Medicinal Chemistry - Volume 18, Issue 5, 2022
Volume 18, Issue 5, 2022
-
-
1,2,3-Triazole- and Quinoline-based Hybrids with Potent Antiplasmodial Activity
Background: Malaria is a disease causing millions of victims every year and requires new drugs, often due to parasitic strain mutations. Thus, the search for new molecules that possess antimalarial activity is constant and extremely important. However, the potential that an antimalarial drug possesses cannot be ignored, and molecular hybridization is a good strategy to design new chemical entities. Objective: This review article aims to emphasize recent advances in the biological activities of new 1,2,3-triazole- and quinoline-based hybrids and their place in the development of new biologically active substances. More specifically, it intends to present the synthetic methods that have been utilized for the syntheses of hybrid 1,2,3-triazoles with quinoline nuclei. Methods: We have comprehensively and critically discussed all the information available in the literature regarding 1,2,3-triazole- and quinoline-based hybrids with potent antiplasmodial activity. Results: The quinoline nucleus has already been proven to lead to new chemical entities in the pharmaceutical market, such as drugs for the treatment of malaria and other diseases. The same can be said about the 1,2,3-triazole heterocycle, which has been shown to be a beneficial scaffold for the construction of new drugs with several activities. However, only a few triazoles have entered the pharmaceutical market as drugs. Conclusion: Many studies have been conducted to develop new substances that may circumvent the resistance developed by the parasite that causes malaria, thereby improving the therapy currently used.
-
-
-
Screening of Synthetic Heterocyclic Compounds as Antiplatelet Drugs
Background: Antiplatelet drugs represent the keystone in the treatment and prevention of diseases of ischemic origin, including coronary artery disease. The current palette of drugs represents efficient modalities in most cases, but their effect can be limited in certain situations or associated with specific side effects. In this study, representatives of compounds selected from series having scaffolds with known or potential antiplatelet activity were tested. These compounds were previously synthetized by us, but their biological effects have not yet been reported. Objective: The aim of this study was to examine the antiplatelet and anticoagulation properties of selected compounds and determine their mechanism of action. Methods: Antiplatelet activity of compounds and their mechanisms of action were evaluated using human blood by impedance aggregometry and various aggregation inducers and inhibitors and compared to appropriate standards. Cytotoxicity was tested using breast adenocarcinoma cell cultures and potential anticoagulation activity was also determined. Results: In total, four of 34 compounds tested were equally or more active than the standard antiplatelet drug Acetylsalicylic Acid (ASA). In contrast to ASA, all 4 active compounds decreased platelet aggregation triggered not only by collagen, but also partly by ADP. The major mechanism of action is based on antagonism at thromboxane receptors. In higher concentrations, inhibition of thromboxane synthase was also noted. In contrast to ASA, the tested compounds did not block cyclooxygenase-1. Conclusion: The most active compound, 2-amino-4-(1H-indol-3-yl)-6-nitro-4H-chromene-3- carbonitrile (2-N), which is 4-5x times more potent than ASA, is a promising compound for the development of novel antiplatelet drugs.
-
-
-
Design, Synthesis and Antimicrobial Evaluation of Novel Benzimidazoleincorporated Naphthalimide Derivatives as Salmonella typhimurium DNA Intercalators, and Combination Researches
Authors: Zhi-Wei Ning, Hui-Zhen Zhang and Cheng-He ZhouObjective: A series of novel benzimidazole-incorporated naphthalimide derivatives were designed and prepared in an effort to overcome the increasing antibiotic resistance. Methods: The target novel benzimidazole-incorporated naphthalimide derivatives were synthesized from commercial 4-bromo-1,8-naphthalic anhydride and o-phenylene diamine by aminolysis, Nalkylation and so on. The antimicrobial activity of the synthesized compounds was evaluated in vitro by a two-fold serial dilution technique. The interaction of compound 10g with Salmonella typhimurium DNA was studied using UV-vis spectroscopic methods. Results: Compound 10g bearing a 2,4-dichlorobenzyl moiety exhibited the best antimicrobial activities in this series relatively; especially, it exhibited comparable activity against Salmonella typhimurium in comparison with the reference drug Norfloxacin (MIC = 4 μg/mL). Further research showed that compound 10g could effectively intercalate into the Salmonella typhimurium DNA to form the 10g–DNA complex, which might correlate with the inhibitory activity. Molecular docking results demonstrated that naphthalimide compound 10g could interact with base-pairs of DNA hexamer duplex by π–π stacking. Additionally, the combination of the strong active compound with clinical drugs exhibited better antimicrobial efficiency with less dosage and broader antimicrobial spectrum than the separate use of them alone. Notably, these combined systems were more sensitive to Fluconazole-insensitive M. ruber. Conclusion: This work provides a promising starting point to optimize the structures of benzimidazole- incorporated naphthalimide derivatives as potent antimicrobial agents.
-
-
-
Synthesis of a Series of Novel 2-Amino-5-substituted 1,3,4-oxadiazole and 1,3,4-thiadiazole Derivatives as Potential Anticancer, Antifungal and Antibacterial Agents
Authors: Em C. Pham, Tuyen Ngoc Truong, Nguyen Hanh Dong, Duy Duc Vo and Tuoi Thi Hong DoBackground: Many compounds containing a five-membered heterocyclic ring display exceptional chemical properties and versatile biological activities. Objective: The objective of the present study was to prepare the 5-substituted 2-amino-1,3,4- oxadiazole and 2-amino-1,3,4-thiadiazole derivatives and evaluate their potential anticancer, antibacterial and antifungal activities. Methods: Twenty-seven derivatives were synthesized by iodine-mediated cyclization of semicarbazones or thiosemicarbazones obtained from condensation of semicarbazide or thiosemicarbazide and aldehydes. The structures were confirmed by 1H-NMR, 13C-NMR and MS spectra. The antibacterial and antifungal activities were evaluated by diffusion method and the anticancer activities were evaluated by MTT assay. Results: Twenty-seven derivatives have been synthesized in moderate to good yields. A number of derivatives exhibited potential antibacterial, antifungal and anticancer activities. Conclusion: Compounds (1b, 1e and 1g) showed antibacterial activity against Streptococcus faecalis, MSSA and MRSA with MIC value ranging between 4 to 64 μg/mL. Compound (2g) showed antifungal activity against Candida albicans (8 μg/mL) and Aspergillus niger (64 μg/mL). Compound (1o) exhibited high cytotoxic activity against HepG2 cell line (IC50 value 8.6 μM) which is comparable to the activity of paclitaxel, and is non-toxic on LLC-PK1 normal cell line. The structure activity relationship and molecular docking study of the synthesized compounds have also been reported.
-
-
-
Synthesis and Antibacterial Activities of Amidine Substituted Monocyclic β-Lactams
Authors: Lijuan Zhai, Lili He, Yuanbai Liu, Ko K. Myo, Zafar Iqbal, Jian Sun, Jinbo Ji, Jingwen Ji, Yangxiu Mu, Yuanyu Gao, Dong Tang, Haikang Yang and Zhixiang YangBackground: Mononcyclic β-lactams are regarded as the most resistant class of β-lactams against a series of β-lactamases, although they possess limited antibacterial activity. Aztreonam, being the first clinically approved monobactam, needs broad-spectrum efficacy through structural modification. Objective: We strive to synthesize a number of monocyclic β-lactams by varying the substituents at N1, C3, and C4 positions of azetidinone ring and study the antimicrobial effect on variable bacterial strains. Methods: Seven new monobactam derivatives 23a-g, containing substituted-amidine moieties linked to the azetidinone ring via thiazole linker, were synthesized through multistep synthesis. The final compounds were investigated for their in vitro antibacterial activities using the broth microdilution method against ten bacterial strains of clinical interest. The minimum inhibitory concentrations (MICs) of newly synthesized derivatives were compared with aztreonam, ceftazidime, and meropenem, existing clinical antibiotics. Results: All compounds 23a-g showed higher antibacterial activities (MIC 0.25 μg/mL to 64 μg/mL) against tested strains as compared to aztreonam (MIC 16 μg/mL to >64 μg/mL) and ceftazidime (MIC >64 μg/mL). However, all compounds, except 23d, exhibited lower antibacterial activity against all tested bacterial strains compared to meropenem. Conclusion: Compound 23d showed comparable or improved antibacterial activity (MIC 0.25 μg/mL to 2 μg/mL) to meropenem (MIC 1 μg/mL to 2 μg/mL) in the case of seven bacterial species. Therefore, compound 23d may be a valuable lead target for further investigations against multi-drug resistant Gram-negative bacteria.
-
-
-
Synthesis and Bio-evaluation of 2-Alkyl Substituted Fluorinated Genistein Analogues against Breast Cancer
Authors: Yingli Zhu, Fan Zheng, Can Xiao, Xiaohe Liu, Xu Yao and Wenbin ZengBackground: Breast cancer is the leading cause of cancer death in women. The current methods of chemotherapy for breast cancer generally have strong adverse reactions and drug resistance. Therefore, the discovery of novel anti-breast cancer lead compounds is urgently needed. Objective: This study aimed to design and synthesize a series of 2-alkyl substituted fluorinated genistein analogues and evaluate their anti-breast cancer activity. Methods: Target compounds were obtained in a multistep reaction synthesis. The anti-tumor activity of compounds I-1~I-35 was evaluated with MCF-7, MDA-MB-231, MDA-MB-435, and MCF-10A cell lines in vitro, with tamoxifen as the positive control. Molecular docking was used to study the interaction between the synthesized compounds and PI3K-gamma. Results: A series of 2-alkyl substituted fluorinated genistein analogues was designed, synthesized, and screened for their bioactivity. Most of the compounds displayed better selectivity toward breast cancer cell lines as compared to tamoxifen. Among these analogues, I-2, I-3, I-4, I-9, I-15, and I-17 have the strongest selective inhibition of breast cancer cells. Compounds I-10, I-13, I-15, I-17, and I- 33 were found to have significant inhibitory effects on breast cancer cells. Molecular docking studies have shown that these compounds may act as PI3Kγ inhibitors and may further exhibit anti-breast cancer effects. Conclusion: Most of the newly synthesized compounds could highly, selectively inhibit breast cancer cell lines. The experimental results indicate that the synthesized analogs may also have obvious selective inhibitory effects on other malignant proliferation cancer cells.
-
-
-
Inhibition of iNOS by Benzimidazole Derivatives: Synthesis, Docking, and Biological Evaluations
Authors: Richa Minhas and Yogita BansalBackground: Inducible nitric Oxide Synthase (iNOS) plays a key role in the progression of inflammatory diseases by accelerating the production of NO, which makes it an intriguing target to treat inflammation in complex diseases. Therefore, the search is on to develop molecules as selective iNOS inhibitors. Objective: The present work was aimed to design, synthesize and evaluate benzimidazole-coumarin coupled molecules as anti-iNOS agents through in silico and pharmacological studies. Methods: A critical study of literature reports on iNOS inhibitors led to the selection of a (un)substituted coumarin nucleus, 2-aminobenzimidazole, and a 4-atom linker as important structural components for iNOS inhibition. Two series of compounds (7-16 and 17-26) were designed and synthesized by coupling these components. The compounds were subjected to docking using iNOS (1QW4) and nNOS (1QW6) as targets. All compounds were evaluated for NO and iNOS inhibitory activities in vitro. The selected compound was finally evaluated for anti-inflammatory activity in vivo using the carrageenan-induced rat paw edema model. Results: All compounds showed moderate to good inhibition of NO and iNOS in vitro. Compound 12 was the most potent inhibitor of NO and iNOS. Hence, it was evaluated in vivo for toxicity and anti-inflammatory activity. It was found to be safe in acute toxicity studies, and effective in reducing the rat paw edema significantly. Its anti-inflammatory behaviour was similar to that of aminoguanidine, which is a selective iNOS inhibitor. Conclusion: The newly synthesized benzimidazole-coumarin hybrids may serve as potential leads for the development of novel anti-iNOS agents.
-
-
-
Design, Synthesis, and Docking Studies of Thioimidazolyl Diketoacid Derivatives Targeting HIV-1 Integrase
Authors: Nafiseh Karimi, Rouhollah V. Roudsari, Zahra Hajimahdi and Afshin ZarghiBackground: Integrase enzyme is a validated drug target to discover novel structures as anti-HIV-1 agents. Objective: This study aimed at developing a novel series of thioimidazolyl diketoacid derivatives characterizing various substituents at N-1 and 2-thio positions of the central ring as HIV-1integrase inhibitors. Methods: In this study, eighteen novel thioimidazolyl DKA derivatives were synthesized in a fivestep parallel procedure and tested in vitro for the inhibition of both IN ST reaction and the singlecycle HIV-1 replication in HeLa cell culture. Results: The obtained molecules were evaluated using the enzyme assay, displaying promising integrase inhibitory activity with IC50 values ranging from 0.9 to 7.7 mM. The synthesized compounds were also tested for antiviral activity and cytotoxicity using HeLa cells infected by the single-cycle replicable HIV-1 NL4-3. Conclusion: The most potent compound was found to be 18i with EC50 = 19 μM, IC50 = 0.9 μM, and SI = 10.5. Docking studies indicated that the binding mode of the active molecule is well aligned with the known HIV-1integrase inhibitor.
-
Volumes & issues
-
Volume 21 (2025)
-
Volume 20 (2024)
-
Volume 19 (2023)
-
Volume 18 (2022)
-
Volume 17 (2021)
-
Volume 16 (2020)
-
Volume 15 (2019)
-
Volume 14 (2018)
-
Volume 13 (2017)
-
Volume 12 (2016)
-
Volume 11 (2015)
-
Volume 10 (2014)
-
Volume 9 (2013)
-
Volume 8 (2012)
-
Volume 7 (2011)
-
Volume 6 (2010)
-
Volume 5 (2009)
-
Volume 4 (2008)
-
Volume 3 (2007)
-
Volume 2 (2006)
-
Volume 1 (2005)
Most Read This Month
