Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4064
  • E-ISSN: 1875-6638

Abstract

Introduction

Liver cancer is considered one of the most common types of cancer and a major cause of ephemerality worldwide having a higher prevalence rate in Asia and sub-Saharan Africa. The alpha-fetoprotein (AFP) is a serum glycoprotein that belongs to a class of onco-developmental proteins and is also involved in tumor formation.

Methods

In the current effort, a hybrid approach of virtual screening followed by pharmacophore generation and molecular dynamic simulation analyses were performed. The screened top-ranked 10 docked compounds from the selected anti-cancer compound library were utilized to generate the ligand-based pharmacophore. Virtual screening was performed two-dimensional similarity search against the selected natural compound library based on their physicochemical properties. It was observed that all the compounds from the anti-cancer compound library and natural compound library showed similar binding resides.

Results

Therefore, the top-ranked screened compounds that showed the least binding energy and highest binding affinity against AFP, obtained through the anti-cancer drug library and natural compound library were reported. The molecular docking analyses revealed that Leu-219, His-222, Lys-242, Lys-246, His-316, Glu-318, Ala-366, Val-367, Gly-475, Ile-479, Ala-471, Asp-478 were observed as potential residues for interaction.

Conclusion

The observed results of virtual screening, molecular docking, and MD simulation analyses entail noteworthy observations illustrating that NC002 was a potent inhibitor. The proposed compound NC002 may have potential against liver cancer by targeting AFP based on MD simulation analyses, PCA, and MM-GBSA.

Loading

Article metrics loading...

/content/journals/mc/10.2174/0115734064330103250106034126
2025-02-10
2025-09-02
Loading full text...

Full text loading...

References

  1. BoschF.X. RibesJ. DíazM. ClériesR. Primary liver cancer: Worldwide incidence and trends.Gastroenterology20041275Suppl. 1S5S1610.1053/j.gastro.2004.09.011 15508102
    [Google Scholar]
  2. SrivatanakulP. SriplungH. DeerasameeS. Epidemiology of liver cancer: An overview.Asian Pac. J. Cancer Prev.200452118125 15244512
    [Google Scholar]
  3. AnwanwanD. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta (BBA)-.Revis. Cancer202018731188314
    [Google Scholar]
  4. DharD. BaglieriJ. KisselevaT. BrennerD.A. Mechanisms of liver fibrosis and its role in liver cancer.Exp. Biol. Med.202024529610810.1177/1535370219898141 31924111
    [Google Scholar]
  5. BoschF.X. RibesJ. BorràsJ. Epidemiology of primary liver cancer.Semin. Liver Dis.199919327128510.1055/s‑2007‑1007117
    [Google Scholar]
  6. FalksomG. MoertelC.G. LavinP. PretoriusF.J. CarboneP.P. Chemotherapy studies in primary liver cancer. A prospective randomized clinical trial.Cancer19784252149215610.1002/1097‑0142(197811)42:5<2149::AID‑CNCR2820420510>3.0.CO;2‑5 214218
    [Google Scholar]
  7. LiuC.Y. ChenK.F. ChenP.J. Treatment of liver cancer.Cold Spring Harb. Perspect. Med.201559a02153510.1101/cshperspect.a021535 26187874
    [Google Scholar]
  8. MorinagaT. SakaiM. WegmannT.G. TamaokiT. Primary structures of human alpha-fetoprotein and its mRNA.Proc. Natl. Acad. Sci. USA198380154604460810.1073/pnas.80.15.4604 6192439
    [Google Scholar]
  9. ZhengY. ZhuM. LiM. Effects of alpha-fetoprotein on the occurrence and progression of hepatocellular carcinoma.J. Cancer Res. Clin. Oncol.2020146102439244610.1007/s00432‑020‑03331‑6 32725355
    [Google Scholar]
  10. TerentievA.A. MoldogazievaN.T. Alpha-fetoprotein: A renaissance.Tumour Biol.20133442075209110.1007/s13277‑013‑0904‑y 23765762
    [Google Scholar]
  11. GalleP.R. FornerA. LlovetJ.M. MazzaferroV. PiscagliaF. RaoulJ-L. SchirmacherP. VilgrainV. EASL clinical practice guidelines: Management of hepatocellular carcinoma.J. Hepatol.201869118223610.1016/j.jhep.2018.03.019 29628281
    [Google Scholar]
  12. GalleP.R. FoersterF. KudoM. ChanS.L. LlovetJ.M. QinS. SchelmanW.R. ChintharlapalliS. AbadaP.B. ShermanM. ZhuA.X. Biology and significance of alpha‐fetoprotein in hepatocellular carcinoma.Liver Int.201939122214222910.1111/liv.14223 31436873
    [Google Scholar]
  13. SuryatenggaraJ. WibowoH. AtmodjoW.L. MathewG. Characterization of alpha-fetoprotein effects on dendritic cell and its function as effector immune response activator.J. Hepatocell. Carcinoma2017413915110.2147/JHC.S139070 29238703
    [Google Scholar]
  14. HsiaJ.C. ErS.S. TanC.T. EstesT. RuoslahtiE. alpha-fetoprotein binding specificity for arachidonate, bilirubin, docosahexaenoate, and palmitate. A spin label study.J. Biol. Chem.198025594224422710.1016/S0021‑9258(19)85655‑7 6154708
    [Google Scholar]
  15. UrielJ. de NechaudB. DupiersM. Estrogen-binding properties of rat, mouse and man fetospecific serum proteins. Demonstration by immuno-autoradiographic methods.Biochem. Biophys. Res. Commun.19724631175118010.1016/S0006‑291X(72)80098‑6 4334971
    [Google Scholar]
  16. LinB. DongX. WangQ. LiW. ZhuM. LiM. AFP-Inhibiting fragments for drug delivery: The promise and challenges of targeting therapeutics to cancers.Front. Cell Dev. Biol.2021963547610.3389/fcell.2021.635476 33898423
    [Google Scholar]
  17. BeiR. MizejewskiG.J. Alpha fetoprotein is more than a hepatocellular cancer biomarker: from spontaneous immune response in cancer patients to the development of an AFP-based cancer vaccine.Curr. Mol. Med.201111756458110.2174/156652411800615162 21707514
    [Google Scholar]
  18. MizejewskiG. Alpha-fetoprotein as a biomarker in immunodeficiency diseases: Relevance to ataxia telangiectasia and related disorders, immunodiagnostics.J. Immunodefic. Disor.2014312
    [Google Scholar]
  19. CooperA. Thermodynamic fluctuations in protein molecules.Proc. Natl. Acad. Sci. USA19767382740274110.1073/pnas.73.8.2740 1066687
    [Google Scholar]
  20. TanfordC. Protein denaturation.Adv. Protein Chem.19682312128210.1016/S0065‑3233(08)60401‑5 4882248
    [Google Scholar]
  21. LockhartD.J. WinzelerE.A. Genomics, gene expression and DNA arrays.Nature2000405678882783610.1038/35015701 10866209
    [Google Scholar]
  22. LuscombeN.M. GreenbaumD. GersteinM. What is bioinformatics? A proposed definition and overview of the field.Methods Inf. Med.200140434635810.1055/s‑0038‑1634431 11552348
    [Google Scholar]
  23. WheelerD.L. ChurchD.M. FederhenS. LashA.E. MaddenT.L. PontiusJ.U. SchulerG.D. SchrimlL.M. SequeiraE. TatusovaT.A. WagnerL. Database resources of the national center for biotechnology.Nucleic Acids Res.2003311283310.1093/nar/gkg033 12519941
    [Google Scholar]
  24. CamposM.R.S. del Carmen Quintal BojórquezN. Traditional and novel computer-aided drug design (CADD) approaches in the anticancer drug discovery process.Curr. Cancer Drug Targets202323533334510.2174/1568009622666220705104249 35792126
    [Google Scholar]
  25. KanwalS. JamilF. AliA. SehgalS.A. Comparative modeling, molecular docking, and revealing of potential binding pockets of RASSF2; a candidate cancer gene.Interdiscip. Sci.20179221422310.1007/s12539‑016‑0145‑z 26782783
    [Google Scholar]
  26. TahirR.A. SehgalS.A. KhattakN.A. Khan KhattakJ.Z. MirA. Tumor necrosis factor receptor superfamily 10B (TNFRSF10B): An insight from structure modeling to virtual screening for designing drug against head and neck cancer.Theor. Biol. Med. Model.20131013810.1186/1742‑4682‑10‑38 23724937
    [Google Scholar]
  27. SehgalS.A. KanwalS. TahirR.A. KhalidZ. HammadM.A. In silico elucidation of potential drug target sites of the Thumb Index Fold Protein, Wnt-8b.Trop. J. Pharm. Res.201817349149710.4314/tjpr.v17i3.15
    [Google Scholar]
  28. Tur RaziaI. KanwalA. RiazH.F. MalikA. AhsanM. Saleem KhanM. RazaA. SabirS. SajidZ. Fardeen KhanM. TahirR.A. Arslan SehgalS. Recent trends in computer-aided drug design for anti-cancer drug discovery.Curr. Top. Med. Chem.202323302844286210.2174/0115680266258467231107102643 38031798
    [Google Scholar]
  29. SehgalS.A. KhattakN.A. MirA. Structural, phylogenetic and docking studies of D-amino acid oxidase activator (DAOA), a candidate schizophrenia gene.Theor. Biol. Med. Model.2013101310.1186/1742‑4682‑10‑3 23286827
    [Google Scholar]
  30. SehgalS.A. HammadM.A. TahirR.A. AkramH.N. AhmadF. Current therapeutic molecules and targets in neurodegenerative diseases based on in silico drug design.Curr. Neuropharmacol.201816664966310.2174/1570159X16666180315142137 29542412
    [Google Scholar]
  31. SehgalS.A. MannanS. AliS. Pharmacoinformatic and molecular docking studies reveal potential novel antidepressants against neurodegenerative disorders by targeting HSPB8.Drug Des. Devel. Ther.2016101605161810.2147/DDDT.S101929 27226709
    [Google Scholar]
  32. Sehgal; Hassan, M.; Rashid, S. Pharmacoinformatics elucidation of potential drug targets against migraine to target ion channel protein KCNK18.Drug Des. Devel. Ther.2014857158110.2147/DDDT.S63096 24899801
    [Google Scholar]
  33. IqbalA. WaseemH.B. AliF. BaammiS. FaheemH. ShazlyG.A. NafidiH-A. SajidM. KhanM.S. AkramH.N. AzizM. DilbarN. QamarS. MirA. BourhiaM. SehgalS.A. In silico identification and virtual screening to discover potent therapeutic phytochemicals against CMT2A.J. Indian Chem. Soc.20241011110140310.1016/j.jics.2024.101403
    [Google Scholar]
  34. Bin WaseemH. MubeenM. Talal RahimM. KazimM. RashidA. Shoaib AmirM. AfzalA. Sehrish Naz, In silico elucidation of potent therapeutic targets against Alzheimer’s by targeting CAPNS2.Mol. Med. Commun.20233212513810.55627/mmc.003.02.0377
    [Google Scholar]
  35. KanehisaM. BorkP. Bioinformatics in the post-sequence era.Nat. Genet.200333S330531010.1038/ng1109 12610540
    [Google Scholar]
  36. FenstermacherD. Introduction to bioinformatics.J. Am. Soc. Inf. Sci. Technol.200556544044610.1002/asi.20133
    [Google Scholar]
  37. BoutetE. UniProtKB/Swiss-Prot: The manually annotated section of the UniProt knowledgebase. Plant bioinformatics: Methods and protocols.Springer20078911210.1007/978‑1‑59745‑535‑0_4
    [Google Scholar]
  38. AltschulS. MaddenT.L. SchäfferA.A. ZhangJ. ZhangZ. MillerW. LipmanD.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Res.199725173389340210.1093/nar/25.17.3389 9254694
    [Google Scholar]
  39. WebbB. SaliA. Comparative protein structure modeling using Modeller.Curr. Protoc. Bioinformatics201654156
    [Google Scholar]
  40. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  41. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  42. LuthyR. BowieJ.U. EisenbergD. Assessment of protein models with three-dimensional profiles.Nature199235663648385
    [Google Scholar]
  43. ChenV.B. ArendallW.B.III HeaddJ.J. KeedyD.A. ImmorminoR.M. KapralG.J. MurrayL.W. RichardsonJ.S. RichardsonD.C. MolProbity: All-atom structure validation for macromolecular crystallography.Acta Crystallogr. D Biol. Crystallogr.2010661122110.1107/S0907444909042073 20057044
    [Google Scholar]
  44. CahenM. Check on socialism in Mozambique —What check? what socialism?Rev. Afr. Polit. Econ.19932057465910.1080/03056249308704003
    [Google Scholar]
  45. DymO. EisenbergD. YeatesT. International tables for crystallography.Int. Tables Crystallogr.2012Fch. 21.3677683
    [Google Scholar]
  46. SinghA. KaushikR. MishraA. ShankerA. JayaramB. ProTSAV: A protein tertiary structure analysis and validation server.Biochim. Biophys. Acta. Proteins Proteomics201618641111910.1016/j.bbapap.2015.10.004 27742554
    [Google Scholar]
  47. YangJ. YanR. RoyA. XuD. PoissonJ. ZhangY. The I-TASSER Suite: Protein structure and function prediction.Nat. Methods20151217810.1038/nmeth.3213 25549265
    [Google Scholar]
  48. GasserJ. LeutwylerH. Quark masses.Phys. Rep.19828737716910.1016/0370‑1573(82)90035‑7
    [Google Scholar]
  49. Fernandez-FuentesN. Madrid-AlisteC.J. RaiB.K. FajardoJ.E. FiserA. M4T: A comparative protein structure modeling server.Nucleic Acids Res.200735Web Server)(Suppl. 2W363W36810.1093/nar/gkm34117517764
    [Google Scholar]
  50. KällbergM. WangH. WangS. PengJ. WangZ. LuH. XuJ. Template-based protein structure modeling using the RaptorX web server.Nat. Protoc.2012781511152210.1038/nprot.2012.085 22814390
    [Google Scholar]
  51. LiZ. WanH. ShiY. OuyangP. Personal experience with four kinds of chemical structure drawing software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch.J. Chem. Inf. Comput. Sci.20044451886189010.1021/ci049794h 15446849
    [Google Scholar]
  52. OSIRIS Property Explorer. Actelion Pharmaceuticals Ltd., Allschwil, Switzerland.
    [Google Scholar]
  53. JarrahpourA. FathiJ. MimouniM. HaddaT.B. SheikhJ. ChohanZ. ParvezA. Petra, Osiris and Molinspiration (POM) together as a successful support in drug design: Antibacterial activity and biopharmaceutical characterization of some azo Schiff bases.Med. Chem. Res.20122181984199010.1007/s00044‑011‑9723‑0
    [Google Scholar]
  54. WolberG. LangerT. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.J. Chem. Inf. Model.200545116016910.1021/ci049885e 15667141
    [Google Scholar]
  55. DeLanoW.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl.Protein Crystallogr20024018292
    [Google Scholar]
  56. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.127 7630882
    [Google Scholar]
  57. Dassault Systèmes BIOVIA. BIOVIA Discovery Studio. Release 2021.San DiegoDassault Systèmes2021
    [Google Scholar]
  58. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  59. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  60. RizviS.M.D. ShakilS. HaneefM. A simple click by click protocol to perform docking: AutoDock 4.2 made easy for non-bioinformaticians.EXCLI J.201312831857 26648810
    [Google Scholar]
  61. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  62. HouJ. LinL. ZhouW. WangZ. DingG. DongQ. QinL. WuX. ZhengY. YangY. TianW. ZhangQ. WangC. ZhangQ. ZhuangS.M. ZhengL. LiangA. TaoW. CaoX. Identification of miRNomes in human liver and hepatocellular carcinoma reveals miR-199a/b-3p as therapeutic target for hepatocellular carcinoma.Cancer Cell201119223224310.1016/j.ccr.2011.01.001 21316602
    [Google Scholar]
  63. MaoM. WangX. SongY. ShengH. HanR. LinW. DaiS. Novel prognostic scores based on plasma prothrombin time and fibrinogen levels in patients with AFP-negative hepatocellular carcinoma.Cancer Contr.2020271107327482091552010.1177/1073274820915520 32216575
    [Google Scholar]
  64. WangT. ZhangK.H. New blood biomarkers for the diagnosis of AFP-negative hepatocellular carcinoma.Front. Oncol.202010131610.3389/fonc.2020.01316 32923383
    [Google Scholar]
  65. ZhangJ. ChenG. ZhangP. ZhangJ. LiX. GanD. CaoX. HanM. DuH. YeY. The threshold of alpha-fetoprotein (AFP) for the diagnosis of hepatocellular carcinoma: A systematic review and meta-analysis.PLoS One2020152e022885710.1371/journal.pone.0228857 32053643
    [Google Scholar]
  66. ChengK-S. TangH.L. ChouF.T. ChouJ.W. HsuC.H. YuC.J. KaoS.T. LiT.C. Cytokine evaluation in liver cirrhosis and hepatocellular carcinoma.Hepatogastroenterology2009569311051110 19760951
    [Google Scholar]
  67. MizejewskiG. Alpha-fetoprotein (AFP) and inflammation: is AFP an acute and/or chronic phase reactant.J. Hematol. Thromboemb. Dis.20153119
    [Google Scholar]
  68. ZhuM. GuoJ. LiW. XiaH. LuY. DongX. ChenY. XieX. FuS. LiM. HBx induced AFP receptor expressed to activate PI3K/AKT signal to promote expression of Src in liver cells and hepatoma cells.BMC Cancer201515136210.1186/s12885‑015‑1384‑9 25943101
    [Google Scholar]
  69. JunnaZ. GongdeC. JinyingX. XiuZ. Serum AFU, 5′-NT and AFP as biomarkers for primary hepatocellular carcinoma diagnosis.Open Med. (Wars.)201712135435810.1515/med‑2017‑0051 29043300
    [Google Scholar]
  70. HuJ. WangN. YangY. MaL. HanR. ZhangW. YanC. ZhengY. WangX. Diagnostic value of alpha-fetoprotein combined with neutrophil-to-lymphocyte ratio for hepatocellular carcinoma.BMC Gastroenterol.201818118610.1186/s12876‑018‑0908‑6 30545306
    [Google Scholar]
  71. PosypanovaG.A. MakarovV.A. SavvateevaM.V. BereznikovaA.V. SeverinE.S. The receptor binding fragment of alpha-fetoprotein is a promising new vector for the selective delivery of antineoplastic agents.J. Drug Target.201321545846510.3109/1061186X.2013.765441 23600748
    [Google Scholar]
  72. TreshalinaH.M. SmirnovaG.B. TsurkanS.A. TcherkassovaJ.R. LesnayaN.A. The role of alpha-fetoprotein receptor in the delivery of targeted preparations in oncology.Росс. онкол. ж.201722141410.18821/1028‑9984‑2017‑22‑1‑4‑14
    [Google Scholar]
  73. ShenJ. Homology modeling, molecular docking, and molecular dynamics simulations elucidated α-fetoprotein binding modes.BMC bioinformatics.Springer201310.1186/1471‑2105‑14‑S14‑S6
    [Google Scholar]
/content/journals/mc/10.2174/0115734064330103250106034126
Loading
/content/journals/mc/10.2174/0115734064330103250106034126
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test