Medicinal Chemistry - Volume 15, Issue 4, 2019
Volume 15, Issue 4, 2019
-
-
Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking
Background: Human immunodeficiency virus (HIV) is an infective agent that causes an acquired immunodeficiency syndrome (AIDS). Therefore, the rational design of inhibitors for preventing the progression of the disease is required. Objective: This study aims to construct quantitative structure-activity relationship (QSAR) models, molecular docking and newly rational design of colchicine and derivatives with anti-HIV activity. Methods: A data set of 24 colchicine and derivatives with anti-HIV activity were employed to develop the QSAR models using machine learning methods (e.g. multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM)), and to study a molecular docking. Results: The significant descriptors relating to the anti-HIV activity included JGI2, Mor24u, Gm and R8p+ descriptors. The predictive performance of the models gave acceptable statistical qualities as observed by correlation coefficient (Q2) and root mean square error (RMSE) of leave-one out cross-validation (LOO-CV) and external sets. Particularly, the ANN method outperformed MLR and SVM methods that displayed LOO−CV 2 Q and RMSELOO-CV of 0.7548 and 0.5735 for LOOCV set, and Ext 2 Q of 0.8553 and RMSEExt of 0.6999 for external validation. In addition, the molecular docking of virus-entry molecule (gp120 envelope glycoprotein) revealed the key interacting residues of the protein (cellular receptor, CD4) and the site-moiety preferences of colchicine derivatives as HIV entry inhibitors for binding to HIV structure. Furthermore, newly rational design of colchicine derivatives using informative QSAR and molecular docking was proposed. Conclusion: These findings serve as a guideline for the rational drug design as well as potential development of novel anti-HIV agents.
-
-
-
Phenolic Imidazole Derivatives with Dual Antioxidant/Antifungal Activity: Synthesis and Structure-Activity Relationship
Background: Previous publications show that the addition of a phenolic antioxidant to an antifungal agent, considerably enhances the antifungal activity. Objective: Synthesis of novel compounds combining phenolic units with linear or cyclic nitrogencontaining organic molecules with antioxidant/antifungal activity using methodologies previously developed in the group. Methods: Several N- [1,2-dicyano-2- (arylidenamino) vinyl]-O-alkylformamidoximes 3 were synthesized and cyclized to 4,5-dicyano-N- (N´-alcoxyformimidoyl)-2-arylimidazoles 4 upon reflux in DMF, in the presence of manganese dioxide or to 6-cyano-8-arylpurines 5 when the reagent was refluxed in acetonitrile with an excess of triethylamine. These compounds were tested for their antioxidant activity by cyclic voltammetry, DPPH radical (DPPH•) assay and deoxyribose degradation assay. The minimum inhibitory concentration (MIC) of all compounds was evaluated against two yeast species, Saccharomyces cerevisiae and Candida albicans, and against bacteria Bacillus subtilis (Gram-positive) and Escherichia coli (Gram negative). Their cytotoxicity was evaluated in fibroblasts. Results: Among the synthetised compounds, five presented higher antioxidant activity than reference antioxidant Trolox and from these compounds, four presented antifungal activity without toxic effects in fibroblasts and bacteria. Conclusion: Four novel compounds presented dual antioxidant/antifungal activity at concentrations that are not toxic to bacteria and fibroblasts. The active molecules can be used as an inspiration for further studies in this area.
-
-
-
Antiproliferative Activity and Characterization of Metabolites of Aspergillus nidulans: An Endophytic Fungus from Nyctanthes arbor-tristis Linn. Against Three Human Cancer Cell Lines
Authors: Talea Sana, Bina S. Siddiqui, Saleem Shahzad, Ahsana D. Farooq, Faheema Siddiqui, Samia Sattar and Sabira BegumBackground: Endophytic fungi are receiving attention as sources of structurally novel bioactive secondary metabolites towards drug discovery from natural products. This study reports the isolation and characterization of secondary metabolites from an endophytic fungus Aspergillus nidulans, associated with Nyctanthes arbor-tristis Linn., a plant which has a traditional use to cure many ailments including cancer. Objective: The objective of this study was to evaluate the antiproliferative activity of the metabolites of A. nidulans from N. arbor-tristis on three human cancer cell lines, lung (NCI-H460), breast (MCF-7) and uterine cervix (HeLa), and carry out their characterization. Methods: The extracts of the endophytic fungus cultured on potato dextrose agar were subjected to various chromatographic techniques. Structures of pure compounds were determined using spectroscopic techniques. The non-polar constituents were analyzed by GC-MS. Antiproliferative activity was determined by sulforhodamine B (SRB) assay. Results: The extracts and fractions showed moderate to good growth inhibition of the aforementioned human cancer cell lines. The broth extract was most potent (IC50 = 10 ± 3.1 μg/mL and LC50= 95 ± 3.9) against HeLa whereas petroleum ether insoluble fraction of mycelium was most active against NCI-H460 and MCF-7 (IC50 = 10 ± 2.1 μg/mL and 18 ± 3.1 μg/mL respectively). GC-MS led to identify 12 compounds in mycelium and 19 compounds in broth. Four pure compounds were isolated and characterized one compound 5, 10-dihydrophenazine-1-carboxylic acid (1) from broth and three 1-hydroxy-3-methylxanthone (2), ergosterol (3) and sterigmatocystin (4) from mycelium. 1 has not been reported earlier as a plant/fungal metabolite while 2-4 are new from this source. Sterigmatocystin exhibited growth inhibitory effect (IC50 = 50 ± 2.5 μM/mL) against only MCF-7 cell line whereas other compounds had IC50 > 100. Conclusions: In this paper, the cytotoxicity of mycelium and broth constituents of endophytic fungus Aspergillus nidulans from Nyctanthes arbor-tristis is reported for the first time. The study shows that fungus Aspergillus nidulans from Nyctanthes arbor-tristis is capable of producing biologically active natural compounds and provides a scientific rationale for further chemical investigations of endophyte-producing natural products.
-
-
-
New N,C-Diaryl-1,2,4-triazol-3-ones: Synthesis and Evaluation as Anticancer Agents
Authors: Dolores S. María, Rosa M. Claramunt, José Elguero, Miguel Carda, Eva Falomir and Celia Martín-BeltránBackground: A set of 2,5-diaryl-1,2,4-triazol-3-ones was synthesized in two steps and evaluated as regards their activity in some relevant biological targets related to cancer. Objective: This study is focused on the synthesis and the biological evaluation of 2,5-diaryl-1,2,4- triazol-3-ones. In this sense, the effect of the synthetic triazolones on the proliferation of HT-29 and A549 cancer cells and on HEK non-cancer cells has been measured. In addition, the effects of triazolones on the expression of hTERT, c-Myc and PD-L1 genes and on the production of c-Myc and PD-L1 proteins have also been evaluated. Method: A set of 2,5-diaryl-1,2,4-triazol-3-ones was synthesized in two steps. Firstly, N- (aminocarbonyl)-3-methoxybenzamide was prepared by coupling 3-methoxybenzoic acid and cyanamide followed by aqueous HCl hydrolysis. Then, the 2,5-diaryl-1,2,4-triazol-3-ones were obtained upon reaction of N-(aminocarbonyl)-3-methoxybenzamide with arylhydrazines in decaline at 170ºC. The ability of the triazolones to inhibit cell proliferation was measured against two human carcinoma cell lines (colorectal HT-29 and lung A549), and one non-tumor cell line (HEK- 293) by MTT assay. The downregulation of the synthetic triazolones on the expression of the hTERT, c-Myc and PD-L1 genes was measured by an RT-qPCR analysis. Their ability to regulate the expression of the c-Myc and PD-L1 proteins, as well as their direct interaction with c-Myc protein, was determined by the ELISA method. Finally, the direct interaction of triazolones with PD-L1 protein was assessed by the thermal shift assay. Results: Ten 2,5-diaryl-1,2,4-triazol-3-ones were synthesized and characterized by spectroscopic methods. A thorough study by 1H, 13C, 15N and 19F NMR spectroscopy showed that all the synthetic compounds exist as 4H-triazolones and not as hydroxytriazoles or 1H-triazolones. Some triazolones showed relatively high activities together with very poor toxicity in non-tumor cell line HEK-293. 2-(2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (4) was particularly active in downregulating c-Myc and PD-L1 gene expression although 2-(4- chloro-2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (8) is the one that combines the best downregulatory activities in the three genes studied. Considering protein expression, the most active compounds are 2-(4-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro- 3H-1,2,4-triazol-3-one (5) and 2-(2,4,6-trifluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H- 1,2,4-triazol-3-one (10) (c-Myc expression) and 2-(2,3,5,6-tetrafluorophenyl)-5-(3-methoxyphenyl)- 2,4-dihydro-3H-1,2,4-triazol-3-one (11) and (8) (PD-L1 expression). Conclusion: Some of the triazolones studied have shown relevant activities in the inhibition of the hTERT, c-Myc and PD-L1 genes, and in the inhibition of c-Myc and PD-L1 protein secretion, the 2-(4-chloro-2-fluorophenyl)-5-(3-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazol-3-one (8) was found to be a particularly promising lead compound.
-
-
-
Spirocyclohexadienones as an Uncommon Scaffold for Acetylcholinesterase Inhibitory Activity
Authors: Ralph C. Gomes, Renata P. Sakata, Wanda P. Almeida and Fernando CoelhoBackground: The most important cause of dementia affecting elderly people is the Alzheimer’s disease (AD). Patients affected by this progressive and neurodegenerative disease have severe memory and cognitive function impairments. Some medicines used for treating this disease in the early stages are based on inhibition of acetylcholinesterase. Population aging should contribute to increase the cases of patients suffering from Alzheimer's disease, thus requiring the development of new therapeutic entities for the treatment of this disease. Methods: The objective of this work is to identify new substances that have spatial structural similarity with donepezil, an efficient commercial drug used for the treatment of Alzheimer's disease, and to evaluate the capacity of inhibition of these new substances against the enzyme acetylcholinesterase. Results: Based on a previous results of our group, we prepared a set of 11 spirocyclohexadienones with different substitutions patterns in three steps and overall yield of up to 59%. These compounds were evaluated in vitro against acetylcholinesterase. We found that eight of them are able to inhibit the acetylcholinesterase activity, with IC50 values ranging from 0.12 to 12.67 μM. Molecular docking study indicated that the spirocyclohexadienone, 9e (IC50 = 0.12 μM), a mixedtype AChE inhibitor, showed a good interaction at active site of the enzyme, including the cationic (CAS) and the peripheral site (PAS). Conclusion: We described the first study aimed at investigating the biological properties of spirocyclohexadienones as acetylcholinesterase inhibitors. Thus, we have identified an inhibitor, which provided valuable insights for further studies aimed at the discovery of more potent acetylcholinesterase inhibitors.
-
-
-
Design, Synthesis and Anxiolytic Activity Evaluation of N-Acyl-tryptophanyl-Containing Dipeptides, Potential TSPO Ligands#
Background: The 18 kDa translocator protein (TSPO), previously known as the peripheral- type benzodiazepine receptor, plays a key role for the synthesis of neurosteroids by promoting transport of cholesterol from the outer to the inner mitochondrial membrane, which is the ratelimiting step in neurosteroid biosynthesis. Neurosteroids interact with nonbenzodiazepine site of GABAa receptor causing an anxiolytic effect without the side effects. Methods: Using the original peptide drug-based design strategy, the first putative dipeptide ligand of the TSPO N-carbobenzoxy-L-tryptophanyl-L-isoleucine amide (GD-23) was obtained. Molecular docking of GD-23 in the active pocket of the TSPO receptor using Glide software was carried out. The lead compounds GD-23 and its analogues were synthesized using activated succinimide esters coupling method. The anxiolytic activity of GD-23 and its analogues was investigated in vivo, using two validated behavioral tests, illuminated open field and elevated plus-maze. Results: The in vivo studies revealed that the following parameters are necessary for the manifestation of anxiolytic activity of new compounds: the L-configuration of tryptophan, the presence of an amide group at the C-terminus, the specific size of the N-acyl substituent at the Nterminus. Compound GD-23 (N-carbobenzoxy-L-tryptophanyl-L-isoleucine amide) demonstrated a high anxiolytic-like effect in the doses of 0.05–1.0 mg/kg i.p. comparable with that of diazepam. Compound GD-23 was also active in the open field test when was administered orally in the doses of 0.1-5.0 mg/kg. The involvement of TSPO receptor in the mechanism of anxiolytic-like activity of new compounds was proved by the antagonism of compound GD-23 with TSPO selective inhibitor PK11195 as well as with inhibitors of enzymes which are involved in the biosynthesis of neurosteroids, trilostane and finasteride. Conclusion: A series of N-acyl-tryptophanyl-containing dipeptides were designed and synthesized as 18 kDa translocator protein (TSPO) ligands. Using a drug-based peptide design method a series of the first dipeptide TSPO ligands have been designed and synthesized and their anxiolytic activity has been evaluated. In general, some of the compounds displayed a high level of anxiolytic efficacy comparable with that of diazepam. The involvement of TSPO receptor in the mechanism of anxiolytic activity of new compounds was proved using two methods. On this basis, the N-acyl-Ltryptophanyl- isoleucine amides could potentially be a novel class of TSPO ligands with anxiolytic activity.
-
-
-
Synthesis and Evaluation of Antifungal and Antitrypanosomastid Activities of Symmetrical 1,4-Disubstituted-1,2,3-Bistriazoles Obtained by CuAAC Conditions
Background: The trypanosomatids, such as the protozoan Leishmania spp., have a demand by ergosterol, which is not present in the membrane from mammal cells. The suppression of the synthesis of ergosterol would be a new target of compounds with leishmanicidal activity, and bistriazole has shown trypanocidal activity by this mechanism. The incidence of fungal infections has increased at an alarming rate over the last decades. This is related both to the growing population of immune-compromised individuals and to the emergence of strains that are resistant to available antifungals. Therefore, there is a challenge for the search of potential new antifungal agents. Objective: The study aimed to synthesize 1,4-disubstituted-1,2,3-bistriazoles by optimized copper( I)-catalyzed alkyne-azide cycloaddition (CuAAC) and evaluate their antifungal and antitrypanosomastid activities. Method: The synthesis of symmetrical bistriazoles with diazides as spacers was planned to be performed following the CuAAC reaction strategy. For evaluation of best conditions for the synthesis of symmetrical bistriazoles hex-1-yne 2 was chosen as leading compound, and a variety of catalysts were employed, choosing (3:1) alkyne:diazide stoichiometric relationship employing CuSO4.5H2O as the best condition. For the preparation of diversity in the synthesis of symmetrical bistriazoles, a 1,3-diazide-propan-2-ol 1a and 1,3-diazidepropane 1b were reacted with seven different alkynes, furnishing eleven symmetrical bistriazoles 9-13a,b and 14a. All compounds were essayed to cultures of promastigotes of L. amazonensis (1 x 106 cells mL-1) in the range of 0.10 - 40.00 μg mL-1 and incubated at 25ºC. After 72 h of incubation, the surviving parasites were counted. For antifungal assay, the minimum inhibitory concentrations (MIC) for yeasts and filamentous fungi were determined. Each compound was tested in 10 serial final concentrations (64 to 0.125 μg mL-1). Results: Eleven 1,4-disubstituted-1,2,3-bistriazoles were synthesized and their structures were confirmed by IR, 1H and 13C-NMR and Mass spectral analysis. The antifungal and antitrypanosomastid activities were evaluated. The best result to antifungal activity was reached by bistriazole 11a that showed the same MIC of fluconazole (32 μg mL-1) against Candida krusei ATCC 6258, an emerging and potentially multidrug-resistant fungal pathogen. Due to their intrinsically biological activity versatility, five derivatives compounds showed leishmanicidal inhibitory activity between 15.0 and 20.0% at concentrations of 20 and 40.0 μg mL-1. Among these compounds the derivative 13a showed best IC50 value of 63.34 μg mL-1 (182.86 μM). Conclusion: The preliminary and promising results suggest that bistriazole derivatives, especially compound 13a, could represent an innovative scaffold for further studies and development of new antifungal and anti-parasitic drug candidates.
-
-
-
Antiprotozoal Activities of Tetrazole-quinolines with Aminopiperidine Linker
Authors: Patrick Hochegger, Johanna Faist, Werner Seebacher, Robert Saf, Pascal Mäser, Marcel Kaiser and Robert WeisBackground: Human African Trypanosomiasis (HAT, sleeping sickness) and Malaria both are insect vectored tropical diseases. Only a couple of drugs is able to cure HAT, but all of them are toxic, prone to resistance and require parenteral administration. Malaria is responsible for high morbidity and mortality in humans. It is one of the global killers of children. Wide-spread drug resistance against traditional therapeutics which were once highly effective makes them almost useless. Therefore new drugs against both diseases are urgently needed. Objective: Recently, we reported the synthesis and antiprotozoal activities of a number of new 2- substituted 4-carbamoyl- and 4-aminoquinolines. This study focussed on the synthesis of novel tetrazole derivatives which are linked to the quinoline core via a piperidine ring. Methods: Novel compounds exhibiting a 7-chloroquinoline and a tetrazole ring were prepared via Ugi-azide reaction. Modifications were restricted to the orientation and the substitution of the linker. Compounds were tested for their activities against Trypanosoma brucei rhodesiense (STIB 900). Their antiplasmodial activities were determined against a sensitive (NF54) and a multiresistant strain (K1) of Plasmodium falciparum. Results: Eighteen tetrazole derivatives were prepared. The results of the biological tests were compared with the activities of drugs in use and structure-activity relationships were discussed. Their antitrypanosomal activities were only moderate. In contrast some of the compounds showed promising activity against both strains of Plasmodium falciparum and good to excellent resistance indices. Conclusion: The antiplasmodial activities depended on the orientation of the 4-aminopiperidine linker. Compounds with a tertiary amino group in position 4 of the quinoline ring exhibited equal activity against both strains, whereas those with a secondary amino group were mainly active against the sensitive strain.
-
-
-
Ligand-Based Drug Design: Synthesis and Biological Evaluation of Substituted Benzoin Derivatives as Potential Antitumor Agents
Background: Phosphoinositide 3-kinase α (PI3Kα) has emerged as a promising target for anticancer drug design. Objectives: Target compounds were designed to investigate the effect of the p-OCH3 motifs on ligand/PI3Kα complex interaction and antiproliferative activity. Methods: Synthesis of the proposed compounds, biological examination tests against human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines, along with Glide docking studies. Results: A series of 1,2-bis(4-methoxyphenyl)-2-oxoethyl benzoates was synthesized and characterized by means of FT-IR, 1H and 13C NMR, and by elemental analysis. Biological investigation demonstrated that the newly synthesized compounds exhibit antiproliferative activity in human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines possibly via inhibition of PI3Kα and estrogen receptor alpha (ERα). Additionally, results revealed that these compounds exert selective inhibitory activity, induce apoptosis, and suppress VEGF production. Compound 3c exhibited promising antiproliferative activity in HCT-116 interrogating that hydrogen bond-acceptor mediates ligand/PI3Kα complex formation on m- position. Compounds 3e and 3i displayed high inhibitory activity in MCF-7 and T47D implying a wide cleft discloses the o-attachment. Furthermore, compound 3g exerted selective inhibitory activity against T47D. Glide docking studies against PI3Kα and ERα demonstrated that the series accommodate binding to PI3Kα and/or ERα. Conclusion: The series exhibited a potential antitumor activity in human carcinoma cell lines encoding PI3Kα and/or ERα.
-
-
-
Novel Conjugated Unsaturated Ketones with Submicromolar Potencies Towards some Leukemic and Colon Cancer Cells
Authors: Swagatika Das, H. I. Gul, Umashankar Das, Jan Balzarini, Stephen G. Dimmock and Jonathan R. DimmockBackground: Cancer continues to be the major health burden worldwide. There is an urgent need for the development of novel antineoplastic compounds to treat this devastating condition. Various alkylating anticancer drugs have been employed in the clinic for treating cancers. Unsaturated conjugated ketones are a group of alkylators which are of significant interest as potent antineoplastic agents. Objective: The goal of this study is to discover unsaturated conjugated ketones which are novel potent cytotoxins displaying growth-inhibitory properties towards neoplasms and also to serve as cytotoxic warheads in drug development. Methods: A variety of 3,5-bis (benzylidene)-4-piperidones 2a-n were synthesized and evaluated against a number of neoplastic cell lines. The short-term neurotoxicity of 2a-k, n was evaluated in mice by i.p. administration using doses level of 30, 100 and 300 mg/kg. Statistical correlations for determining structure-activity relationships were performed using an SPSS software. Results: A number of compounds display cytotoxic potencies in the region of 10-7 to 10-8 M and some of the structural features contributing to the cytotoxicity were identified. Compounds 2a-d, 2h demonstrated substantially higher cytotoxic potencies compared to melphalan and 5- fluorouracil against a panel of leukemic and colon cancer cell lines. These lead cytotoxins comply with drug-likeness properties. In general, the antineoplastics 2 are well tolerated in mice using a short-term neurotoxicity screening. Conclusion: In general, this group of compounds comprises excellent cytotoxic agents, which warrant their further development as cytotoxic warheads.
-
Volumes & issues
-
Volume 21 (2025)
-
Volume 20 (2024)
-
Volume 19 (2023)
-
Volume 18 (2022)
-
Volume 17 (2021)
-
Volume 16 (2020)
-
Volume 15 (2019)
-
Volume 14 (2018)
-
Volume 13 (2017)
-
Volume 12 (2016)
-
Volume 11 (2015)
-
Volume 10 (2014)
-
Volume 9 (2013)
-
Volume 8 (2012)
-
Volume 7 (2011)
-
Volume 6 (2010)
-
Volume 5 (2009)
-
Volume 4 (2008)
-
Volume 3 (2007)
-
Volume 2 (2006)
-
Volume 1 (2005)
Most Read This Month
