Medicinal Chemistry - Volume 20, Issue 4, 2024
Volume 20, Issue 4, 2024
-
-
Nitrogen-fused Heterocycles: Empowering Anticancer Drug Discovery
Authors: Tanya Biswas, Ravi K. Mittal, Vikram Sharma, Kanupriya and Isha MishraThe worldwide impact of cancer is further compounded by the constraints of current anticancer medications, which frequently exhibit a lack of selectivity, raise safety apprehensions, result in significant adverse reactions, and encounter resistance mechanisms. The current situation highlights the pressing need to develop novel and more precise anticancer agents that prioritize safety and target specificity. Remarkably, more than 85% of drugs with physiological activity contain heterocyclic structures or at least one heteroatom. Nitrogen-containing heterocycles hold a significant position among these compounds, emerging as the most prevalent framework within the realm of heterocyclic chemistry. This article explores the medicinal chemistry behind these molecules, highlighting their potential as game-changing possibilities for anticancer medication development. The analysis highlights the inherent structural variety in nitrogen-containing heterocycles, revealing their potential to be customized for creating personalized anticancer medications. It also emphasizes the importance of computational techniques and studies on the relationships between structure and activity, providing a road map for rational medication design and optimization. Nitrogen- containing heterocycles are a promising new area of study in the fight against cancer, and this review summarises the state of the field so far. By utilizing their inherent characteristics and exploiting cooperative scientific investigations, these heterocyclic substances exhibit potential at the forefront of pioneering therapeutic approaches in combating the multifaceted obstacles posed by cancer.
-
-
-
Exploring the Therapeutic Marvels: A Comprehensive Review on the Biological Potential of Quinoline-5,8-Dione
Authors: Neetu Agrawal, Dimple Bansal and Shilpi PathakQuinoline-5,8-diones, also referred to as 5,8-quinolinediones or quinolinequinones, have been researched extensively for their antiproliferative effects, where they displayed great results. Other than anticancer, they exhibit multiple activities such as antimalarial, antiviral, antibacterial, and antifungal activities. Natural quinolinequinones have also been known for their significant activities. The review highlights the diverse biological activities exhibited by synthetic quinoline- 5,8-diones over the past two decades. Continued research in this field is warranted to fully exploit the therapeutic potential of these intriguing compounds and their derivatives for future drug development. By comprehensively evaluating the therapeutic applications and biological activities of quinoline-5,8-dione derivatives, this review endeavors to provide researchers and practitioners with a valuable resource that will foster informed decision-making and inspire further investigations into harnessing the immense potential of this intriguing scaffold for the benefit of human health.
-
-
-
Biochemical and In Silico Studies on Triazole Derivatives as Tyrosinase Inhibitors: Potential Treatment of Hyperpigmentation Related Skin Disorders
>Introduction: Tyrosinase is a versatile, glycosylated copper-containing oxidase enzyme that mainly catalyzes the biosynthesis of melanin in mammals. Its overexpression leads to the formation of excess melanin, resulting in hyperpigmentary skin disorders, such as dark spots, melasma, freckles, etc. Therefore, inhibition of tyrosinase is a therapeutic approach for the treatment of hyperpigmentation. Methods: The current study focused on evaluating tyrosinase inhibitory activities of triazole derivatives 1-20, bearing different substituents on the phenyl ring. 17 derivatives have shown a potent tyrosinase inhibition with IC50 values between 1.6 to 13 μM, as compared to the standard drug, i.e., kojic acid (IC50 = 24.1 ± 0.5 μM). Particularly, compounds 11 and 15 displayed 12 times more potent inhibitory effects than the kojic acid. Results: The structure-activity relationship revealed that substituting halogens at the C-4 position of the benzene ring renders remarkable anti-tyrosinase activities. Compounds 1-3 and 8 showed a competitive type of inhibition, while compounds 5, 11, and 15 showed a non-competitive mode of inhibition. Next, we performed molecular docking analyses to study the binding modes and interactions between the ligands (inhibitors) and the active site of the tyrosinase enzyme (receptor). Besides this, we have assessed the toxicity profile of inhibitors on the BJ human fibroblast cell line. Conclusion: The majority of the newly identified tyrosinase inhibitors were found to be noncytotoxic. The results presented herein form the basis of further studies on triazole derivatives as potential drug leads against tyrosinase-related diseases.
-
-
-
Triple Action of Lignosulfonic Acid Sodium: Anti-protease, Antioxidant, and Anti-inflammatory Effects of a Polymeric Heparin Mimetic
Authors: Rami A. Al-Horani and Kholoud F. Aliter>Background: Heparins are sulfated glycosaminoglycans that are used as anticoagulants to treat thrombosis. Heparins exhibit other potential therapeutic effects, such as anti-inflammatory, anti-viral, and anti-malarial effects. However, the strong anticoagulant activity of heparins poses a risk of life-threatening bleeding, limiting their therapeutic use for other diseases beyond thrombosis. To exploit the other effects of heparins and eliminate the bleeding risk, we explored an alternative polymer called lignosulfonic acid sodium (LSAS), which acts as a sulfonated heparin mimetic. LSAS targets factor XIa to exert an anticoagulant effect, and thus, unlike heparins, it is unlikely to cause bleeding. Methods: This study investigated the multiple effects of LSAS to identify potential leads for complex pathologies treatment. A series of chromogenic substrate hydrolysis assays were used to evaluate the inhibition of three inflammation-related proteases by LSAS. Its chemical antioxidant activity against the system of ABTS/hydrogen peroxide/metmyoglobin was also determined. Lastly, the effect of LSAS on TNFα-induced activation of the NF-ΚB pathway in HEK-293 cells was also tested to determine its cellular anti-inflammatory activity. Results: The results showed that LSAS effectively inhibited human neutrophil elastase, cathepsin G, and plasmin, with IC50 values ranging from 0.73 to 212.5 μg/mL. Additionally, LSAS demonstrated a significant chemical antioxidant effect, with an IC50 value of 44.1 μg/mL. Furthermore, at a concentration of approximately 530 μg/mL, LSAS inhibited the TNFα-induced activation of the NF-ΚB pathway in HEK-293 cells, indicating a substantial anti-inflammatory effect. An essential advantage of LSAS is its high water solubility and virtual non-toxicity, making it a safe and readily available polymer. Conclusion: Based on these findings, LSAS is put forward as a polymeric heparin mimetic with multiple functions, serving as a potential platform for developing novel therapeutics to treat complex pathologies.
-
-
-
Synthesis, Antimicrobial Evaluation, and Interaction of Emodin Alkyl Azoles with DNA and HSA
Authors: Yu-Hang Zhou, Ying Wang and Hui-Zhen Zhang>Objective: This study aimed to overcome the growing antibiotic resistance. Moreover, the new series of emodin alkyl azoles were synthesized. Method: The novel emodin alkyl azoles were synthesized using commercial emodin and azoles by alkylation. The NMR and HRMS spectra were employed to confirm the structures of novel prepared compounds. The in vitro antibacterial and antifungal activities of the prepared emodin compounds were studied by the 96-well plate method. The binding behavior between emodin 4-nitro imidazole compound 3c and S. aureus DNA was researched using an ultraviolet-visible spectrophotometer. Furthermore, fluorescence spectrometry was used to explore the interaction with human serum albumin (HSA). Results: The in vitro antimicrobial results displayed that compound 3c gave relatively strong activities with MIC values of 4−16 μg/mL. Notably, this compound exhibited 2-fold more potent activity against S. aureus (MIC = 4 μg/mL) and E. coli (MIC = 8 μg/mL) strains than clinical drug Chloromycin (MIC = 8 and 16 μg/mL). The UV-vis absorption spectroscopy showed that 4-nitro imidazole emodin 3c could form the 3c-DNA complex by intercalating into S. aureus DNA, inhibiting antimicrobial activities. The simulation results displayed that the emodin 3c and DNA complex were formed by hydrogen bonds. The spectral experiment demonstrated that compound 3c could be transported by human serum albumin (HSA) via hydrogen bonds. The molecular simulation found that the hydroxyl group and the nitroimidazole ring of the emodin compound showed an important role in transportation behavior. Conclusion: This work may supply useful directions for the exploration of novel antimicrobial agents.
-
-
-
S-Dihydrodaidzein and 3-(1,3-benzoxazol-2-yl)-benzamide, Two New Potential β-estrogen Receptor Ligands with Anti-adipogenic Activity
>Background: The elucidation of molecular pathways associated with adipogenesis has evidenced the relevance of estrogen and estrogen receptor beta (ERβ). The positive effects of ERβ ligands on adipogenesis, energy expenditure, lipolysis, food intake, and weight loss, make ERβ an attractive target for obesity control. From ligand-based virtual screening, molecular docking, and molecular dynamic simulations, six new likely ERβ ligands (C1 to C6) have been reported with potential for pharmacological obesity treatment. Objective: In this study, the effect of molecules C1-C6 on adipogenesis using the murine 3T3-L1 cell line was evaluated. Methods: Cell viability was assessed by MTT assays. Lipid accumulation and gene expression were investigated by ORO staining and real-time quantitative RT-PCR experiments, respectively. Results: Cell viability was not significantly affected by C1-C6 at concentrations up to 10 μM. Interestingly, treatment with 10 μM of C1 (S-Dihydrodaidzein) and C2 (3-(1,3-benzoxazol-2-yl)- benzamide) for 72 h inhibited adipocyte differentiation; moreover, ORO staining evidenced a reduced intracellular lipid accumulation (40% at day 7). Consistently, mRNA expression of the adipogenic markers, PPARγ and C/EBPα, was reduced by 50% and 82%, respectively, in the case of C1, and by 83% and 59%, in the case of C2. Conclusion: Altogether, these results show the two new potential β-estrogen receptor ligands, C1 and C2, to exhibit anti-adipogenic activity. They could further be used as lead structures for the development of more efficient drugs for obesity control.
-
-
-
Oxadiazole Derivatives of Diclofenac as an Anti-proliferative Agent for B-cell Non-Hodgkin Lymphoma: An In vitro and In Silico Studies
> Background: Non-Hodgkin lymphoma of B cell origin is the common type of lymphoma- related malignancy with poor response rate with conventional front-line therapies. Aim: The aim of the present study was to investigate the potential of new anti-inflammatory oxadiazole derivatives of Diclofenac as an anti-lymphoma agent through in vitro and in silico approaches. Methods: Anti-lymphoma potential was evaluated by alamar blue technique. MTT assay employed for cytotoxicity. Gene and protein expression studies was performed by qRT-PCR and ELISA respectively. Docking studies was performed by using MOE program. Results: Among five diclofenac derivatives, (II) showed promising anti-lymphoma effects, where it inhibited the expression of BCL-2, p-38 MAPK and TGF-β in both follicular and Burkitt’s lymphoma cells and was non-toxic against normal human fibroblast cells. The in silico studies against BCL-2 revealed that the unsubstituted Sulphur group in (II) is involved in the crucial interactions with the binding site residue. Conclusion: The compound (II) can be a potential therapeutic candidate for B-cell non-Hodgkin lymphoma and deserves further development as a novel anti-lymphoma agent.
-
-
-
Heterocyclic-Based Analogues against Sarcine-Ricin Loop RNA from Escherichia coli: In Silico Molecular Docking Study and Machine Learning Classifiers
Authors: Shivangi Sharma, Rahul Choubey, Manish Gupta and Shivendra Singh> Background: Heterocyclic-based drugs have strong bioactivities, are active pharmacophores, and are used to design several antibacterial drugs. Due to the diverse biodynamic properties of well-known heterocyclic cores, such as quinoline, indole, and its derivatives, they have a special place in the chemistry of nitrogen-containing heterocyclic molecules. Objectives: The objective of this study is to analyze the interaction of several heterocyclic molecules using molecular docking and machine learning approaches to find out the possible antibacterial drugs. Methods: The molecular docking analysis of heterocyclic-based analogues against the sarcin-Ricin Loop RNA from E. coli with a C2667-2'-OCF3 modification (PDB ID: 6ZYB) is discussed. Results: Many heterocyclic-based derivatives show several residual interaction, affinity, and hydrogen bonding with sarcin-Ricin Loop RNA from E. coli with a C2667-2'-OCF3 alteration which are identified by the investigation of in silico molecular docking analysis of such heterocyclic derivatives. Conclusion: The dataset from the molecular docking study was used for additional optimum analysis, and the molecular descriptors were classified using a variety of machine learning classifiers, including the GB Classifier, CB Classifier, RF Classifier, SV Classifier, KNN Classifier, and Voting Classifier. The research presented here showed that heterocyclic derivatives may operate as potent antibacterial agents when combined with other compounds to produce highly efficient antibacterial agents.
-
Volumes & issues
-
Volume 21 (2025)
-
Volume 20 (2024)
-
Volume 19 (2023)
-
Volume 18 (2022)
-
Volume 17 (2021)
-
Volume 16 (2020)
-
Volume 15 (2019)
-
Volume 14 (2018)
-
Volume 13 (2017)
-
Volume 12 (2016)
-
Volume 11 (2015)
-
Volume 10 (2014)
-
Volume 9 (2013)
-
Volume 8 (2012)
-
Volume 7 (2011)
-
Volume 6 (2010)
-
Volume 5 (2009)
-
Volume 4 (2008)
-
Volume 3 (2007)
-
Volume 2 (2006)
-
Volume 1 (2005)
Most Read This Month
