) for proper substrate- protein folding on oncogenic pathways. Pseudogenes regulate tumor suppressors and oncogenes, and pseudogenes are deregulated in cancer progression. Further, alterations in miRNA expression have been identified in different cancer types. MiRNAs also have both oncogenic and tumour-suppressive roles in breast cancer post-transcriptional gene regulation. Breast cancer is a genetic disease and we performed miRNA analysis in human breast cancer cell lines to identify miRNAs in association with HSPs and pseudogenes by employing CellMiner; a web-based suite. CellMiner integrates several databases and help analysing microarray metadata. The experimental data provide a platform for researchers to compare macromolecules’ relationships in NCI-60 cell lines. Breast cancer associated miRNAs gathered from literature and analyzed by employing this suite, significantly correlated HSP genes and pseudogenes in the breast cancer are determined as; HSPA13, HSP90AB1, TRAP1, HSPB1, DNAJB4, HSPD1 and HSP90AA4P, HSPB1P1, DNAJC8P1, HSPD1P9 respectively. HSPs involved in breast cancer are regulated by several miRNAs and miRNA regulators from CellMiner data found as hsa-miR-17, hsa-miR-22, hsa-miR-93, hsa-miR-106a, hsa-miR-125b, hsa-miR-130a, and hsamiR- 141. Cross check of the determined miRNAs and target HSPs was performed by target site prediction software. Comparison of the experimental data from CellMiner and software predicted data indicate differences. CellMiner data provide a vast miRNA types compared to prediction softwares-web tools data and reported miRNAs in the literature. Therefore, reported key miRNAs in this work that are not studied earlier may help cancer researchers to uncover novel posttranslational regulation mechanisms. Cancer cells use HSP network as an escape mechanism from apoptosis, therefore inhibition of associated HSPs by modulating miRNAs may provide a novel therapy for the tumorigenesis.

Loading

Article metrics loading...

/content/journals/mirna/10.2174/2211536604666141216214140
2014-08-01
2025-09-07
Loading full text...

Full text loading...

/content/journals/mirna/10.2174/2211536604666141216214140
Loading

  • Article Type:
    Research Article
Keyword(s): Cancer; heat shock protein; miRNA; protein folding; pseudogene
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test