Skip to content
2000
image of Expanding Therapeutic Horizons with Indazole-Based Compounds: A Review of Anticancer, Antimicrobial, and Neuroprotective Applications

Abstract

Indazole-based compounds have recently developed and physiologically evaluated as diverse agents for antibacterial, anticancer, anti-inflammatory, anti-obesity, and neurological therapies. This review highlights these advancements. Through molecular docking and experimental tests, scientists have created distinct indazole analogs that exhibit significant inhibitory effects on various biological targets, including 1,2,3-triazolyl-indazoles, carbothioamides, and carboxamides. Key compounds have demonstrated strong bactericidal and antifungal properties against microbes such as . , . , . , and . ; their effectiveness was enhanced by halogenated and electron-withdrawing substituents. In models including positive HER2 breast cancer and hepatocellular tumors, indazole derivatives have shown efficacy against targets such as CDK2, EGFR, c-Met, HSP90, and VEGFR2 in oncology, resulting in successful anticancer responses. The pharmacokinetics, solubility, and specificity of these compounds have been further improved through structural alterations, such as piperazine ring modifications and C-terminal changes.

Additionally, the LRRK2 antagonist MLi-2 demonstrated remarkable efficacy in treating neurodegenerative diseases, while indazole-5-carboxamides exhibited a strong affinity for monoamine oxidases, potentially offering new therapeutic options for Parkinson's disease. Inhibition of COX-2 and FGFR resulted in anti-inflammatory effects, with minimal off-target damage observed . Collectively, our findings underscore the therapeutic versatility of indazole frameworks across various disease pathways, suggesting their potential for developing innovative treatments for cancer, infections, metabolic disorders, and neurological conditions.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064371097250403114905
2025-04-18
2025-10-03
Loading full text...

Full text loading...

References

  1. Burke A. Di Filippo M. Spiccio S. Schito A.M. Caviglia D. Brullo C. Baumann M. Antimicrobial evaluation of new pyrazoles, indazoles and pyrazolines prepared in continuous flow mode. Int. J. Mol. Sci. 2023 24 6 5319 10.3390/ijms24065319 36982392
    [Google Scholar]
  2. Pérez-Villanueva J. Yépez-Mulia L. González-Sánchez I. Palacios-Espinosa J. Soria-Arteche O. Sainz-Espuñes T. Cerbón M. Rodríguez-Villar K. Rodríguez-Vicente A. Cortés-Gines M. Custodio-Galván Z. Estrada-Castro D. Synthesis and biological evaluation of 2 H-indazole derivatives: Towards antimicrobial and anti-inflammatory dual agents. Molecules 2017 22 11 1864 10.3390/molecules22111864 29088121
    [Google Scholar]
  3. Chang C.F. Lin W.H. Ke Y.Y. Lin Y.S. Wang W.C. Chen C.H. Kuo P.C. Hsu J.T.A. Uang B.J. Hsieh H.P. Discovery of novel inhibitors of Aurora kinases with indazole scaffold: In silico fragment-based and knowledge-based drug design. Eur. J. Med. Chem. 2016 124 186 199 10.1016/j.ejmech.2016.08.026 27573544
    [Google Scholar]
  4. Mohareb R.M. Mikhail I.R. Gamaan M.S. Alwan E.S. Synthesis, antiproliferative evaluation, and molecular docking of thieno[3,2-e]indazole derivatives. Lett. Drug Des. Discov. 2024 21 16 3555 3576 10.2174/0115701808287763240302165049
    [Google Scholar]
  5. Solano L.N. Nelson G.L. Ronayne C.T. Jonnalagadda S. Jonnalagadda S.K. Kottke K. Chitren R. Johnson J.L. Pandey M.K. Jonnalagadda S.C. Mereddy V.R. Synthesis, in vitro, and in vivo evaluation of novel N-phenylindazolyl diarylureas as potential anti-cancer agents. Sci. Rep. 2020 10 1 17969 10.1038/s41598‑020‑74572‑1 33087745
    [Google Scholar]
  6. Sandeep Reddy G. Mohanty S. Kumar J. Venteswar Rao B. Synthesis and evaluation of anticancer activity of indazole derivatives. Russ. J. Gen. Chem. 2018 88 11 2394 2399 10.1134/S1070363218110233
    [Google Scholar]
  7. Kumar V. Sirbaiya A.K. Nematullah M. Haider M.F. Rahman M.A. Synthesis of 1,3-substituted 1H-indazole derivatives and evaluation of anti-inflammatory activity in Sprague Dawley rats. Intelligent Pharmacy 2024 2 1 40 44 10.1016/j.ipha.2023.09.009
    [Google Scholar]
  8. Wrzeciono U. Linkowska E. Majewska K. Gzella A. Stochla K. Synthesis and anti-inflammatory activity of some indazole derivatives. 36. Azoles. Pharmazie 1993 48 8 582 584 8415857
    [Google Scholar]
  9. Wan Y. He S. Li W. Tang Z. Indazole derivatives: Promising anti-tumor agents. Anticancer. Agents Med. Chem. 2019 18 9 1228 1234 10.2174/1871520618666180510113822 29745343
    [Google Scholar]
  10. Wolff D.J. Gribin B.J. The inhibition of the constitutive and inducible nitric oxide synthase isoforms by indazole agents. Arch. Biochem. Biophys. 1994 311 2 300 306 10.1006/abbi.1994.1241 7515613
    [Google Scholar]
  11. Kaczor A.A. Targowska-Duda K.M. Stępnicki P. N-(3-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}propyl)-1H-indazole-3-carboxamide (D2AAK3) as a potential antipsychotic: In vitro, in silico, and in vivo evaluation of a multi-target lig, and. Neurochem. Int. 2021 146 105016 10.1016/j.neuint.2021.105016 33722679
    [Google Scholar]
  12. Uppulapu S.K. Alam M.J. Kumar S. Banerjee S.K. Indazole and its derivatives in cardiovascular diseases: Overview, current scenario, and future perspectives. Curr. Top. Med. Chem. 2022 22 14 1177 1188 10.2174/1568026621666211214151534 34906057
    [Google Scholar]
  13. Goodman K.B. Cui H. Dowdell S.E. Gaitanopoulos D.E. Ivy R.L. Sehon C.A. Stavenger R.A. Wang G.Z. Viet A.Q. Xu W. Ye G. Semus S.F. Evans C. Fries H.E. Jolivette L.J. Kirkpatrick R.B. Dul E. Khandekar S.S. Yi T. Jung D.K. Wright L.L. Smith G.K. Behm D.J. Bentley R. Doe C.P. Hu E. Lee D. Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors. J. Med. Chem. 2007 50 1 6 9 10.1021/jm0609014 17201405
    [Google Scholar]
  14. Tönges L. Koch J.C. Bähr M. Lingor P. ROCKing regeneration: Rho kinase inhibition as molecular target for neurorestoration. Front. Mol. Neurosci. 2011 4 39 10.3389/fnmol.2011.00039 22065949
    [Google Scholar]
  15. Bastos I.M. Rebelo S. Silva V.L.M. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem. Pharmacol. 2024 221 116045 10.1016/j.bcp.2024.116045 38336156
    [Google Scholar]
  16. Scott L.J. Niraparib: first global approval. Drugs 2017 77 9 1029 1034 10.1007/s40265‑017‑0752‑y 28474297
    [Google Scholar]
  17. Murugan A. Babu V.N. Polu A. Sabarinathan N. Bakthadoss M. Sharada D.S. Regioselective C3–H trifluoromethylation of 2 H -indazole under transition-metal-free photoredox catalysis. J. Org. Chem. 2019 84 12 7796 7803 10.1021/acs.joc.9b00676 31117559
    [Google Scholar]
  18. Cui Y.J. Zhou Y. Zhang X. Dou B. Ma C.C. Zhang J. The discovery of water-soluble indazole derivatives as potent microtubule polymerization inhibitors. Eur. J. Med. Chem. 2023 262 115870 10.1016/j.ejmech.2023.115870 37890199
    [Google Scholar]
  19. Taylor R.D. MacCoss M. Lawson A.D.G. Combining molecular scaffolds from FDA approved drugs: Application to drug discovery. J. Med. Chem. 2017 60 5 1638 1647 10.1021/acs.jmedchem.6b01367 27935308
    [Google Scholar]
  20. Harris P.A. Boloor A. Cheung M. Kumar R. Crosby R.M. Davis-Ward R.G. Epperly A.H. Hinkle K.W. Hunter R.N. III Johnson J.H. Knick V.B. Laudeman C.P. Luttrell D.K. Mook R.A. Nolte R.T. Rudolph S.K. Szewczyk J.R. Truesdale A.T. Veal J.M. Wang L. Stafford J.A. Discovery of 5-[[4-[(2,3-dimethyl-2H-indazol-6-yl)methylamino]-2-pyrimidinyl]amino]-2-methyl-benzenesulfonamide (Pazopanib), a novel and potent vascular endothelial growth factor receptor inhibitor. J. Med. Chem. 2008 51 15 4632 4640 10.1021/jm800566m 18620382
    [Google Scholar]
  21. Sun L. Nie J. Zheng Y. Ma J.A. [3 + 2] Cycloaddition of arynes with CF 3 CHN 2 : Access to 3-trifluoromethyl-1 H -indazoles. J. Fluor. Chem. 2015 174 88 94 10.1016/j.jfluchem.2014.06.002
    [Google Scholar]
  22. Fernández S. Giglio J. Reyes A.L. Damián A. Pérez C. Pérez D.I. González M. Oliver P. Rey A. Engler H. Cerecetto H. 3-(Benzyloxy)-1-(5-[18F]fluoropentyl)-5-nitro-1H-indazole: A PET radiotracer to measure acetylcholinesterase in brain. Future Med. Chem. 2017 9 10 983 994 10.4155/fmc‑2017‑0023 28632402
    [Google Scholar]
  23. Xiao-feng L. Wen-ting Z. Yuan-yuan X. Chong-Fa L. Lu Z. Jin-jun R. Wen-ya W. Protective role of 6-Hydroxy-1-H-Indazole in an MPTP-induced mouse model of Parkinson’s disease. Eur. J. Pharmacol. 2016 791 348 354 10.1016/j.ejphar.2016.08.011 27614126
    [Google Scholar]
  24. Wrobel J. Steffan R. Bowen S.M. Magolda R. Matelan E. Unwalla R. Basso M. Clerin V. Gardell S.J. Nambi P. Quinet E. Reminick J.I. Vlasuk G.P. Wang S. Feingold I. Huselton C. Bonn T. Farnegardh M. Hansson T. Nilsson A.G. Wilhelmsson A. Zamaratski E. Evans M.J. Indazole-based liver X receptor (LXR) modulators with maintained atherosclerotic lesion reduction activity but diminished stimulation of hepatic triglyceride synthesis. J. Med. Chem. 2008 51 22 7161 7168 10.1021/jm800799q 18973288
    [Google Scholar]
  25. Tahvanainen J. Kyläniemi M.K. Kanduri K. Gupta B. Lähteenmäki H. Kallonen T. Rajavuori A. Rasool O. Koskinen P.J. Rao K.V.S. Lähdesmäki H. Lahesmaa R. Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation. J. Biol. Chem. 2013 288 5 3048 3058 10.1074/jbc.M112.361709 23209281
    [Google Scholar]
  26. Koblish H. Li Y. Shin N. Hall L. Wang Q. Wang K. Covington M. Marando C. Bowman K. Boer J. Burke K. Wynn R. Margulis A. Reuther G.W. Lambert Q.T. Dostalik Roman V. Zhang K. Feng H. Xue C.B. Diamond S. Hollis G. Yeleswaram S. Yao W. Huber R. Vaddi K. Scherle P. Preclinical characterization of INCB053914, a novel pan-PIM kinase inhibitor, alone and in combination with anticancer agents, in models of hematologic malignancies. PLoS One 2018 13 6 e0199108 10.1371/journal.pone.0199108 29927999
    [Google Scholar]
  27. Qu Y. Zhang C. Du E. Wang A. Yang Y. Guo J. Wang A. Zhang Z. Xu Y. Pim-3 is a critical risk factor in development and prognosis of prostate cancer. Med. Sci. Monit. 2016 22 4254 4260 10.12659/MSM.898223 27826135
    [Google Scholar]
  28. Puri S. Sawant S. Juvale K. A comprehensive review on the indazole based derivatives as targeted anticancer agents. J. Mol. Struct. 2023 1284 135327 10.1016/j.molstruc.2023.135327
    [Google Scholar]
  29. Obaid Arhema Frejat F. Zhai H. Cao Y. Wang L. Mostafa Y.A. Gomaa H.A.M. Youssif B.G.M. Wu C. Novel indazole derivatives as potent apoptotic antiproliferative agents by multi-targeted mechanism: Synthesis and biological evaluation. Bioorg. Chem. 2022 126 105922 10.1016/j.bioorg.2022.105922 35667253
    [Google Scholar]
  30. La M.T. Hoang V.H. Sahu R. Nguyen C.T. Nam G. Park H.J. Park M. Kim Y.J. Kim J.Y. Ann J. Seo J.H. Lee J. Discovery of indazole inhibitors for heat shock protein 90 as anti-cancer agents. Eur. J. Med. Chem. 2024 276 116620 10.1016/j.ejmech.2024.116620 38971048
    [Google Scholar]
  31. Sheng R. Li S. Lin G. Shangguan S. Gu Y. Qiu N. Cao J. He Q. Yang B. Hu Y. Novel potent HIF-1 inhibitors for the prevention of tumor metastasis: discovery and optimization of 3-aryl-5-indazole-1,2,4-oxadiazole derivatives. RSC Advances 2015 5 100 81817 81830 10.1039/C5RA15191K
    [Google Scholar]
  32. Wang J. Early enteral nutrition’s impact on the postoperative nutritional state and the blood immunological index values in patients undergoing radical gastric cancer surgery. Ethiop. J. Health Dev. 2022 36 3
    [Google Scholar]
  33. Hou S. Yang X. Yang Y. Tong Y. Chen Q. Wan B. Wei R. Lu T. Chen Y. Hu Q. Design, synthesis and biological evaluation of 1H-indazole derivatives as novel ASK1 inhibitors. Eur. J. Med. Chem. 2021 220 113482 10.1016/j.ejmech.2021.113482 33906048
    [Google Scholar]
  34. Wan Y. Li Y. Yan C. Wen J. Tang Z. Discovery of novel indazole-acylsulfonamide hybrids as selective Mcl-1 inhibitors. Bioorg. Chem. 2020 104 104217 10.1016/j.bioorg.2020.104217 32911192
    [Google Scholar]
  35. Wang C. Zhu M. Long X. Wang Q. Wang Z. Ouyang G. Design, synthesis and antitumor activity of 1H-indazole-3-amine derivatives. Int. J. Mol. Sci. 2023 24 10 8686 10.3390/ijms24108686 37240028
    [Google Scholar]
  36. Wang S. Shi J.T. Wang X.R. Mu H.X. Wang X.T. Xu K.Y. Wang Q.S. Chen S.W. 1H-Indazoles derivatives targeting PI3K/AKT/mTOR pathway: Synthesis, anti-tumor effect and molecular mechanism. Bioorg. Chem. 2023 133 106412 10.1016/j.bioorg.2023.106412 36773456
    [Google Scholar]
  37. Lu Y.Y. Wang J.J. Zhang X.K. Li W.B. Guo X.L. 1118-20, an indazole diarylurea compound, inhibits hepatocellular carcinoma HepG2 proliferation and tumour angiogenesis involving Wnt/β-catenin pathway and receptor tyrosine kinases. J. Pharm. Pharmacol. 2015 67 10 1393 1405 10.1111/jphp.12440 26076716
    [Google Scholar]
  38. Yu J. Hong Z. Yang X. Jiang Y. Jiang Z. Su W. Bromide-assisted chemoselective Heck reaction of 3-bromoindazoles under high-speed ball-milling conditions: Synthesis of axitinib. Beilstein J. Org. Chem. 2018 14 786 795 10.3762/bjoc.14.66 29719575
    [Google Scholar]
  39. Migliorini A. Oliviero C. Gasperi T. Loreto M.A. The Suzuki reaction applied to the synthesis of novel pyrrolyl and thiophenyl indazoles. Molecules 2012 17 4 4508 4521 10.3390/molecules17044508 22508331
    [Google Scholar]
  40. Wei W. Liu Z. Wu X. Gan C. Su X. Liu H. Que H. Zhang Q. Xue Q. Yue L. Yu L. Ye T. Synthesis and biological evaluation of indazole derivatives as anti-cancer agents. RSC Advances 2021 11 26 15675 15687 10.1039/D1RA01147B 35481216
    [Google Scholar]
  41. Lin M.H. Liu H.J. Lin W.C. Kuo C.K. Chuang T.H. Regioselective synthesis of 2H-indazoles through Ga/Al- and Al-mediated direct alkylation reactions of indazoles. Org. Biomol. Chem. 2015 13 46 11376 11381 10.1039/C5OB01747E 26442709
    [Google Scholar]
  42. Govek S.P. Bonnefous C. Julien J.D. Nagasawa J.Y. Kahraman M. Lai A.G. Douglas K.L. Aparicio A.M. Darimont B.D. Grillot K.L. Joseph J.D. Kaufman J.A. Lee K.J. Lu N. Moon M.J. Prudente R.Y. Sensintaffar J. Rix P.J. Hager J.H. Smith N.D. Selective estrogen receptor degraders with novel structural motifs induce regression in a tamoxifen-resistant breast cancer xenograft. Bioorg. Med. Chem. Lett. 2019 29 3 367 372 10.1016/j.bmcl.2018.12.042 30587451
    [Google Scholar]
  43. Yoon J.Y. Lee J.J. Gu S. Jung M.E. Cho H.S. Lim J.H. Jun S.Y. Ahn J.H. Min J.S. Choi M.H. Jeon S.J. Lee Y.J. Go A. Heo Y.J. Jung C.R. Choi G. Lee K. Jeon M.K. Kim N.S. Novel indazole-based small compounds enhance TRAIL-induced apoptosis by inhibiting the MKK7-TIPRL interaction in hepatocellular carcinoma. Oncotarget 2017 8 68 112610 112622 10.18632/oncotarget.22614 29348850
    [Google Scholar]
  44. Liu J. Peng X. Dai Y. Zhang W. Ren S. Ai J. Geng M. Li Y. Design, synthesis and biological evaluation of novel FGFR inhibitors bearing an indazole scaffold. Org. Biomol. Chem. 2015 13 28 7643 7654 10.1039/C5OB00778J 26080733
    [Google Scholar]
  45. Elie J. Vercouillie J. Arlicot N. Lemaire L. Bidault R. Bodard S. Hosselet C. Deloye J.B. Chalon S. Emond P. Guilloteau D. Buron F. Routier S. Design of selective COX-2 inhibitors in the (aza)indazole series. Chemistry, in vitro studies, radiochemistry and evaluations in rats of a [ 18 F] PET tracer. J. Enzyme Inhib. Med. Chem. 2019 34 1 1 7 10.1080/14756366.2018.1501043 30362376
    [Google Scholar]
  46. Rosati O. Curini M. Marcotullio M.C. Macchiarulo A. Perfumi M. Mattioli L. Rismondo F. Cravotto G. Synthesis, docking studies and anti-inflammatory activity of 4,5,6,7-tetrahydro-2H-indazole derivatives. Bioorg. Med. Chem. 2007 15 10 3463 3473 10.1016/j.bmc.2007.03.006 17382550
    [Google Scholar]
  47. Down K. Amour A. Baldwin I.R. Cooper A.W.J. Deakin A.M. Felton L.M. Guntrip S.B. Hardy C. Harrison Z.A. Jones K.L. Jones P. Keeling S.E. Le J. Livia S. Lucas F. Lunniss C.J. Parr N.J. Robinson E. Rowland P. Smith S. Thomas D.A. Vitulli G. Washio Y. Hamblin J.N. Optimization of novel indazoles as highly potent and selective inhibitors of phosphoinositide 3-kinase δ for the treatment of respiratory disease. J. Med. Chem. 2015 58 18 7381 7399 10.1021/acs.jmedchem.5b00767 26301626
    [Google Scholar]
  48. Turner L.D. Summers A.J. Johnson L.O. Knowles M.A. Fishwick C.W.G. Identification of an indazole-based pharmacophore for the inhibition of FGFR kinases using fragment-led de novo design. ACS Med. Chem. Lett. 2017 8 12 1264 1268 10.1021/acsmedchemlett.7b00349 29259745
    [Google Scholar]
  49. Susmita Rayawgol B. Sujatha K. Dalbanjan N.P. Praveen Kumar S.K. Rajappa S.K. Development of novel, green, efficient approach for the synthesis of indazole and its derivatives; Insights into their pharmacological and molecular docking studies. J. Indian Chem. Soc. 2024 101 8 101178 10.1016/j.jics.2024.101178
    [Google Scholar]
  50. Gandham S.K. Kudale A.A. Allaka T.R. Chepuri K. Jha A. New indazole–1,2,3–triazoles as potent antimicrobial agents: Design, synthesis, molecular modeling and in silico ADME profiles. J. Mol. Struct. 2024 1295 136714 10.1016/j.molstruc.2023.136714
    [Google Scholar]
  51. Murugavel S. Synthesis, structural, spectral and antibacterial activity of 3,3a,4,5-tetrahydro-2H-benzo[g]indazole fused carbothioamide derivatives as antibacterial agents J. Mol. Struct. 2020 1222 128961
    [Google Scholar]
  52. Sharma N. Jandaik S. Kumar S. Synergistic activity of doped zinc oxide nanoparticles with antibiotics: Ciprofloxacin, ampicillin, fluconazole and amphotericin B against pathogenic microorganisms. An. Acad. Bras. Cienc. 2016 88 3 suppl Suppl. 1689 1698 10.1590/0001‑3765201620150713 27737336
    [Google Scholar]
  53. Amutha P. Nagarajan S. Synthesis and antimicrobial activities of new 4,6‐diaryl‐ 4,5‐dihydro‐3‐hydroxy‐ 2H ‐indazoles. J. Heterocycl. Chem. 2012 49 2 428 432 10.1002/jhet.720
    [Google Scholar]
  54. Bacillus Subtilis - An overview. https://www.sciencedirect.com/topics/biochemistry-genetics-
  55. Qin S. Xiao W. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics Sig Transduct Target Ther 2022 7 199 10.1038/s41392‑022‑01056‑1
    [Google Scholar]
  56. Nobile CJ. Johnson AD. Candida albicans biofilms and human disease. Annu Rev Microbiol 2015 69 71 92 10.1146/annurev‑micro‑091014‑104330
    [Google Scholar]
  57. Yadav K.P. Rahman M.A. Nishad S. Maurya S.K. Anas M. Mujahid M. Synthesis and biological activities of benzothiazole derivatives: A review. Intelligent Pharmacy 2023 1 3 122 132 10.1016/j.ipha.2023.06.001
    [Google Scholar]
  58. Amirthaganesan S. Aridoss G. Park K.S. Lim K.T. Jeong Y.T. Synthesis, spectral, and antimicrobial studies of some N (2)-substituted tetrahydroindazoles. Bull. Korean Chem. Soc. 2010 31 5 1135 1142 10.5012/bkcs.2010.31.5.1135
    [Google Scholar]
  59. Minu M. Thangadurai A. Wakode S.R. Agrawal S.S. Narasimhan B. Synthesis, antimicrobial activity and QSAR studies of new 2,3-disubstituted-3,3a,4,5,6,7-hexahydro-2H-indazoles. Bioorg. Med. Chem. Lett. 2009 19 11 2960 2964 10.1016/j.bmcl.2009.04.052 19410452
    [Google Scholar]
  60. Faidallah H.M. Khan K.A. Rostom S.A.F. Asiri A.M. Synthesis and in vitro antitumor and antimicrobial activity of some 2,3-diaryl-7-methyl-4,5,6,7-tetrahydroindazole and 3,3a,4,5,6,7-hexahydroindazole derivatives. J. Enzyme Inhib. Med. Chem. 2013 28 3 495 508 10.3109/14756366.2011.653354 22329488
    [Google Scholar]
  61. Abdel-Magid A.F. Melanin-concentrating hormone receptor 1 antagonists for treatment of obesity. ACS Med. Chem. Lett. 2015 6 4 367 368 10.1021/acsmedchemlett.5b00077 25941549
    [Google Scholar]
  62. Hadden M. Deering D.M. Henderson A.J. Surman M.D. Luche M. Khmelnitsky Y. Vickers S. Viggers J. Cheetham S. Guzzo P.R. Synthesis and SAR of 4-aryl-1-(indazol-5-yl)pyridin-2(1H)ones as MCH-1 antagonists for the treatment of obesity. Bioorg. Med. Chem. Lett. 2010 20 23 7020 7023 10.1016/j.bmcl.2010.09.037 20951036
    [Google Scholar]
  63. Tzvetkov N.T. Stammler H.G. Neumann B. Hristova S. Antonov L. Gastreich M. Crystal structures, binding interactions, and ADME evaluation of brain penetrant N -substituted indazole-5-carboxamides as subnanomolar, selective monoamine oxidase B and dual MAO-A/B inhibitors. Eur. J. Med. Chem. 2017 127 470 492 10.1016/j.ejmech.2017.01.011 28107736
    [Google Scholar]
  64. Fell M.J. Mirescu C. Basu K. Cheewatrakoolpong B. DeMong D.E. Ellis J.M. Hyde L.A. Lin Y. Markgraf C.G. Mei H. Miller M. Poulet F.M. Scott J.D. Smith M.D. Yin Z. Zhou X. Parker E.M. Kennedy M.E. Morrow J.A. MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition. J. Pharmacol. Exp. Ther. 2015 355 3 397 409 10.1124/jpet.115.227587 26407721
    [Google Scholar]
  65. Scott J.D. DeMong D.E. Greshock T.J. Basu K. Dai X. Harris J. Hruza A. Li S.W. Lin S.I. Liu H. Macala M.K. Hu Z. Mei H. Zhang H. Walsh P. Poirier M. Shi Z.C. Xiao L. Agnihotri G. Baptista M.A.S. Columbus J. Fell M.J. Hyde L.A. Kuvelkar R. Lin Y. Mirescu C. Morrow J.A. Yin Z. Zhang X. Zhou X. Chang R.K. Embrey M.W. Sanders J.M. Tiscia H.E. Drolet R.E. Kern J.T. Sur S.M. Renger J.J. Bilodeau M.T. Kennedy M.E. Parker E.M. Stamford A.W. Nargund R. McCauley J.A. Miller M.W. Discovery of a 3-(4-pyrimidinyl) indazole (MLi-2), an orally available and selective leucine-rich repeat kinase 2 (LRRK2) inhibitor that reduces brain kinase activity. J. Med. Chem. 2017 60 7 2983 2992 10.1021/acs.jmedchem.7b00045 28245354
    [Google Scholar]
  66. Bellon M. Nicot C. Targeting Pim kinases in hematological cancers: Molecular and clinical review. Mol. Cancer 2023 22 1 18 10.1186/s12943‑023‑01721‑1 36694243
    [Google Scholar]
  67. Hu H. Wang X. Chan G.K.Y. Chang J.H. Do S. Drummond J. Ebens A. Lee W. Ly J. Lyssikatos J.P. Murray J. Moffat J.G. Chao Q. Tsui V. Wallweber H. Kolesnikov A. Discovery of 3,5-substituted 6-azaindazoles as potent pan-Pim inhibitors. Bioorg. Med. Chem. Lett. 2015 25 22 5258 5264 10.1016/j.bmcl.2015.09.052 26459208
    [Google Scholar]
  68. Ren Y. Wang Y. Li G. Zhang Z. Ma L. Cheng B. Chen J. Discovery of novel benzimidazole and indazole analogues as tubulin polymerization inhibitors with potent anticancer activities. J. Med. Chem. 2021 64 8 4498 4515 10.1021/acs.jmedchem.0c01837 33788562
    [Google Scholar]
  69. Laghchioua F.E. Kouakou A. Eddahmi M. Viale M. Monticone M. Gangemi R. Maric I. El Ammari L. Saadi M. Baltas M. Kandri Rodi Y. Rakib E.M. Antiproliferative and apoptotic activity of new indazole derivatives as potential anticancer agents. Arch. Pharm. 2020 353 12 2000173 10.1002/ardp.202000173 32812268
    [Google Scholar]
  70. Stear C. Petzer A. Crous C. Petzer J.P. Indazole derivatives as novel inhibitors of monoamine oxidase and D-amino acid oxidase. Med. Chem. Res. 2024 33 1 164 176 10.1007/s00044‑023‑03176‑x
    [Google Scholar]
  71. Gökhan-Kelekçi N. Şimşek Ö.Ö. Ercan A. Yelekçi K. Şahin Z.S. Işık Ş. Uçar G. Bilgin A.A. Synthesis and molecular modeling of some novel hexahydroindazole derivatives as potent monoamine oxidase inhibitors. Bioorg. Med. Chem. 2009 17 18 6761 6772 10.1016/j.bmc.2009.07.033 19682910
    [Google Scholar]
  72. Yadav V. Patel P. Recent advances in indazole-based derivatives of vegfr-2 kinase inhibitors as an anti-cancer agent. Int J Drug Discov Med Res. 2022 11 1 6
    [Google Scholar]
  73. Czaja K. Kujawski J. Śliwa P. Kurczab R. Kujawski R. Stodolna A. Myślińska A. Bernard M.K. Theoretical investigations on interactions of arylsulphonyl indazole derivatives as potential ligands of VEGFR2 kinase. Int. J. Mol. Sci. 2020 21 13 4793 10.3390/ijms21134793 32645858
    [Google Scholar]
  74. Meng J. Yuan Y. Li Y. Yuan B. Effects of hirsuteine on MDA‑MB‑453 breast cancer cell proliferation. Oncol. Lett. 2022 25 1 4 10.3892/ol.2022.13590 36419752
    [Google Scholar]
  75. Idriss H.T. Naismith J.H. TNF? and the TNF receptor superfamily: Structure-function relationship(s). Microsc. Res. Tech. 2000 50 3 184 195 10.1002/1097‑0029(20000801)50:3<184::AID‑JEMT2>3.0.CO;2‑H 10891884
    [Google Scholar]
  76. Poniatowski Ł.A. Wojdasiewicz P. Gasik R. Szukiewicz D. Transforming growth factor Beta family: Insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications. Mediators Inflamm. 2015 2015 1 137823 10.1155/2015/137823 25709154
    [Google Scholar]
  77. Sawant A.S. Kamble S.S. Pisal P.M. Meshram R.J. Sawant S.S. Kamble V.A. Kamble V.T. Gacche R.N. Synthesis and evaluation of a novel series of 6-bromo-1-cyclopentyl-1H-indazole-4-carboxylic acid-substituted amide derivatives as anticancer, antiangiogenic, and antioxidant agents. Med. Chem. Res. 2020 29 1 17 32 10.1007/s00044‑019‑02454‑x
    [Google Scholar]
  78. Elsayed N.M.Y. Abou El Ella D.A. Serya R.A.T. Tolba M.F. Shalaby R. Abouzid K.A.M. Design, synthesis and biological evaluation of indazole–pyrimidine based derivatives as anticancer agents with anti-angiogenic and antiproliferative activities. MedChemComm 2016 7 5 881 899 10.1039/C5MD00602C
    [Google Scholar]
  79. Marseglia G. Lodola A. Mor M. Castelli R. Fibroblast growth factor receptor inhibitors: Patent review (2015–2019). Expert Opin. Ther. Pat. 2019 29 12 965 977 10.1080/13543776.2019.1688300 31679402
    [Google Scholar]
  80. Zhang Z. Zhao D. Dai Y. Cheng M. Geng M. Shen J. Ma Y. Ai J. Xiong B. Design, synthesis and biological evaluation of 6-(2, 6-dichloro-3, 5-dimethoxyphenyl)-4-substituted-1 H-indazoles as potent fibroblast growth factor receptor inhibitors. Molecules 2016 21 10 1407 10.3390/molecules21101407 27782099
    [Google Scholar]
  81. Fratev F.F. Jónsdóttir S. An in silico study of the molecular basis of B-RAF activation and conformational stability. BMC Struct. Biol. 2009 9 1 47 10.1186/1472‑6807‑9‑47 19624854
    [Google Scholar]
  82. Bennani F.E. Karrouchi K. Doudach L. Scrima M. Rahman N. Rastrelli L. Tallei T.E. Rudd C.E. Faouzi M.E.A. Ansar M. In silico identification of promising new pyrazole derivative-based small molecules for modulating CRMP2, C-RAF, CYP17, VEGFR, C-KIT, and HDAC—application towards cancer therapeutics. Curr. Issues Mol. Biol. 2022 44 11 5312 5351 10.3390/cimb44110361 36354673
    [Google Scholar]
  83. Aman W. Lee J. Kim M. Yang S. Jung H. Hah J.M. Discovery of highly selective CRAF inhibitors, 3-carboxamido-2H-indazole-6-arylamide: In silico FBLD design, synthesis and evaluation. Bioorg. Med. Chem. Lett. 2016 26 4 1188 1192 10.1016/j.bmcl.2016.01.037 26810260
    [Google Scholar]
  84. Suri A. Bailey A.W. Tavares M.T. Gunosewoyo H. Dyer C.P. Grupenmacher A.T. Piper D.R. Horton R.A. Tomita T. Kozikowski A.P. Roy S.M. Sredni S.T. Evaluation of protein kinase inhibitors with PLK4 cross-over potential in a pre-clinical model of cancer. Int. J. Mol. Sci. 2019 20 9 2112 10.3390/ijms20092112 31035676
    [Google Scholar]
  85. Sarvagalla S. Coumar M. Structural biology insight for the design of sub-type selective aurora kinase inhibitors. Curr. Cancer Drug Targets 2015 15 5 375 393 10.2174/1568009615666150421110401 25895501
    [Google Scholar]
  86. Dale T. Clarke P.A. Esdar C. Waalboer D. Adeniji-Popoola O. Ortiz-Ruiz M.J. Mallinger A. Samant R.S. Czodrowski P. Musil D. Schwarz D. Schneider K. Stubbs M. Ewan K. Fraser E. TePoele R. Court W. Box G. Valenti M. de Haven Brandon A. Gowan S. Rohdich F. Raynaud F. Schneider R. Poeschke O. Blaukat A. Workman P. Schiemann K. Eccles S.A. Wienke D. Blagg J. A selective chemical probe for exploring the role of CDK8 and CDK19 in human disease. Nat. Chem. Biol. 2015 11 12 973 980 10.1038/nchembio.1952 26502155
    [Google Scholar]
  87. Dong J. Zhang Q. Wang Z. Huang G. Li S. Recent advances in the development of indazole‐based anticancer agents. ChemMedChem 2018 13 15 1490 1507 10.1002/cmdc.201800253 29863292
    [Google Scholar]
  88. Dai X. Cheng H. Bai Z. Li J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J. Cancer 2017 8 16 3131 3141 10.7150/jca.18457 29158785
    [Google Scholar]
  89. Kil S.J. Carlin C. EGF receptor residues Leu679, Leu680 mediate selective sorting of ligand-receptor complexes in early endosomal compartments. J. Cell. Physiol. 2000 185 1 47 60 10.1002/1097‑4652(200010)185:1<47::AID‑JCP4>3.0.CO;2‑O 10942518
    [Google Scholar]
  90. Domcke S. Sinha R. Levine D.A. Sander C. Schultz N. Evaluating cell lines as tumour models by comparison of genomic profiles. Nat. Commun. 2013 4 1 2126 10.1038/ncomms3126 23839242
    [Google Scholar]
  91. Jin X. Demere Z. Nair K. Ali A. Ferraro G.B. Natoli T. Deik A. Petronio L. Tang A.A. Zhu C. Wang L. Rosenberg D. Mangena V. Roth J. Chung K. Jain R.K. Clish C.B. Vander Heiden M.G. Golub T.R. A metastasis map of human cancer cell lines. Nature 2020 588 7837 331 336 10.1038/s41586‑020‑2969‑2 33299191
    [Google Scholar]
  92. Gopi B. Vijayakumar V. Synthesis, and molecular docking of novel indazole derivatives with DFT studies. Preprint 2024 10.21203/rs.3.rs‑4006780/v1
    [Google Scholar]
  93. Hennequart M. Pilotte L. Cane S. Hoffmann D. Stroobant V. Plaen E.D. Eynde B.J.V. Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. Cancer Immunol. Res. 2017 5 8 695 709 10.1158/2326‑6066.CIR‑16‑0400 28765120
    [Google Scholar]
  94. Qian S. He T. Wang W. He Y. Zhang M. Yang L. Li G. Wang Z. Discovery and preliminary structure–activity relationship of 1H-indazoles with promising indoleamine-2,3-dioxygenase 1 (IDO1) inhibition properties. Bioorg. Med. Chem. 2016 24 23 6194 6205 10.1016/j.bmc.2016.10.003 27769672
    [Google Scholar]
  95. Lee D.H. Lee J.Y. Jeong J. Kim M. Lee K. Jang E. Ahn S. Lee C. Hwang J. Synthesis and molecular modeling studies of n′-hydroxyindazolecarboximidamides as novel indoleamine 2,3-Dioxygenase 1 (IDO1) inhibitors. Molecules 2017 22 11 1936 10.3390/molecules22111936 29120388
    [Google Scholar]
  96. Pradhan N. Paul S. Deka S.J. Roy A. Trivedi V. Manna D. Identification of substituted 1 H ‐indazoles as potent inhibitors for immunosuppressive enzyme indoleamine 2,3‐dioxygenase 1. ChemistrySelect 2017 2 20 5511 5517 10.1002/slct.201700906
    [Google Scholar]
  97. Gavara L. Suchaud V. Nauton L. Théry V. Anizon F. Moreau P. Identification of pyrrolo[2,3-g]indazoles as new Pim kinase inhibitors. Bioorg. Med. Chem. Lett. 2013 23 8 2298 2301 10.1016/j.bmcl.2013.02.074 23499503
    [Google Scholar]
  98. Song P. Chen M. Ma X. Xu L. Liu T. Zhou Y. Hu Y. Identification of novel inhibitors of Aurora A with a 3-(pyrrolopyridin-2-yl)indazole scaffold. Bioorg. Med. Chem. 2015 23 8 1858 1868 10.1016/j.bmc.2015.02.004 25771484
    [Google Scholar]
  99. Angapelly S. Sri Ramya P.V. Angeli A. Supuran C.T. Arifuddin M. Sulfocoumarin‐, Coumarin‐, 4‐Sulfamoylphenyl‐Bearing Indazole‐3‐carboxamide hybrids: Synthesis and selective inhibition of tumor‐associated carbonic anhydrase isozymes IX and XII. ChemMedChem 2017 12 19 1578 1584 10.1002/cmdc.201700446 28940980
    [Google Scholar]
/content/journals/mc/10.2174/0115734064371097250403114905
Loading
/content/journals/mc/10.2174/0115734064371097250403114905
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test