Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

SYK (Spleen Tyrosine Kinase) regulates immune response and is a promising target for cancer, sepsis, and allergy therapies. This study aims to create novel compounds that serve as alternative inhibitors for cancer treatments targeting SYK.

Methods

A thorough combination of machine learning (ML) and physics-based methods was employed to achieve these goals, encompassing design, multitier molecular docking, absolute binding affinity computation, and molecular dynamics (MD) simulation.

Results

A total of 5576 novel molecules with key pharmacophoric features were generated using an ML-driven de novo approach against 21 diaminopyrimidine carboxamide analogs. Pharmacokinetic and toxicity evaluation assisted by the ML approach revealed that 4353 chemical entities fulfilled the acceptable pharmacokinetic and toxicity profiles. By screening through binding energy threshold from the physics-based multitier molecular docking, and ML-assisted absolute binding affinity identified the top four molecules such as RI809 (2-([1,1'-biphenyl]-3-ylmethyl)-4-((2-aminocyclohexyl)oxy)benzamide), RI1393 (4-((2-aminocyclohexyl)amino)-2-(3-(1-methyl-1H-pyrazol-5-yl)-4-(trifluoromethyl)benzyl)benzamide), RI2765 (2-([1,1'-biphenyl]-3-ylmethyl)-4-((4-aminocyclohexyl)methyl)benzamide), and RI3543 (2-([1,1'-biphenyl]-2-ylmethyl)-4-(piperidin-3-yloxy)benzamide). The final molecules identified exhibit a strong affinity for SYK, attributed to their structural diversity and notable pharmacophoric characteristics. All-atom MD simulations showed that each final molecule retained significant binding interactions with SYK and stability in dynamic states, indicating their potential as anticancer agents. Calculated binding free energy for selected molecules using molecular mechanics with generalized Born and surface area (MM-GBSA) ranged from -6 to -35 kcal/mol, indicating strong SYK affinity.

Conclusion

In conclusion, the integration of AI and physics-based methods successfully developed promising SYK inhibitors with significant potential. The molecules reported could be vital anticancer agents subjected to experimental validation.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064333216250110034315
2025-03-13
2025-09-01
Loading full text...

Full text loading...

References

  1. MócsaiA. RulandJ. TybulewiczV.L.J. The SYK tyrosine kinase: A crucial player in diverse biological functions.Nat. Rev. Immunol.201010638740210.1038/nri2765
    [Google Scholar]
  2. ShaoY. ZhangS. ZhangY. LiuZ. Recent advance of spleen tyrosine kinase in diseases and drugs.Int. Immunopharmacol.20219010716810.1016/j.intimp.2020.107168 33264719
    [Google Scholar]
  3. AliT. AnjumF. ChoudhuryA. ShafieA. AshourA.A. AlmalkiA. MohammadT. HassanM.I. Identification of natural product-based effective inhibitors of spleen tyrosine kinase (SYK) through virtual screening and molecular dynamics simulation approaches.J. Biomol. Struct. Dyn.20244273459347110.1080/07391102.2023.2218938 37261484
    [Google Scholar]
  4. GhoshD. TsokosG.C. Spleen tyrosine kinase: An Src family of non-receptor kinase has multiple functions and represents a valuable therapeutic target in the treatment of autoimmune and inflammatory diseases.Autoimmunity2010431485510.3109/08916930903374717 20001666
    [Google Scholar]
  5. EshaqA.M. FlanaganT.W. HassanS.Y. Al AsheikhS.A. Al-AmoudiW.A. SantourlidisS. HassanS.L. AlamodiM.O. BendhackM.L. AlamodiM.O. HaikelY. MegahedM. HassanM. Non-receptor tyrosine kinases: Their structure and mechanistic role in tumor progression and resistance.Cancers20241615275410.3390/cancers16152754 39123481
    [Google Scholar]
  6. ZhouY. ZhangY. YuW. QinY. HeH. DaiF. WangY. ZhuF. ZhouG. Immunomodulatory role of spleen tyrosine kinase in chronic inflammatory and autoimmune diseases.Immun. Inflamm. Dis.2023117e93410.1002/iid3.934 37506139
    [Google Scholar]
  7. Bodega-MayorI. Delgado-WickeP. ArrabalA. Alegría-CarrascoE. Nicolao-GómezA. Jaén-CastañoM. EspadasC. DopazoA. de LuisE.V. Martín-GayoE. GasparM.L. de AndrésB. Fernández-RuizE. Tyrosine kinase 2 modulates splenic B cells through type I IFN and TLR7 signaling.Cell. Mol. Life Sci.202481119910.1007/s00018‑024‑05234‑y 38683377
    [Google Scholar]
  8. Gonçalves-de-AlbuquerqueC.F. RohwedderI. SilvaA.R. FerreiraA.S. KurzA.R.M. CougouleC. KlapprothS. EggersmannT. SilvaJ.D. de OliveiraG.P. CapelozziV.L. SchlesingerG.G. CostaE.R. EstrelaM.R.C.E. MócsaiA. Maridonneau-PariniI. WalzogB. MacedoR.P.R. SperandioM. de Castro-Faria-NetoH.C. The yin and yang of tyrosine kinase inhibition during experimental polymicrobial sepsis.Front. Immunol.2018990110.3389/fimmu.2018.00901 29760707
    [Google Scholar]
  9. GeahlenR.L. Getting Syk: Spleen tyrosine kinase as a therapeutic target.Trends Pharmacol. Sci.201435841442210.1016/j.tips.2014.05.007 24975478
    [Google Scholar]
  10. BuetersT. PloegerB.A. VisserS.A.G. The virtue of translational PKPD modeling in drug discovery: Selecting the right clinical candidate while sparing animal lives.Drug Discov. Today20131817-1885386210.1016/j.drudis.2013.05.001 23665277
    [Google Scholar]
  11. MassalskaM. MaslinskiW. CiechomskaM. Molecule inhibitors in the treatment of rheumatoid arthritis and beyond: Latest updates and potential strategy for fighting COVID-19.Cells202098187610.3390/cells9081876
    [Google Scholar]
  12. WangZ. QuS. YuanJ. TianW. XuJ. TaoR. SunS. LuT. TangW. ZhuY. Review and prospects of targeted therapies for Spleen tyrosine kinase (SYK).Bioorg. Med. Chem.20239611751410.1016/j.bmc.2023.117514 37984216
    [Google Scholar]
  13. SaiduN.E.B. BoniniC. DickinsonA. GrceM. InngjerdingenM. KoehlU. ToubertA. ZeiserR. GalimbertiS. New approaches for the treatment of chronic graft-versus-host disease: Current status and future directions.Front. Immunol.20201157831410.3389/fimmu.2020.578314 33162993
    [Google Scholar]
  14. RiccaboniM. BianchiI. PetrilloP. Spleen tyrosine kinases: Biology, therapeutic targets and drugs.Drug Discov. Today20101513-1451753010.1016/j.drudis.2010.05.001 20553955
    [Google Scholar]
  15. YeH. LiuQ. WeiJ. Construction of drug network based on side effects and its application for drug repositioning.PLoS One201492e8786410.1371/journal.pone.0087864 24505324
    [Google Scholar]
  16. LiddleJ. AtkinsonF.L. BarkerM.D. CarterP.S. CurtisN.R. DavisR.P. DouaultC. DicksonM.C. ElwesD. GartonN.S. GrayM. HayhowT.G. HobbsC.I. JonesE. LeachS. LeavensK. LewisH.D. McClearyS. NeuM. PatelV.K. PrestonA.G.S. Ramirez-MolinaC. ShipleyT.J. SkoneP.A. SmithersN. SomersD.O. WalkerA.L. WatsonR.J. WeingartenG.G. Discovery of GSK143, a highly potent, selective and orally efficacious spleen tyrosine kinase inhibitor.Bioorg. Med. Chem. Lett.201121206188619410.1016/j.bmcl.2011.07.082 21903390
    [Google Scholar]
  17. ChikhaleR.V. ChoudharyR. MalhotraJ. EldesokyG.E. MangalP. PatilP.C. Identification of novel hit molecules targeting M. tuberculosis polyketide synthase 13 by combining generative AI and physics-based methods.Comput. Biol. Med.202417610857310.1016/j.compbiomed.2024.108573 38723396
    [Google Scholar]
  18. ChikhaleR.V. EldesokyE. KolpeM.S. SuryawanshiV.S. PatilP.C. BhowmickS. Identification of Mycobacterium tuberculosis transcriptional repressor EthR inhibitors: Shape-based search and machine learning studies.Heliyon20245e2680210.1016/j.heliyon.2024.e26802
    [Google Scholar]
  19. ChikhaleR.V. AbdelghaniH.T.M. DekaH. PawarA.D. PatilP.C. BhowmickS. Machine learning assisted methods for the identification of low toxicity inhibitors of Enoyl-Acyl carrier protein reductase (InhA).Comput. Biol. Chem.202411010803410.1016/j.compbiolchem.2024.108034 38430612
    [Google Scholar]
  20. SchwedeT. KoppJ. GuexN. PeitschM.C. Swiss-Model: An automated protein homology-modeling server.Nucleic Acids Res.200331133381338510.1093/nar/gkg520 12824332
    [Google Scholar]
  21. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  22. PonderJ.W. CaseD.A. Force fields for protein simulations.Adv. Protein Chem.200366268510.1016/S0065‑3233(03)66002‑X
    [Google Scholar]
  23. DouguetD. Munier-LehmannH. LabesseG. PochetS. LEA3D: A computer-aided ligand design for structure-based drug design.J. Med. Chem.20054872457246810.1021/jm0492296 15801836
    [Google Scholar]
  24. LoefflerH.H. HeJ. TiboA. JanetJ.P. VoronovA. MervinL.H. EngkvistO. Reinvent 4: Modern AI–driven generative molecule design.J. Cheminform.20241612010.1186/s13321‑024‑00812‑5 38383444
    [Google Scholar]
  25. ElbadawiM. GaisfordS. BasitA.W. Advanced machine-learning techniques in drug discovery.Drug Discov. Today202126376977710.1016/j.drudis.2020.12.003 33290820
    [Google Scholar]
  26. SwansonK. WaltherP. LeitzJ. MukherjeeS. WuJ.C. ShivnaraineR.V. ZouJ. ADMET-AI: A machine learning ADMET platform for evaluation of large-scale chemical libraries.Bioinformatics2024407btae41610.1093/bioinformatics/btae416 38913862
    [Google Scholar]
  27. PuL. NaderiM. LiuT. WuH.C. MukhopadhyayS. BrylinskiM. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates.BMC Pharmacol. Toxicol.2019201210.1186/s40360‑018‑0282‑6 30621790
    [Google Scholar]
  28. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  29. ZhangX. WongS.E. LightstoneF.C. Message passing interface and multithreading hybrid for parallel molecular docking of large databases on petascale high performance computing machines.J. Comput. Chem.2013341191592710.1002/jcc.23214 23345155
    [Google Scholar]
  30. KorbO. StützleT. ExnerT.E. Plants: Application of ant colony optimization to structure-based drug design. Ant colony optimization and swarm intelligence.Springer200624725810.1007/11839088_22
    [Google Scholar]
  31. FengY. YanY. HeJ. TaoH. WuQ. HuangS.Y. Docking and scoring for nucleic acid–ligand interactions: Principles and current status.Drug Discov. Today202227383884710.1016/j.drudis.2021.10.013 34718205
    [Google Scholar]
  32. JiménezJ. ŠkaličM. Martínez-RosellG. De FabritiisG. KDEEP: Protein–ligand absolute binding affinity prediction via 3D-convolutional neural networks.J. Chem. Inf. Model.201858228729610.1021/acs.jcim.7b00650 29309725
    [Google Scholar]
  33. PronkS. PállS. SchulzR. LarssonP. BjelkmarP. ApostolovR. ShirtsM.R. SmithJ.C. KassonP.M. van der SpoelD. HessB. LindahlE. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit.Bioinformatics201329784585410.1093/bioinformatics/btt055 23407358
    [Google Scholar]
  34. ManginiE.R. AmaralL.M. ConejeroM.A. PiresC.S. Greenwashing study and consumers’ behavioral intentions.CBR20204322910.51359/2526‑7884.2020.244488
    [Google Scholar]
  35. ZoeteV. CuendetM.A. GrosdidierA. MichielinO. SwissParam: A fast force field generation tool for small organic molecules.J. Comput. Chem.201132112359236810.1002/jcc.21816 21541964
    [Google Scholar]
  36. Fernández-PendásM. EscribanoB. RadivojevićT. AkhmatskayaE. Constant pressure hybrid Monte Carlo simulations in GROMACS.J. Mol. Model.20142012248710.1007/s00894‑014‑2487‑y 25408507
    [Google Scholar]
  37. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS.J. Chem. Theory Comput.202117106281629110.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  38. SalentinS. SchreiberS. HauptV.J. AdasmeM.F. SchroederM. PLIP: Fully automated protein–ligand interaction profiler.Nucleic Acids Res.201543W1W443W44710.1093/nar/gkv315 25873628
    [Google Scholar]
  39. SinghV. BhoirS. ChikhaleR.V. HussainJ. DwyerD. BryceR.A. KirubakaranS. De BenedettiA. Generation of phenothiazine with potent Anti-TLK1 activity for prostate cancer therapy.iScience202023910147410.1016/j.isci.2020.101474 32905878
    [Google Scholar]
  40. LiX. LiuL. SchlegelH.B. On the physical origin of blue-shifted hydrogen bonds.J. Am. Chem. Soc.2002124329639964710.1021/ja020213j 12167060
    [Google Scholar]
/content/journals/mc/10.2174/0115734064333216250110034315
Loading
/content/journals/mc/10.2174/0115734064333216250110034315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test