Medicinal Chemistry - Volume 19, Issue 9, 2023
Volume 19, Issue 9, 2023
-
-
Insight on Structural Modification, Cytotoxic or Anti-Proliferative Activity, Structure-Activity Relationship of Berberine Derivatives
Authors: Mengxuan Yin, Jiajia Mou, Lili Sun, Yanru Deng and Xiaoliang RenBerberine (BBR) is a quaternary ammonium alkaloid isolated from the Traditional Chinese Medicine Coptis chinensis. It possesses a plethora of pharmacological activities because its unique structure properties make it readily interact with macromolecules through π-π stacking and electrostatic interaction. Its anti-tumor effects are receiving more and more attention in recent years. Cytotoxicity and anti-proliferation are the important anti-tumor modes of BBR, which have been studied by many research groups. This study aims to review the structural modifications of BBR and its cytotoxic derivatives. Also, to study the corresponding structure-activity relationship. BBR showed potential activities toward tumor cells, however, its modest activity and poor physicochemical properties hindered its application in clinical. Structural modification is a common and effective approach to improve BBR's cytotoxic or anti-proliferative activities. The structural modifications of BBR, the cytotoxic or anti-proliferative activities of its derivatives, and the corresponding structure-activity relationship (SAR) were summarized in the review. The concluded SAR of BBR derivatives with their cytotoxic or anti-proliferative activities will provide great prospects for the future anti-tumor drug design with BBR as the lead compound.
-
-
-
GPR18 and GPR55-related Ligands Serving as Antagonists or Agonists: Current Situation, Challenges and Perspectives
Authors: Linjie Zhang, Yiwen Fang, Sijing Hang, Wenhui Wu, Ruilong Sheng and Ruihua GuoGPCR superfamily, the largest known family of membrane receptors, consists of six classes from A to F. GPR18 and GPR55, δ-branch of A class, had been reported to have no confirmed endogenous ligand and were named as “orphan receptors”. Previous studies suggest that both GPR18 and GPR55 are possibly related to the migration and proliferation of cancer cells, macrophages and other inflammation-associated immune cells. Thus, they may be potential targets for inflammation, cancer and analgesia therapy. In this paper, we aimed to summarize the chemical structures and bioactivities of the agonists and antagonists of GPR18 and GPR55; moreover, we have briefly discussed the challenges and future perspectives in this field. This review will be beneficial for further design and synthesis of efficient agonists and antagonists towards GPR18 and GPR55- related disease treatment.
-
-
-
Quinoline-based Anti-oncogenic Molecules: Synthesis and Biological Evaluation
Authors: Shivangi Sharma, Shivendra Singh and Dhananjay YadavQuinoline and its analogues are found in various natural products, many of which are active pharmacophores with significant bioactivities. This article discussed the plethora of quinoline derivatives and their analogues that have anti-cancer properties. The review will be helpful for the scientific community since several possible anticancer drugs based on quinolines are discussed here. In addition to this, the synthetic aspect of many such quinoline derivatives showing anti-cancer activities is also revealed in this article. These quinoline-based anti-oncogenic molecules can be synthesized using several acids, bases, and azides or with the help of reagents like Jone’s reagent and Lawesson’s reagent.
-
-
-
Mechanistic Role of Tempol: Synthesis, Catalysed Reactions and Therapeutic Potential
Authors: Abhishek Tiwari, Varsha Tiwari, Bimal K. Banik and Biswa Mohan SahooTempol (TP) was introduced in 1960 by Lebedev and Kazarnovskii and is an excellent catalyst extensively used in the synthesis and oxidation of various reagents. 4-Hydroxy-2,2,6,6- tetramethylpiperidin-1-oxyl (TP) has also been explored against various disorders like inflammation, superoxide anion-influenced molecular linked behavioural modifications, radical capturing, cardioprotective, protective ocular damage, against skin burns, fibrocystic diseases, breast cancer prevention, respiratory infections, alopecia, and cerebral malaria, etc. This review article comprises five major aspects of TP namely (a) Approx. 25 different Synthesis schemes of TP (b) major reactions catalysed by TP (c) Therapeutic potential of TP. It also provides scientific information that supports the use of TP which may be proven as a “MIRACLE” drug for the treatment of numerous disorders namely in reducing the reactive oxygen species, superoxide mutases, vision disorders, cancer as well as in covid. It also possesses a significant role in minimising side effects in combination therapy. This review will be beneficial to researchers, healthcare, and academic professionals for further research.
-
-
-
Naphthofuran Derivative BF4, a New Potent SIRT1 Activator, Regulates Lipid Metabolism in 3T3-L1 Adipocytes via the SIRT1-AMPK Pathway
More LessAim: Our previously reported naphthofuran derivative BF4, identified as a potent silent information regulator 1 (SIRT1) activator, could alleviate high glucose stimulating apoptosis and inflammation response in human renal tubular epithelial (HK-2) cells. Introduction: In this study, the underlying effects of BF4 on lipid metabolism in 3T3-L1 adipocytes were investigated. Methods: The effects of BF4 on pre-adipocyte differentiation and adipocyte lipolysis were studied using oil red O staining and quantitative glycerol and triglyceride content assay kits. Moreover, the molecular mechanism of BF4 on adipogenesis and lipid metabolism in 3T3-L1 adipocytes was investigated by real-time quantitative PCR and Western blotting analysis. Results: We found that compound BF4 significantly decreased adipogenesis and lipid accumulation and inhibited the differentiation of 3T3-L1 pre-adipocytes into adipocytes. Moreover, compound BF4 decreased the expressions of several key regulators in adipocyte differentiation, including C/EBPβ and PPARγ, and their downstream lipogenesis targets via the activation of the SIRT1/ AMPK pathway. Conclusion: Our results demonstrated that the novel SIRT1 activator BF4 might be a potent candidate for regulating lipid metabolism.
-
-
-
Incorporating Antimicrobial Activity During Synthesis of New Acid-Azo Dyes: Thermal Stability and Application on Various Fabrics
Authors: Ambreen Sarwar, Abdul Jabbar, Saadia Riaz, Samina Parveen, Shafia Sagheer and Muhammad I. ChoudharyBackground: Textile materials are susceptible to microbial attack as they provide suitable conditions for their growth. The microbes grow with normal body secretions on garments. These microbes are responsible for the weakening, brittleness, and discoloration of the substrate. Furthermore, they cause many health issues to the wearer, including dermal infection, bad odour etc. They threaten the human health as well as create tenderness in fabric. Objectives: Usually, antimicrobial textiles are prepared by applying antimicrobial finishes after dyeing, which is an expensive approach. Concerning these adversities, in the present study, a series of antimicrobial acid-azo dyes have been synthesized by incorporating antimicrobial sulphonamide moiety into the dye molecules during its synthesis. Methods: A commercially available sulphonamide-based compound, sulfadimidine Na-salt was used as a diazonium component and coupled with different aromatic amines to get desired dye molecules. Since dyeing and finishing are two separate energy-intensive processes, in the current research work, an approach to combine both processes in one step has been adopted that would be economical, timesaving, and environment friendly. Structures of the resultant dye molecules have been confirmed using different spectral techniques such as Mass spectrometry, 1H-NMR spectroscopy, FT-IR, and UV-Visible spectroscopy. Results: Thermal stability of the synthesized dyes was also determined. These dyes have been applied to wool and nylon-6 fabrics. Their various fastness properties were examined using ISO standard methods. Conclusion: All the compounds exhibited good to excellent fastness properties. The synthesized dyes and the dyed fabrics were screened biologically against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 10536, resulting in significant antibacterial activities.
-
-
-
Effects of Alkoxy Chain Length and 1-Hydroxy Group on Anticolorectal Cancer Activity of 2-Bromoalkoxyanthraquinones
Background: KRAS and p53 are two of the most common genetic alterations associated with colorectal cancer. New drug development targeting these mutated genes in colorectal cancer may serve as a potential treatment avenue to the current regimen. Objective: The objective of the present study was to investigate the effects of alkoxy chain length and 1-hydroxy group on anticolorectal cancer activity of a series of 2-bromoalkoxyanthraquinones and corroborate it with their in silico properties. Methods: In vitro anticancer activity of 2-bromoalkoxyanthraquinones was evaluated against HCT116, HT29, and CCD841 CoN cell lines, respectively. Molecular docking was performed to understand the interactions of these compounds with putative p53 and KRAS targets (7B4N and 6P0Z). Results: 2-Bromoalkoxyanthraquinones with the 1-hydroxy group were proven to be more active than the corresponding counterparts in anticancer activity. Among the tested compounds, compound 6b with a C3 alkoxy chain exhibited the most promising antiproliferation activity against HCT116 cells (IC50 = 3.83 ± 0.05 μM) and showed high selectivity for HCT116 over CCD841 CoN cells (SI = 45.47). The molecular docking reveals additional hydrogen bonds between the 1-hydroxy group of 6b and the proteins. Compound 6b has adequate lipophilicity (cLogP = 3.27) and ligand efficiency metrics (LE = 0.34; LLE = 2.15) close to the proposed acceptable range for an initial hit. Conclusion: This work highlights the potential of the 1-hydroxy group and short alkoxy chain on anticolorectal cancer activity of 2-bromoalkoxyanthraquinones. Further optimisation may be warranted for compound 6b as a therapeutic agent against colorectal cancer.
-
-
-
Tit Structure-activity Relationship Study and Design of Novel 1, 8-Naphthimide Derivatives as Potential DNA-targeting Chemotherapeutic Agents for Osteosarcoma
Authors: Zheng Lian, Hongzong Si, Huanling Xia and Honglin ZhaiBackground: 1, 8-naphthimide is a novel tumor inhibitor targeting nuclear DNA, which makes it applicable to the design and development of anti-osteosarcoma drugs. Objective: The aim of this study is to establish a satisfactory model based on 1, 8-naphthimide derivatives that makes reliable prediction as DNA-targeted chemotherapy agents for osteosarcoma. Methods: All compounds are constructed using ChemDraw software and subsequently optimized using Sybyl software. COMSIA method is used to construct QSAR model with the optimized compound in Sybyl software package. A series of new 1, 8-naphthalimide derivatives are designed and their IC50 values are predicted using the QSAR model. Finally, the newly designed compounds are screened according to IC50 values, and molecular docking experiments are conducted on the top ten compounds of IC50. Results: The COMSIA model shows that q2 is 0.529 and the optimum number of components is 6. The model has a high r2 value of 0.993 and a low SEE of 0.033, with the F value and the r2 predicted to be 495.841 and 0.996 respectively. The statistical results and verification results of the model are satisfactory. In addition, analyzing the contour maps is conducive to finding the structural requirements. Conclusion: The results of this study can provide guidance for medical chemists and other related workers to develop targeted chemotherapy drugs for osteosarcoma.
-
-
-
Synthesis, Characterization, and in vitro Anti-Inflammatory Activity of Novel Ferrocenyl(Piperazine-1-Yl)Methanone-based Derivatives
Authors: Banfeng Ruan, Jin Li, Qinglei Guo, Min Zhang, Zhouyang Pei and Yong HuBackground: Inflammation is closely related to the occurrence and development of various diseases in the clinical scope. Finding effective anti-inflammatory agents is of great significance for clinical treatment. A series of novel ferrocenyl(piperazine-1-yl)methanone-based sulfamides and carboxamides were synthesized to discover potent anti-inflammatory agents. Methods: The compounds were characterized by 1H NMR, 13C NMR, and MS spectra. Compound 5h was further determined by single crystal X-ray diffraction. All the target compounds were screened for anti-inflammatory activity by evaluating the inhibition effect of LPS-induced NO production in RAW264.7 macrophages. The novel compound (4i) is the preliminary anti-inflammatory mechanism detected by western blot. Results: In a multi-stage screening campaign, compound 4i was shortlisted, which exhibited physicochemical properties suitable for human administration. Among them, compound 4i was found to be most potent in inhibiting NO production (IC50 = 7.65 μM) with low toxicity. This compound also exhibited significant inhibition of the production of iNOS and COX-2. Preliminary mechanism studies indicated that compound 4i could inhibit the activation of the LPS-induced TLR4/NF-ΚB signaling pathway. Conclusion: The promising anti-inflammatory activity of compound 4i compared with the reference drug suggests that this compound may contribute as a lead compound in the search for new potential anti-inflammatory agents.
-
-
-
An In silico Investigation to Identify Promising Inhibitors for SARS-CoV-2 Mpro Target
Background: A limited number of small molecules against SARS-CoV-2 has been discovered since the epidemic commenced in November 2019. The conventional medicinal chemistry approach demands more than a decade of the year of laborious research and development and a substantial financial commitment, which is not achievable in the face of the current epidemic. Objective: This study aims to discover and recognize the most effective and promising small molecules by interacting SARS-CoV-2 Mpro target through computational screening of 39 phytochemicals from five different Ayurvedic medicinal plants. Methods: The phytochemicals were downloaded from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) PubChem, and the SARS-CoV-2 protein (PDB ID: 6LU7; Mpro) was taken from the PDB. The molecular interactions, binding energy, and ADMET properties were analyzed. Results: The binding affinities were studied using a structure-based drug design of molecular docking, divulging 21 molecules possessing greater to equal affinity towards the target than the reference standard. Molecular docking analysis identified 13 phytochemicals, sennoside-B (-9.5 kcal/mol), isotrilobine (-9.4 kcal/mol), trilobine (-9.0 kcal/mol), serratagenic acid (-8.1 kcal/mol), fistulin (-8.0 kcal/mol), friedelin (-7.9 kcal/mol), oleanolic acid (-7.9 kcal/mol), uncinatone (-7.8 kcal/mol), 3,4-di- O-caffeoylquinic acid (-7.4 kcal/mol), clemaphenol A (-7.3 kcal/mol), pectolinarigenin (-7.2 kcal/mol), leucocyanidin (-7.2 kcal/mol), and 28-acetyl botulin (-7.2 kcal/mol) from ayurvedic medicinal plants phytochemicals possess greater affinity than the reference standard Molnupiravir (-7.0 kcal/mol) against SARS-CoV-2-Mpro. Conclusion: Two molecules, namely sennoside-B, and isotrilobine with low binding energies, were predicted as most promising. Furthermore, we carried out molecular dynamics simulations for the sennoside-B protein complexes based on the docking score. ADMET properties prediction confirmed that the selected docked phytochemicals were optimal. These compounds can be investigated further and utilized as a parent core molecule to create novel lead molecules for preventing COVID-19.
-
Volumes & issues
-
Volume 21 (2025)
-
Volume 20 (2024)
-
Volume 19 (2023)
-
Volume 18 (2022)
-
Volume 17 (2021)
-
Volume 16 (2020)
-
Volume 15 (2019)
-
Volume 14 (2018)
-
Volume 13 (2017)
-
Volume 12 (2016)
-
Volume 11 (2015)
-
Volume 10 (2014)
-
Volume 9 (2013)
-
Volume 8 (2012)
-
Volume 7 (2011)
-
Volume 6 (2010)
-
Volume 5 (2009)
-
Volume 4 (2008)
-
Volume 3 (2007)
-
Volume 2 (2006)
-
Volume 1 (2005)
Most Read This Month
