Skip to content
2000
image of Exploring the Role of Non-Coding RNAs in the Gut and Skin Microbiome: Implications for Colorectal Cancer and Healthy Longevity

Abstract

In the last forty years, cancer mortality rates have risen by more than 40%, with colorectal cancer (CRC) ranking as the third most common kind worldwide, significantly affected by dietary factors. Restricted access to sophisticated medical treatment and insufficient comprehension of colorectal cancer's biology contribute to its elevated occurrence. Researchers have recognized dysbiosis of the gut microbiome as a critical contributor to the development of colorectal cancer, as it influences the expression of non-coding RNAs (ncRNAs) and subsequent molecular pathways essential for tumor proliferation. Moreover, interactions between gut and skin microbiota can impact systemic health and ncRNA regulation, influencing CRC advancement. This study shows how important the gut-skin microbiome axis is in developing colorectal cancer. It suggests that targeting this axis may lead to new treatments, such as changing the microbiome through probiotics, prebiotics, or fecal microbiota transplantation. Nonetheless, we must address obstacles such as population heterogeneity and intricate microbiome-host interactions to facilitate the transition of these medicines into clinical practice. This study seeks to elucidate the roles of dietary treatments, microbiomes, and ncRNAs in the etiology and prevention of colorectal cancer (CRC).

Loading

Article metrics loading...

/content/journals/mirna/10.2174/0122115366342509250401043719
2025-04-08
2025-08-16
Loading full text...

Full text loading...

References

  1. Yuan C. Burns M.B. Subramanian S. Blekhman R. Interaction between host MicroRNAs and the gut microbiota in colorectal cancer. mSystems 2018 3 3 e00205 e00217 10.1128/mSystems.00205‑17 29795787
    [Google Scholar]
  2. Zhou S. Zhu C. Jin S. The intestinal microbiota influences the microenvironment of metastatic colon cancer by targeting miRNAs. FEMS Microbiol. Lett. 2022 369 1 fnac023 10.1093/femsle/fnac023 35712898
    [Google Scholar]
  3. Wang Y. Wang M. Chen J. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science 2023 381 6660 851 857 10.1126/science.ade0522 37616368
    [Google Scholar]
  4. Yu H. Chen C. Han F. Long noncoding RNA MIR4435-2HG suppresses colorectal cancer initiation and progression by reprogramming neutrophils. Cancer Immunol. Res. 2022 10 9 1095 1110 10.1158/2326‑6066.CIR‑21‑1011 35862232
    [Google Scholar]
  5. Mekadim C. Skalnikova H.K. Cizkova J. Dysbiosis of skin microbiome and gut microbiome in melanoma progression. BMC Microbiol. 2022 22 1 63 10.1186/s12866‑022‑02458‑5 35216552
    [Google Scholar]
  6. Chen L. Gu H. Peng J. Non-coding RNA and pancreatic cancer. Zhong nan da xuexue bao. Yi xue ban= Journal of Central South University. Med. Sci. 2014 39 5 532 541
    [Google Scholar]
  7. Chhabra R. The epigenetics of noncoding RNA. In: Handbook of Epigenetics. United States Academic Press 2023 10.1016/B978‑0‑323‑91909‑8.00010‑4
    [Google Scholar]
  8. Park P.H. Keith K. Calendo G. Association between gut microbiota and CpG island methylator phenotype in colorectal cancer. Gut Microbes 2024 16 1 2363012 10.1080/19490976.2024.2363012 38860458
    [Google Scholar]
  9. Peng Y. Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016 1 1 15004 10.1038/sigtrans.2015.4 29263891
    [Google Scholar]
  10. Gambari R. Brognara E. Spandidos D.A. Fabbri E. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology. Int. J. Oncol. 2016 49 1 5 32 10.3892/ijo.2016.3503 27175518
    [Google Scholar]
  11. Svoronos A.A. Engelman D.M. Slack F.J. OncomiR or tumor suppressor? The duplicity of microRNAs in cancer. Cancer Res. 2016 76 13 3666 3670 10.1158/0008‑5472.CAN‑16‑0359 27325641
    [Google Scholar]
  12. Jorgensen B.G. Ro S. MicroRNAs and ‘sponging’competitive endogenous RNAs dysregulated in colorectal cancer: Potential as noninvasive biomarkers and therapeutic targets. Int. J. Mol. Sci. 2022 23 4 2166 10.3390/ijms23042166 35216281
    [Google Scholar]
  13. Herreros-Villanueva M. Duran-Sanchon S. Martín A.C. Plasma microRNA signature validation for early detection of colorectal cancer. Clin. Transl. Gastroenterol. 2019 10 1 e00003 10.14309/ctg.0000000000000003 30702491
    [Google Scholar]
  14. Yachida S. Mizutani S. Shiroma H. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nat. Med. 2019 25 6 968 976 10.1038/s41591‑019‑0458‑7 31171880
    [Google Scholar]
  15. Pös Z. Pös O. Styk J. Technical and methodological aspects of cell-free nucleic acids analyzes. Int. J. Mol. Sci. 2020 21 22 8634 10.3390/ijms21228634 33207777
    [Google Scholar]
  16. Karpiński T.M. Ożarowski M. Stasiewicz M. Carcinogenic microbiota and its role in colorectal cancer development. Semin. Cancer Biol. 2022 86 Pt 3 420 430 10.1016/j.semcancer.2022.01.004
    [Google Scholar]
  17. Dai R. Kelly B.N. Ike A. The impact of the gut microbiome, environment, and diet in early-onset colorectal Cancer development. Cancers 2024 16 3 676 10.3390/cancers16030676 38339427
    [Google Scholar]
  18. Pös O. Styk J. Buglyó G. Cross-kingdom interaction of miRNAs and gut Microbiota with non-invasive diagnostic and therapeutic implications in colorectal cancer. Int. J. Mol. Sci. 2023 24 13 10520 10.3390/ijms241310520 37445698
    [Google Scholar]
  19. Ren L. Ye J. Zhao B. Sun J. Cao P. Yang Y. The role of intestinal microbiota in colorectal cancer. Front. Pharmacol. 2021 12 674807 10.3389/fphar.2021.674807 33959032
    [Google Scholar]
  20. Ipci K. Altıntoprak N. Muluk N.B. Senturk M. Cingi C. The possible mechanisms of the human microbiome in allergic diseases. Eur. Arch. Otorhinolaryngol. 2017 274 2 617 626 10.1007/s00405‑016‑4058‑6 27115907
    [Google Scholar]
  21. Bosman E.S. Albert A.Y. Lui H. Dutz J.P. Vallance B.A. Skin exposure to narrow band ultraviolet (UVB) light modulates the human intestinal microbiome. Front. Microbiol. 2019 10 2410 10.3389/fmicb.2019.02410 31708890
    [Google Scholar]
  22. Brough H.A. Liu A.H. Sicherer S. Atopic dermatitis increases the effect of exposure to peanut antigen in dust on peanut sensitization and likely peanut allergy. J. Allergy Clin. Immunol. 2015 135 1 164 170.e4 10.1016/j.jaci.2014.10.007 25457149
    [Google Scholar]
  23. Hoh R.A. Joshi S.A. Lee J.Y. Origins and clonal convergence of gastrointestinal IgE + B cells in human peanut allergy. Sci. Immunol. 2020 5 45 eaay4209 10.1126/sciimmunol.aay4209 32139586
    [Google Scholar]
  24. Kelly D. Yang L. Pei Z. Gut microbiota, fusobacteria, and colorectal cancer. Diseases 2018 6 4 109 10.3390/diseases6040109 30544946
    [Google Scholar]
  25. Wang N. Fang J.Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer. Trends Microbiol. 2023 31 2 159 172 10.1016/j.tim.2022.08.010 36058786
    [Google Scholar]
  26. Ekine-Afolabi B.A. Njan A.A. Rotimi S.O. The impact of diet on the involvement of non-coding RNAs, extracellular vesicles, and gut microbiome-virome in colorectal cancer initiation and progression. Front. Oncol. 2020 10 583372 10.3389/fonc.2020.583372 33381452
    [Google Scholar]
  27. Wynendaele E. Verbeke F. D’Hondt M. Crosstalk between the microbiome and cancer cells by quorum sensing peptides. Peptides 2015 64 40 48 10.1016/j.peptides.2014.12.009 25559405
    [Google Scholar]
  28. Abed J. Emgård J.E.M. Zamir G. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 2016 20 2 215 225 10.1016/j.chom.2016.07.006 27512904
    [Google Scholar]
  29. Ma P. Pan Y. Li W. Extracellular vesicles-mediated noncoding RNAs transfer in cancer. J. Hematol. Oncol. 2017 10 1 57 10.1186/s13045‑017‑0426‑y 28231804
    [Google Scholar]
  30. Barteneva N.S. Baiken Y. Fasler-Kan E. Extracellular vesicles in gastrointestinal cancer in conjunction with microbiota: On the border of Kingdoms. Biochim. Biophys. Acta Rev. Cancer 2017 1868 2 372 393 10.1016/j.bbcan.2017.06.005 28669749
    [Google Scholar]
  31. Abt M.C. Pamer E.G. Commensal bacteria mediated defenses against pathogens. Curr. Opin. Immunol. 2014 29 16 22 10.1016/j.coi.2014.03.003 24727150
    [Google Scholar]
  32. Kumar A. Gautam V. Sandhu A. Rawat K. Sharma A. Saha L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J. Gastrointest. Surg. 2023 15 4 495 519 10.4240/wjgs.v15.i4.495 37206081
    [Google Scholar]
  33. Ali A. Ara A. Kashyap M.K. Gut microbiota: Role and association with tumorigenesis in different malignancies. Mol. Biol. Rep. 2022 49 8 8087 8107 10.1007/s11033‑022‑07357‑6 35543828
    [Google Scholar]
  34. Zhang Y. Non-coding RNAs in skin repair and regeneration: Implications for aging. Int. J. Mol. Sci. 2023 1 9
    [Google Scholar]
  35. Fardi F. Khasraghi L.B. Shahbakhti N. An interplay between non-coding RNAs and gut microbiota in human health. Diabetes Res. Clin. Pract. 2023 201 110739 10.1016/j.diabres.2023.110739 37270071
    [Google Scholar]
  36. Li X. The role of non-coding rnas in skin microbiome and aging. Front. Aging 2021 1 9
    [Google Scholar]
  37. Smith J. MicroRNAs in skin health and aging: Regulatory mechanisms and therapeutic potential. J. Dermatol. Sci. 2022 1 6
    [Google Scholar]
  38. Zhang Y. Yu X. Yu E. Changes in gut microbiota and plasma inflammatory factors across the stages of colorectal tumorigenesis: A case-control study. BMC Microbiol. 2018 18 1 92 10.1186/s12866‑018‑1232‑6 30157754
    [Google Scholar]
  39. Kim S. Lee M. Therapeutic Targeting of MicroRNAs in Skin Aging and Inflammation. Exp. Dermatol. 2023 1 9
    [Google Scholar]
  40. Brown A. Long Non-Coding RNAs as Biomarkers of Skin Aging. Dermatol. Res. Pract. 2022 1 6
    [Google Scholar]
  41. Bouvard V. Loomis D. Guyton K.Z. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015 16 16 1599 1600 10.1016/S1470‑2045(15)00444‑1 26514947
    [Google Scholar]
  42. Baena R. Salinas P. Diet and colorectal cancer. Maturitas 2015 80 3 258 264 10.1016/j.maturitas.2014.12.017 25619144
    [Google Scholar]
  43. dos Reis S.A. da Conceição L.L. Siqueira N.P. Rosa D.D. da Silva L.L. Peluzio M.C.G. Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr. Res. 2017 37 1 19 10.1016/j.nutres.2016.11.009 28215310
    [Google Scholar]
  44. Yang C. Passos Gibson V. Hardy P. The role of MiR-181 family members in endothelial cell dysfunction and tumor angiogenesis. Cells 2022 11 10 1670 10.3390/cells11101670 35626707
    [Google Scholar]
  45. Liu J. Liu Y. Wang F. Liang M. miR-204: Molecular regulation and role in cardiovascular and renal diseases. Hypertension 2021 78 2 270 281 10.1161/HYPERTENSIONAHA.121.14536 34176282
    [Google Scholar]
  46. Chun K.H. Molecular targets and signaling pathways of microRNA-122 in hepatocellular carcinoma. Pharmaceutics 2022 14 7 1380 10.3390/pharmaceutics14071380 35890276
    [Google Scholar]
  47. Zhang W. Zhang C. Liu B. Wang M. Yang Y. Liu S. Effect of microRNA-515-5p on Biological Behavior of Colorectal Cancer Cells through Phosphoinositide 3-Kinase/Protein Kinase B Signaling Pathway. Indian J. Pharm. Sci. 2024 86 2 1 6
    [Google Scholar]
  48. Li M. Chen W.D. Wang Y.D. The roles of the gut microbiota–miRNA interaction in the host pathophysiology. Mol. Med. 2020 26 1 101 10.1186/s10020‑020‑00234‑7 33160314
    [Google Scholar]
  49. Sur D. Burz C. Sabarimurugan S. Irimie A. Diagnostic and prognostic significance of MiR-150 in colorectal cancer: A systematic review and meta-analysis. J. Pers. Med. 2020 10 3 99 10.3390/jpm10030099 32847098
    [Google Scholar]
  50. Dong X. Zhan Y. Yang M. Li S. Zheng H. Gao Y. miR-30c affects the pathogenesis of ulcerative colitis by regulating target gene VIP. Sci. Rep. 2024 14 1 3472 10.1038/s41598‑024‑54092‑y 38342939
    [Google Scholar]
  51. Pengcheng Z. Peng G. Haowen F. MiR-573 suppresses cell proliferation, migration and invasion via regulation of E2F3 in pancreatic cancer. J. Cancer 2021 12 10 3033 3044 10.7150/jca.51147 33854603
    [Google Scholar]
  52. Song G.L. Xiao M. Wan X.Y. MiR-130a-3p suppresses colorectal cancer growth by targeting Wnt Family Member 1 (WNT1). Bioengineered 2021 12 1 8407 8418 10.1080/21655979.2021.1977556 34657551
    [Google Scholar]
  53. Zhang X. Li T. Han Y.N. miR-125b promotes colorectal cancer migration and invasion by dual-targeting CFTR and CGN. Cancers 2021 13 22 5710 10.3390/cancers13225710 34830864
    [Google Scholar]
  54. Zhu Q.D. Zhou Q.Q. Dong L. Huang Z. Wu F. Deng X. MiR-199a-5p inhibits the growth and metastasis of colorectal cancer cells by targeting ROCK1. Technol. Cancer Res. Treat. 2018 17 1533034618775509 10.1177/1533034618775509 29807462
    [Google Scholar]
  55. Qiang Y. Feng L. Wang G. miR-20a/Foxj2 axis mediates growth and metastasis of colorectal cancer cells as identified by integrated analysis. Med. Sci. Monit. 2020 26 e923559 e1 10.12659/MSM.923559 32406388
    [Google Scholar]
  56. Bao Y. Chen Z. Guo Y. Tumor suppressor microRNA-27a in colorectal carcinogenesis and progression by targeting SGPP1 and Smad2. PLoS One 2014 9 8 e105991 10.1371/journal.pone.0105991 25166914
    [Google Scholar]
  57. Sun Y. Kuek V. Liu Y. MiR‐214 is an important regulator of the musculoskeletal metabolism and disease. J. Cell. Physiol. 2019 234 1 231 245 10.1002/jcp.26856 30076721
    [Google Scholar]
  58. Ma F. Song H. Guo B. MiR-361-5p inhibits colorectal and gastric cancer growth and metastasis by targeting staphylococcal nuclease domain containing-1. Oncotarget 2015 6 19 17404 17416 10.18632/oncotarget.3744 25965817
    [Google Scholar]
  59. Dong J. Tai J.W. Lu L.F. miRNA–Microbiota interaction in gut homeostasis and colorectal cancer. Trends Cancer 2019 5 11 666 669 10.1016/j.trecan.2019.08.003 31735285
    [Google Scholar]
  60. Martino E. Balestrieri A. Aragona F. MiR-148a-3p promotes colorectal cancer cell ferroptosis by targeting SLC7A11. Cancers (Basel) 2023 15 17 4342 10.3390/cancers15174342 37686618
    [Google Scholar]
  61. Ruan Z. Deng H. Liang M. Overexpression of long non-coding RNA00355 enhances proliferation, chemotaxis, and metastasis in colon cancer via promoting GTF2B-mediated ITGA2. Transl. Oncol. 2021 14 1 100947 10.1016/j.tranon.2020.100947 33227664
    [Google Scholar]
  62. Xia F. Wang Y. Xue M. LncRNA KCNQ1OT1: Molecular mechanisms and pathogenic roles in human diseases. Genes Dis. 2022 9 6 1556 1565 10.1016/j.gendis.2021.07.003 36157505
    [Google Scholar]
  63. Wan J. Deng D. Wang X. Wang X. Jiang S. Cui R. LINC00491 as a new molecular marker can promote the proliferation, migration and invasion of colon adenocarcinoma cells. OncoTargets Ther. 2019 12 6471 6480 10.2147/OTT.S201233 31496744
    [Google Scholar]
  64. Hajjari M. Salavaty A. HOTAIR: An oncogenic long non-coding RNA in different cancers. Cancer Biol. Med. 2015 12 1 1 9 25859406
    [Google Scholar]
  65. Gao Y. Zhou J. Qi H. LncRNA lncLy6C induced by microbiota metabolite butyrate promotes differentiation of Ly6Chigh to Ly6Cint/neg macrophages through lncLy6C/C/EBPβ/Nr4A1 axis. Cell Discov. 2020 6 1 87 10.1038/s41421‑020‑00211‑8 33298871
    [Google Scholar]
  66. Hong J. Guo F. Lu S.Y. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut 2021 70 11 2123 2137 10.1136/gutjnl‑2020‑322780 33318144
    [Google Scholar]
  67. Mu Y. Chen W. Hu S. Cheng M. The long noncoding RNA-30162 is regulated by commensal microbiota and modulates CCL24 and ARG1 in macrophages. 2020Available from www.researchgate.net/figure/Performance-of-LncRNAs2Pathways-A-Venn-diagram-of-the-overlapping-significant-pathways_fig3_316324675 10.21203/rs.2.20362/v1
    [Google Scholar]
  68. Behera J. Ison J. Tyagi S.C. Tyagi N. Probiotics ameliorate gut‐microbial dysbiosis, intestinal permeability, systemic inflammation, and skeletal muscle dysfunction in cystathionine‐β‐synthase‐deficient mice. FASEB J. 2019 33 S1 701 716 10.1096/fasebj.2019.33.1_supplement.701.16
    [Google Scholar]
  69. Bao Y. Tang J. Qian Y. Long noncoding RNA BFAL1 mediates enterotoxigenic Bacteroides fragilis-related carcinogenesis in colorectal cancer via the RHEB/mTOR pathway. Cell Death Dis. 2019 10 9 675 10.1038/s41419‑019‑1925‑2 31515468
    [Google Scholar]
/content/journals/mirna/10.2174/0122115366342509250401043719
Loading
/content/journals/mirna/10.2174/0122115366342509250401043719
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: prebiotics ; healthy microbiome ; dysbiosis ; probiotics ; lifestyle disorders ; Micro RNAs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test