Skip to content
2000
image of Advances in Structural Types and Pharmacochemistry of CDK12 Inhibitors

Abstract

Cyclin-Dependent Kinase (CDK) 12 is a member of the 20-membered CDK family (CDK1-20) and plays a vital role in regulating gene transcription, mRNA splicing, translation, cell cycle, and repair of DNA damage. CDK12 is an emerging therapeutic target due to its role in regulating the transcription of DNA Damage Response (DDR) genes in Cyclin-Dependent Kinase (CDK). However, the development of selective small molecules targeting CDK12 has been challenging due to the high degree of homology between kinase domains of CDK12 and other transcriptional CDKs, most notably CDK13. So far, no CDK12 inhibitors approved by the US FDA have been found, and more novel CDK12 inhibitors have been reported for the treatment of prostate cancer, breast cancer, ovarian cancer, lung adenocarcinoma, stomach cancer, cervical cancer, etc. This review has attempted to summarize the structural characteristics and biological activities of various novel CDK12 inhibitors reported since 2020. Meanwhile, we collated and analyzed the reported CDK12 inhibitors from the perspective of structure, summarized the current clinical application potential of CDK12 inhibitors, and further analyzed their current challenges and future development trends.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064362377241217093427
2025-01-21
2025-11-05
Loading full text...

Full text loading...

References

  1. Guo C. Wang L. Li X. Wang S. Yu X. Xu K. Zhao Y. Luo J. Li X. Jiang B. Shi D. Discovery of novel bromophenol–thiosemicarbazone hybrids as potent selective inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) for use in cancer. J. Med. Chem. 2019 62 6 3051 3067 10.1021/acs.jmedchem.8b01946 30844273
    [Google Scholar]
  2. Hossain M.A. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur. J. Pharmacol. 2024 979 176727 10.1016/j.ejphar.2024.176727 38866361
    [Google Scholar]
  3. Roy-Chowdhuri S. Molecular pathology of lung cancer. Clin. Lab. Med. 2024 44 2 137 147 10.1016/j.cll.2023.08.002 38821637
    [Google Scholar]
  4. Lim S. Kaldis P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development 2013 140 15 3079 3093 10.1242/dev.091744 23861057
    [Google Scholar]
  5. Li T. Tang H.C. Tsai K.L. Unveiling the noncanonical activation mechanism of CDKs: Insights from recent structural studies. Front. Mol. Biosci. 2023 10 1290631 10.3389/fmolb.2023.1290631 38028546
    [Google Scholar]
  6. Wood D.J. Endicott J.A. Structural insights into the functional diversity of the CDK–cyclin family. Open Biol. 2018 8 9 180112 10.1098/rsob.180112 30185601
    [Google Scholar]
  7. Loyer P. Trembley J. Katona R. Kidd V. Lahti J. Role of CDK/cyclin complexes in transcription and RNA splicing. Cell. Signal. 2005 17 9 1033 1051 10.1016/j.cellsig.2005.02.005 15935619
    [Google Scholar]
  8. Paculová H. Kohoutek J. The emerging roles of CDK12 in tumorigenesis. Cell Div. 2017 12 1 7 10.1186/s13008‑017‑0033‑x 29090014
    [Google Scholar]
  9. Chou J. Quigley D.A. Robinson T.M. Feng F.Y. Ashworth A. Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discov. 2020 10 3 351 370 10.1158/2159‑8290.CD‑19‑0528 32071145
    [Google Scholar]
  10. Lin C. Zhuang G. Di Wen. Research progress of CDK12 gene in malignant tumors. J. Mode. Oncol. 2021 29 14 2538 2542
    [Google Scholar]
  11. Cheng S.W.G. Kuzyk M.A. Moradian A. Ichu T.A. Chang V.C.D. Tien J.F. Vollett S.E. Griffith M. Marra M.A. Morin G.B. Interaction of cyclin-dependent kinase 12/CrkRS with cyclin K1 is required for the phosphorylation of the C-terminal domain of RNA polymerase II. Mol. Cell. Biol. 2012 32 22 4691 4704 10.1128/MCB.06267‑11 22988298
    [Google Scholar]
  12. Chen H.H. Wang Y.C. Fann M.J. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol. Cell. Biol. 2006 26 7 2736 2745 10.1128/MCB.26.7.2736‑2745.2006 16537916
    [Google Scholar]
  13. Liang K. Gao X. Gilmore J.M. Florens L. Washburn M.P. Smith E. Shilatifard A. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing. Mol. Cell. Biol. 2015 35 6 928 938 10.1128/MCB.01426‑14 25561469
    [Google Scholar]
  14. Bartkowiak B. Liu P. Phatnani H.P. Fuda N.J. Cooper J.J. Price D.H. Adelman K. Lis J.T. Greenleaf A.L. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev. 2010 24 20 2303 2316 10.1101/gad.1968210 20952539
    [Google Scholar]
  15. Liang S. Hu L. Wu Z. Chen Z. Liu S. Xu X. Qian A. CDK12: A potent target and biomarker for human cancer therapy. Cells 2020 9 6 1483 10.3390/cells9061483 32570740
    [Google Scholar]
  16. Ko T.K. Kelly E. Pines J. CrkRS. J. Cell Sci. 2001 114 14 2591 2603 10.1242/jcs.114.14.2591 11683387
    [Google Scholar]
  17. Tadesse S. Duckett D.R. Monastyrskyi A. The promise and current status of CDK12/13 inhibition for the treatment of cancer. Future Med. Chem. 2021 13 2 117 141 10.4155/fmc‑2020‑0240 33295810
    [Google Scholar]
  18. Wang C. Wang H. Lieftink C. du Chatinier A. Gao D. Jin G. Jin H. Beijersbergen R.L. Qin W. Bernards R. CDK12 inhibition mediates DNA damage and is synergistic with sorafenib treatment in hepatocellular carcinoma. Gut 2020 69 4 727 736 10.1136/gutjnl‑2019‑318506 31519701
    [Google Scholar]
  19. Emadi F. Teo T. Rahaman M.H. Wang S. CDK12: A potential therapeutic target in cancer. Drug Discov. Today 2020 25 12 2257 2267 10.1016/j.drudis.2020.09.035 33038524
    [Google Scholar]
  20. Zeng M. Kwiatkowski N.P. Zhang T. Nabet B. Xu M. Liang Y. Quan C. Wang J. Hao M. Palakurthi S. Zhou S. Zeng Q. Kirschmeier P.T. Meghani K. Leggett A.L. Qi J. Shapiro G.I. Liu J.F. Matulonis U.A. Lin C.Y. Konstantinopoulos P.A. Gray N.S. Targeting MYC dependency in ovarian cancer through inhibition of CDK7 and CDK12/13. eLife 2018 7 e39030 10.7554/eLife.39030 30422115
    [Google Scholar]
  21. Lui G.Y.L. Grandori C. Kemp C.J. CDK12: An emerging therapeutic target for cancer. J. Clin. Pathol. 2018 71 11 957 962 10.1136/jclinpath‑2018‑205356 30104286
    [Google Scholar]
  22. Iniguez A.B. Stolte B. Wang E.J. Conway A.S. Alexe G. Dharia N.V. Kwiatkowski N. Zhang T. Abraham B.J. Mora J. Kalev P. Leggett A. Chowdhury D. Benes C.H. Young R.A. Gray N.S. Stegmaier K. EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma. Cancer Cell 2018 33 2 202 216.e6 10.1016/j.ccell.2017.12.009 29358035
    [Google Scholar]
  23. Paculová H. Kramara J. Šimečková Š. Fedr R. Souček K. Hylse O. Paruch K. Svoboda M. Mistrík M. Kohoutek J. BRCA1 or CDK12 loss sensitizes cells to CHK1 inhibitors. Tumour Biol. 2017 39 10 1010428317727479 10.1177/1010428317727479 29025359
    [Google Scholar]
  24. Chilà R. Guffanti F. Damia G. Role and therapeutic potential of CDK12 in human cancers. Cancer Treat. Rev. 2016 50 83 88 10.1016/j.ctrv.2016.09.003 27662623
    [Google Scholar]
  25. Magnuson B. Bedi K. Narayanan I.V. Bartkowiak B. Blinkiewicz H. Paulsen M.T. Greenleaf A. Ljungman M. CDK12 regulates co-transcriptional splicing and RNA turnover in human cells. iScience 2022 25 9 105030 10.1016/j.isci.2022.105030 36111258
    [Google Scholar]
  26. Vrábel D. Svoboda M. Navrátil J. Kohoutek J. Function of CDK12 in tumor initiation and progression and its clinical consequences. Klin. Onkol. 2014 27 5 340 346 25312711
    [Google Scholar]
  27. Zhao W. Zhang L. Zhang Y. Jiang Z. Lu H. Xie Y. Han W. Zhao W. He J. Shi Z. Yang H. Chen J. Chen S. Li Z. Mao J. Zhou L. Gao X. Li W. Tan G. Zhang B. Wang Z. The CDK inhibitor AT7519 inhibits human glioblastoma cell growth by inducing apoptosis, pyroptosis and cell cycle arrest. Cell Death Dis. 2023 14 1 11 10.1038/s41419‑022‑05528‑8 36624090
    [Google Scholar]
  28. Yan Z. Du Y. Zhang H. Zheng Y. Lv H. Dong N. He F. Research progress of anticancer drugs targeting CDK12. RSC Med. Chem. 2023 14 9 1629 1644 10.1039/D3MD00004D 37731700
    [Google Scholar]
  29. Dzimková M. Procházková J. Klát J. Kohoutek J. The role of CDK12 in tumor biology. Klin. Onkol. 2020 33 4 260 267 10.14735/amko2020260 32894954
    [Google Scholar]
  30. Lei P. Zhang J. Liao P. Ren C. Wang J. Wang Y. Current progress and novel strategies that target CDK12 for drug discovery. Eur. J. Med. Chem. 2022 240 114603 10.1016/j.ejmech.2022.114603 35868123
    [Google Scholar]
  31. Lu K.Q. Li Z.L. Zhang Q. Yin Q. Zhang Y.L. Ni W.J. Jiang L.Z. He W. Wang B. CDK12 is a potential biomarker for diagnosis, prognosis and immunomodulation in pan-cancer. Sci. Rep. 2024 14 1 6574 10.1038/s41598‑024‑56831‑7 38503865
    [Google Scholar]
  32. Wu W. Yu S. Yu X. Transcription-associated cyclin-dependent kinase 12 (CDK12) as a potential target for cancer therapy. Biochim. Biophys. Acta Rev. Cancer 2023 1878 1 188842 10.1016/j.bbcan.2022.188842 36460141
    [Google Scholar]
  33. Choi S.H. Kim S. Jones K.A. Gene expression regulation by CDK12: A versatile kinase in cancer with functions beyond CTD phosphorylation. Exp. Mol. Med. 2020 52 5 762 771 10.1038/s12276‑020‑0442‑9 32451425
    [Google Scholar]
  34. Chen B. Liu J. Development of CDK12 as a Cancer Therapeutic Target and Related Inhibitors. Curr. Cancer Drug Targets 2024 24 10.2174/0115680096307629240611104728 38967076
    [Google Scholar]
  35. Wen T. Wang J. Lu R. Tan S. Li P. Yao X. Liu H. Yi Z. Li L. Liu S. Gao P. Qian H. Xie G. Ma F. Development, validation, and evaluation of a deep learning model to screen cyclin-dependent kinase 12 inhibitors in cancers. Eur. J. Med. Chem. 2023 250 115199 10.1016/j.ejmech.2023.115199 36827953
    [Google Scholar]
  36. Greenleaf A.L. Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium. Transcription 2019 10 2 91 110 10.1080/21541264.2018.1535211 30319007
    [Google Scholar]
  37. Rescigno P. Gurel B. Pereira R. Crespo M. Rekowski J. Rediti M. Barrero M. Mateo J. Bianchini D. Messina C. Fenor de la Maza M.D. Chandran K. Carmichael J. Guo C. Paschalis A. Sharp A. Seed G. Figueiredo I. Lambros M. Miranda S. Ferreira A. Bertan C. Riisnaes R. Porta N. Yuan W. Carreira S. de Bono J.S. Characterizing CDK12-mutated prostate cancers. Clin. Cancer Res. 2021 27 2 566 574 10.1158/1078‑0432.CCR‑20‑2371 32988971
    [Google Scholar]
  38. Militaru F.C. Militaru V. Crisan N. Bocsan I.C. Udrea A.A. Catana A. Kutasi E. Militaru M.S. Molecular basis and therapeutic targets in prostate cancer: A comprehensive review. Biomol. Biomed. 2023 23 5 760 771 10.17305/bb.2023.8782 37021836
    [Google Scholar]
  39. Wu Y.M. Cieślik M. Lonigro R.J. Vats P. Reimers M.A. Cao X. Ning Y. Wang L. Kunju L.P. de Sarkar N. Heath E.I. Chou J. Feng F.Y. Nelson P.S. de Bono J.S. Zou W. Montgomery B. Alva A. Robinson D.R. Chinnaiyan A.M. Inactivation of CDK12 delineates a distinct immunogenic class of advanced prostate cancer. Cell 2018 173 7 1770 1782.e14 10.1016/j.cell.2018.04.034 29906450
    [Google Scholar]
  40. Schweizer M.T. Ha G. Gulati R. Brown L.C. McKay R.R. Dorff T. Hoge A.C.H. Reichel J. Vats P. Kilari D. Patel V. Oh W.K. Chinnaiyan A. Pritchard C.C. Armstrong A.J. Montgomery R.B. Alva A. CDK12 -mutated prostate cancer: Clinical outcomes with standard therapies and immune checkpoint blockade. JCO Precis. Oncol. 2020 4 4 382 392 10.1200/PO.19.00383 32671317
    [Google Scholar]
  41. Cesari E. Ciucci A. Pieraccioli M. Caggiano C. Nero C. Bonvissuto D. Sillano F. Buttarelli M. Piermattei A. Loverro M. Camarda F. Greco V. De Bonis M. Minucci A. Gallo D. Urbani A. Vizzielli G. Scambia G. Sette C. Dual inhibition of CDK12 and CDK13 uncovers actionable vulnerabilities in patient-derived ovarian cancer organoids. J. Exp. Clin. Cancer Res. 2023 42 1 126 10.1186/s13046‑023‑02682‑5 37202753
    [Google Scholar]
  42. Naidoo K. Wai P.T. Maguire S.L. Daley F. Haider S. Kriplani D. Campbell J. Mirza H. Grigoriadis A. Tutt A. Moseley P.M. Abdel-Fatah T.M.A. Chan S.Y.T. Madhusudan S. Rhaka E.A. Ellis I.O. Lord C.J. Yuan Y. Green A.R. Natrajan R. Evaluation of CDK12 protein expression as a potential novel biomarker for DNA damage response–targeted therapies in breast cancer. Mol. Cancer Ther. 2018 17 1 306 315 10.1158/1535‑7163.MCT‑17‑0760 29133620
    [Google Scholar]
  43. Sokol E.S. Pavlick D. Frampton G.M. Ross J.S. Miller V.A. Ali S.M. Lotan T.L. Pardoll D.M. Chung J.H. Antonarakis E.S. Pan-Cancer analysis of CDK12 loss-of-function alterations and their association with the focal tandem-duplicator phenotype. Oncologist 2019 24 12 1526 1533 10.1634/theoncologist.2019‑0214 31292271
    [Google Scholar]
  44. Cheng L. Zhou S. Zhou S. Shi K. Cheng Y. Cai M.C. Ye K. Lin L. Zhang Z. Jia C. Xiang H. Zang J. Zhang M. Yin X. Li Y. Di W. Zhuang G. Tan L. Dual inhibition of CDK12/CDK13 targets both tumor and immune cells in ovarian cancer. Cancer Res. 2022 82 19 3588 3602 10.1158/0008‑5472.CAN‑22‑0222 35857807
    [Google Scholar]
  45. Integrated genomic analyses of ovarian carcinoma. Nature 2011 474 7353 609 615 10.1038/nature10166 21720365
    [Google Scholar]
  46. Yang B. Chen J. Teng Y. CDK12 promotes cervical cancer progression through enhancing macrophage infiltration. J. Immunol. Res. 2021 2021 1 14 10.1155/2021/6645885 33628849
    [Google Scholar]
  47. Tang R. Liu J. Li S. A patent and literature review of CDK12 inhibitors. Expert Opin. Ther. Pat. 2022 32 10 1055 1065 10.1080/13543776.2022.2126765 36120913
    [Google Scholar]
  48. Marshall C.H. Imada E.L. Tang Z. Marchionni L. Antonarakis E.S. CDK12 inactivation across solid tumors: An actionable genetic subtype. Oncoscience 2019 6 5-6 312 316 10.18632/oncoscience.481 31360735
    [Google Scholar]
  49. Nguyen B. Mota J.M. Nandakumar S. Stopsack K.H. Weg E. Rathkopf D. Morris M.J. Scher H.I. Kantoff P.W. Gopalan A. Zamarin D. Solit D.B. Schultz N. Abida W. Pan-cancer analysis of CDK12 alterations identifies a subset of prostate cancers with distinct genomic and clinical characteristics. Eur. Urol. 2020 78 5 671 679 10.1016/j.eururo.2020.03.024 32317181
    [Google Scholar]
  50. Ang H.X. Sutiman N. Deng X.L. Liu A. Cerda-Smith C.G. Hutchinson H.M. Kim H. Bartelt L.C. Chen Q. Barrera A. Lin J. Sheng Z. McDowell I.C. Reddy T.E. Nicchitta C.V. Wood K.C. Cooperative regulation of coupled oncoprotein synthesis and stability in triple-negative breast cancer by EGFR and CDK12/13. Proc. Natl. Acad. Sci. USA 2023 120 38 e2221448120 10.1073/pnas.2221448120 37695916
    [Google Scholar]
  51. Wu J. Chen Y. Li R. Guan Y. Chen M. Yin H. Yang X. Jin M. Huang B. Ding X. Yang J. Wang Z. He Y. Wang Q. Luo J. Wang P. Mao Z. Huen M.S.Y. Lou Z. Yuan J. Gong F. Synergistic anticancer effect by targeting CDK2 and EGFR–ERK signaling. J. Cell Biol. 2024 223 1 e202203005 10.1083/jcb.202203005 37955924
    [Google Scholar]
  52. Ito M. Tanaka T. Toita A. Uchiyama N. Kokubo H. Morishita N. Klein M.G. Zou H. Murakami M. Kondo M. Sameshima T. Araki S. Endo S. Kawamoto T. Morin G.B. Aparicio S.A. Nakanishi A. Maezaki H. Imaeda Y. Discovery of 3-Benzyl-1-( trans -4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea Derivatives as Novel and Selective Cyclin-Dependent Kinase 12 (CDK12) Inhibitors. J. Med. Chem. 2018 61 17 7710 7728 10.1021/acs.jmedchem.8b00683 30067358
    [Google Scholar]
  53. Johannes J.W. Denz C.R. Su N. Wu A. Impastato A.C. Mlynarski S. Varnes J.G. Prince D.B. Cidado J. Gao N. Haddrick M. Jones N.H. Li S. Li X. Liu Y. Nguyen T.B. O’Connell N. Rivers E. Robbins D.W. Tomlinson R. Yao T. Zhu X. Ferguson A.D. Lamb M.L. Manchester J.I. Guichard S. Structure‐based design of selective noncovalent cdk12 inhibitors. ChemMedChem 2018 13 3 231 235 10.1002/cmdc.201700695 29266803
    [Google Scholar]
  54. Jiang B. Jiang J. Kaltheuner I.H. Iniguez A.B. Anand K. Ferguson F.M. Ficarro S.B. Seong B.K.A. Greifenberg A.K. Dust S. Kwiatkowski N.P. Marto J.A. Stegmaier K. Zhang T. Geyer M. Gray N.S. Structure-activity relationship study of THZ531 derivatives enables the discovery of BSJ-01-175 as a dual CDK12/13 covalent inhibitor with efficacy in Ewing sarcoma. Eur. J. Med. Chem. 2021 221 113481 10.1016/j.ejmech.2021.113481 33945934
    [Google Scholar]
  55. Jiang B. Gao Y. Che J. Lu W. Kaltheuner I.H. Dries R. Kalocsay M. Berberich M.J. Jiang J. You I. Kwiatkowski N. Riching K.M. Daniels D.L. Sorger P.K. Geyer M. Zhang T. Gray N.S. Discovery and resistance mechanism of a selective CDK12 degrader. Nat. Chem. Biol. 2021 17 6 675 683 10.1038/s41589‑021‑00765‑y 33753926
    [Google Scholar]
  56. Niu T. Li K. Jiang L. Zhou Z. Hong J. Chen X. Dong X. He Q. Cao J. Yang B. Zhu C.L. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur. J. Med. Chem. 2022 228 114012 10.1016/j.ejmech.2021.114012 34864331
    [Google Scholar]
  57. Jorda R. Havlíček L. Peřina M. Vojáčková V. Pospíšil T. Djukic S. Škerlová J. Grúz J. Renešová N. Klener P. Řezáčová P. Strnad M. Kryštof V. 3,5,7-substituted pyrazolo[4,3- d ]pyrimidine inhibitors of cyclin-dependent kinases and cyclin K degraders. J. Med. Chem. 2022 65 13 8881 8896 10.1021/acs.jmedchem.1c02184 35749742
    [Google Scholar]
  58. Kuchukulla R.R. Hwang I. Park S.W. Moon S. Kim S.H. Kim S. Chung H.W. Ji M.J. Park H.M. Kong G. Hur W. Novel 2,6,9-trisubstituted purines as potent CDK inhibitors alleviating trastuzumab-resistance of HER2-positive breast cancers. Pharmaceuticals (Basel) 2022 15 9 1041 10.3390/ph15091041 36145262
    [Google Scholar]
  59. Zhang L. Zhen Y. Feng L. Li Z. Lu Y. Wang G. Ouyang L. Discovery of a novel dual-target inhibitor of CDK12 and PARP1 that induces synthetic lethality for treatment of triple-negative breast cancer. Eur. J. Med. Chem. 2023 259 115648 10.1016/j.ejmech.2023.115648 37478560
    [Google Scholar]
  60. Lin S. Jiang Q. Huang X. Xu J. Wu L. Liu Y. Synthesis of novel dual target inhibitors of CDK12 and PARP1 and their antitumor activities in HER2-positive breast cancers. ACS Omega 2023 8 28 25574 25581 10.1021/acsomega.3c02912 37483237
    [Google Scholar]
  61. Liu H. Shin S.H. Chen H. Liu T. Li Z. Hu Y. Liu F. Zhang C. Kim D.J. Liu K. Dong Z. CDK12 and PAK2 as novel therapeutic targets for human gastric cancer. Theranostics 2020 10 14 6201 6215 10.7150/thno.46137 32483448
    [Google Scholar]
  62. Liu H. Liu K. Dong Z. Targeting CDK12 for cancer therapy: Function, mechanism, and drug discovery. Cancer Res. 2021 81 1 18 26 10.1158/0008‑5472.CAN‑20‑2245 32958547
    [Google Scholar]
  63. Liu Y. Wei Y. Wang X. Ma L. Li X. Sun Y. Wu Y. Zhang L. Wang J. Li M. Zhang K. Wei M. Yang G. Yang C. Discovery of novel and bioavailable histone deacetylases and cyclin-dependent kinases dual inhibitor to impair the stemness of leukemia cells. Eur. J. Med. Chem. 2023 249 115140 10.1016/j.ejmech.2023.115140 36736154
    [Google Scholar]
  64. Liu Y. Hao M. Leggett A.L. Gao Y. Ficarro S.B. Che J. He Z. Olson C.M. Marto J.A. Kwiatkowski N.P. Zhang T. Gray N.S. Discovery of MFH290: A potent and highly selective covalent inhibitor for cyclin-dependent kinase 12/13. J. Med. Chem. 2020 63 13 6708 6726 10.1021/acs.jmedchem.9b01929 32502343
    [Google Scholar]
  65. Yang J. Chang Y. Tien J.C.Y. Wang Z. Zhou Y. Zhang P. Huang W. Vo J. Apel I.J. Wang C. Zeng V.Z. Cheng Y. Li S. Wang G.X. Chinnaiyan A.M. Ding K. Discovery of a highly potent and selective dual PROTAC degrader of CDK12 and CDK13. J. Med. Chem. 2022 65 16 11066 11083 10.1021/acs.jmedchem.2c00384 35938508
    [Google Scholar]
  66. Maity T.K. Kim E.Y. Cultraro C.M. Venugopalan A. Khare L. Poddutoori R. Marappan S. Syed S.D. Telford W.G. Samajdar S. Ramachandra M. Guha U. Novel CDK12/13 inhibitors AU-15506 and AU-16770 are potent anti-cancer agents in EGFR mutant lung adenocarcinoma with and without osimertinib resistance. Cancers (Basel) 2023 15 8 2263 10.3390/cancers15082263 37190191
    [Google Scholar]
  67. Valcárcel J. Green M.R. The SR protein family: Pleiotropic functions in pre-mRNA splicing. Trends Biochem. Sci. 1996 21 8 296 301 10.1016/S0968‑0004(96)10039‑6 8772383
    [Google Scholar]
  68. Chirackal Manavalan A.P. Pilarova K. Kluge M. Bartholomeeusen K. Rajecky M. Oppelt J. Khirsariya P. Paruch K. Krejci L. Friedel C.C. Blazek D. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes. EMBO Rep. 2019 20 9 e47592 10.15252/embr.201847592 31347271
    [Google Scholar]
  69. Krajewska M. Dries R. Grassetti A.V. Dust S. Gao Y. Huang H. Sharma B. Day D.S. Kwiatkowski N. Pomaville M. Dodd O. Chipumuro E. Zhang T. Greenleaf A.L. Yuan G.C. Gray N.S. Young R.A. Geyer M. Gerber S.A. George R.E. CDK12 loss in cancer cells affects DNA damage response genes through premature cleavage and polyadenylation. Nat. Commun. 2019 10 1 1757 10.1038/s41467‑019‑09703‑y 30988284
    [Google Scholar]
  70. Dubbury S.J. Boutz P.L. Sharp P.A. CDK12 regulates DNA repair genes by suppressing intronic polyadenylation. Nature 2018 564 7734 141 145 10.1038/s41586‑018‑0758‑y 30487607
    [Google Scholar]
  71. Zhang T. Kwiatkowski N. Olson C.M. Dixon-Clarke S.E. Abraham B.J. Greifenberg A.K. Ficarro S.B. Elkins J.M. Liang Y. Hannett N.M. Manz T. Hao M. Bartkowiak B. Greenleaf A.L. Marto J.A. Geyer M. Bullock A.N. Young R.A. Gray N.S. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors. Nat. Chem. Biol. 2016 12 10 876 884 10.1038/nchembio.2166 27571479
    [Google Scholar]
  72. Blazek D. Kohoutek J. Bartholomeeusen K. Johansen E. Hulinkova P. Luo Z. Cimermancic P. Ule J. Peterlin B.M. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 2011 25 20 2158 2172 10.1101/gad.16962311 22012619
    [Google Scholar]
  73. Choi S.H. Martinez T.F. Kim S. Donaldson C. Shokhirev M.N. Saghatelian A. Jones K.A. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability. Genes Dev. 2019 33 7-8 418 435 10.1101/gad.322339.118 30819820
    [Google Scholar]
  74. Pilarova K Herudek J Blazek D. CDK12: Cellular functions and therapeutic potential of versatile player in cancer. NAR Cancer. 2020 2 1 zcaa003 10.1093/narcan/zcaa003 34316683
    [Google Scholar]
  75. Schmitz M. Kaltheuner I.H. Anand K. Düster R. Moecking J. Monastyrskyi A. Duckett D.R. Roush W.R. Geyer M. The reversible inhibitor SR-4835 binds Cdk12/cyclin K in a noncanonical G-loop conformation. J. Biol. Chem. 2024 300 1 105501 10.1016/j.jbc.2023.105501 38016516
    [Google Scholar]
  76. Peng F. Yang C. Kong Y. Huang X. Chen Y. Zhou Y. Xie X. Liu P. CDK12 Promotes Breast Cancer Progression and Maintains Stemness by Activating c-myc/β -catenin Signaling. Curr. Cancer Drug Targets 2020 20 2 156 165 10.2174/1568009619666191118113220 31744448
    [Google Scholar]
  77. Choi H.J. Jin S. Cho H. Won H.Y. An H.W. Jeong G.Y. Park Y.U. Kim H.Y. Park M.K. Son T. Min K.W. Jang K.S. Oh Y.H. Lee J.Y. Kong G. CDK 12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS 1‐ErbB‐ PI 3K signaling. EMBO Rep. 2019 20 10 e48058 10.15252/embr.201948058 31468695
    [Google Scholar]
  78. Mertins P. Mani D.R. Ruggles K.V. Gillette M.A. Clauser K.R. Wang P. Wang X. Qiao J.W. Cao S. Petralia F. Kawaler E. Mundt F. Krug K. Tu Z. Lei J.T. Gatza M.L. Wilkerson M. Perou C.M. Yellapantula V. Huang K. Lin C. McLellan M.D. Yan P. Davies S.R. Townsend R.R. Skates S.J. Wang J. Zhang B. Kinsinger C.R. Mesri M. Rodriguez H. Ding L. Paulovich A.G. Fenyö D. Ellis M.J. Carr S.A. NCI CPTAC Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 2016 534 7605 55 62 10.1038/nature18003 27251275
    [Google Scholar]
  79. He Y. Xu W. Xiao Y.T. Huang H. Gu D. Ren S. Targeting signaling pathways in prostate cancer: Mechanisms and clinical trials. Signal Transduct. Target. Ther. 2022 7 1 198 10.1038/s41392‑022‑01042‑7 35750683
    [Google Scholar]
  80. Bai N. Xia F. Wang W. Lei Y. Bo J. Li X. CDK12 promotes papillary thyroid cancer progression through regulating the c-myc/β-catenin pathway. J. Cancer 2020 11 15 4308 4315 10.7150/jca.42849 32489449
    [Google Scholar]
  81. Liu S. Wu J. Lu X. Guo C. Zheng Q. Wang Y. Hu Q. Bian S. Luo L. Cheng Q. Liu Z. Dai W. Targeting CDK12 obviates the malignant phenotypes of colorectal cancer through the Wnt/β-catenin signaling pathway. Exp. Cell Res. 2023 428 1 113613 10.1016/j.yexcr.2023.113613 37100369
    [Google Scholar]
  82. Quereda V. Bayle S. Vena F. Frydman S.M. Monastyrskyi A. Roush W.R. Duckett D.R. Therapeutic targeting of CDK12/CDK13 in triple-negative breast cancer. Cancer Cell 2019 36 5 545 558.e7 10.1016/j.ccell.2019.09.004 31668947
    [Google Scholar]
  83. Frei K. Schecher S. Daher T. Hörner N. Richter J. Hildebrand U. Schindeldecker M. Witzel H.R. Tsaur I. Porubsky S. Gaida M.M. Roth W. Tagscherer K.E. Inhibition of the Cyclin K‐CDK12 complex induces DNA damage and increases the effect of androgen deprivation therapy in prostate cancer. Int. J. Cancer 2024 154 6 1082 1096 10.1002/ijc.34778 37916780
    [Google Scholar]
  84. Zhang H. Xing C. Yan B. Lei H. Guan Y. Zhang S. Kang Y. Pang J. Paclitaxel overload supramolecular oxidative stress nanoamplifier with a CDK12 inhibitor for enhanced cancer therapy. Biomacromolecules 2024 25 6 3685 3702 10.1021/acs.biomac.4c00260 38779908
    [Google Scholar]
  85. Li Z. Li X. Seebacher N.A. Liu X. Wu W. Yu S. Hornicek F.J. Huang C. Duan Z. CDK12 is a promising therapeutic target for the transcription cycle and DNA damage response in metastatic osteosarcoma. Carcinogenesis 2024 45 10 786 798 10.1093/carcin/bgae051 39082894
    [Google Scholar]
  86. Dai W. Wu J. Peng X. Hou W. Huang H. Cheng Q. Liu Z. Luyten W. Schoofs L. Zhou J. Liu S. CDK12 orchestrates super‐enhancer‐associated CCDC137 transcription to direct hepatic metastasis in colorectal cancer. Clin. Transl. Med. 2022 12 10 e1087 10.1002/ctm2.1087 36254394
    [Google Scholar]
  87. Tien J.C.Y. Luo J. Chang Y. Zhang Y. Cheng Y. Wang X. Yang J. Mannan R. Mahapatra S. Shah P. Wang X.M. Todd A.J. Eyunni S. Cheng C. Rebernick R.J. Xiao L. Bao Y. Neiswender J. Brough R. Pettitt S.J. Cao X. Miner S.J. Zhou L. Wu Y.M. Labanca E. Wang Y. Parolia A. Cieslik M. Robinson D.R. Wang Z. Feng F.Y. Chou J. Lord C.J. Ding K. Chinnaiyan A.M. CDK12 loss drives prostate cancer progression, transcription-replication conflicts, and synthetic lethality with paralog CDK13. Cell Rep. Med. 2024 5 10 101758 10.1016/j.xcrm.2024.101758 39368479
    [Google Scholar]
  88. Słabicki M. Kozicka Z. Petzold G. Li Y.D. Manojkumar M. Bunker R.D. Donovan K.A. Sievers Q.L. Koeppel J. Suchyta D. Sperling A.S. Fink E.C. Gasser J.A. Wang L.R. Corsello S.M. Sellar R.S. Jan M. Gillingham D. Scholl C. Fröhling S. Golub T.R. Fischer E.S. Thomä N.H. Ebert B.L. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 2020 585 7824 293 297 10.1038/s41586‑020‑2374‑x 32494016
    [Google Scholar]
  89. Lv L. Chen P. Cao L. Li Y. Zeng Z. Cui Y. Wu Q. Li J. Wang J.H. Dong M.Q. Qi X. Han T. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. eLife 2020 9 e59994 10.7554/eLife.59994 32804079
    [Google Scholar]
  90. Houles T. Boucher J. Lavoie G. MacLeod G. Lin S. Angers S. Roux P.P. The CDK12 inhibitor SR-4835 functions as a molecular glue that promotes cyclin K degradation in melanoma. Cell Death Discov. 2023 9 1 459 10.1038/s41420‑023‑01754‑x 38104154
    [Google Scholar]
  91. Zhang C. Chen B. Jiang K. Lao L. Shen H. Chen Z. Activation of TNF ‐α/ NF ‐κB axis enhances CRL 4 B DCAF 11 E3 ligase activity and regulates cell cycle progression in human osteosarcoma cells. Mol. Oncol. 2018 12 4 476 494 10.1002/1878‑0261.12176 29377600
    [Google Scholar]
  92. Mei Q. Yan Q. Han Y.J. In vitro therapeutic effects and molecular mechanisms of targeted inhibition of CDK12/13 in high-grade gliomas. J. Shang. Jiaot. Univers. Medi. Sci. 2023 43 5 545 559 10.3969/j.issn.1674‑8115.2023.05.005
    [Google Scholar]
  93. Dixon-Clarke S.E. Elkins J.M. Cheng S.W.G. Morin G.B. Bullock A.N. Structures of the CDK12/CycK complex with AMP-PNP reveal a flexible C-terminal kinase extension important for ATP binding. Sci. Rep. 2015 5 1 17122 10.1038/srep17122 26597175
    [Google Scholar]
  94. Xi C.L. Liu F.L. Research progress of cyclin-dependent kinase 12 in tumors. Zhongguo Zhongliu Shengwu Zhiliao Zazhi 2019 26 04 474 478
    [Google Scholar]
  95. Bösken C.A. Farnung L. Hintermair C. Merzel Schachter M. Vogel-Bachmayr K. Blazek D. Anand K. Fisher R.P. Eick D. Geyer M. The structure and substrate specificity of human Cdk12/Cyclin K. Nat. Commun. 2014 5 1 3505 10.1038/ncomms4505 24662513
    [Google Scholar]
  96. Qiu M. Yin Z. Wang H. Lei L. Li C. Cui Y. Dai R. Yang P. Xiang Y. Li Q. Lv J. Hu Z. Chen M. Zhou H.B. Fang P. Xiao R. Liang K. CDK12 and Integrator-PP2A complex modulates LEO1 phosphorylation for processive transcription elongation. Sci. Adv. 2023 9 20 eadf8698 10.1126/sciadv.adf8698 37205756
    [Google Scholar]
  97. Mounika P. Gurupadayya B. Kumar H.Y. Namitha B. An overview of CDK enzyme inhibitors in cancer therapy. Curr. Cancer Drug Targets 2023 23 8 603 619 10.2174/1568009623666230320144713 36959160
    [Google Scholar]
  98. Clopper K.C. Taatjes D.J. Chemical inhibitors of transcription-associated kinases. Curr. Opin. Chem. Biol. 2022 70 102186 10.1016/j.cbpa.2022.102186 35926294
    [Google Scholar]
/content/journals/mc/10.2174/0115734064362377241217093427
Loading
/content/journals/mc/10.2174/0115734064362377241217093427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test