Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2666-9390
  • E-ISSN: 2666-9404

Abstract

Introduction

The edible pulp of pequi ( Cambess.) is the most valued component of the fruit and is used for human consumption. However, when into food, a significant amount of waste is produced and could impact the environment. Therefore, reusing these by-products, such as pequi almonds, as an alternative for new product development is a proposal for sustainable consumption. Adding probiotic microorganisms isolated from plant matrices, such as by-products cerrado fruits, makes it an even more sustainable and accessible option for the vegan population.

Objective

The present study aimed to characterize the pequi almond extract supplemented with potentially probiotic microorganisms ( M3 and M1), isolated from cerrado fruit by-products, as a fermented beverage.

Methods

The effects of fermentation on viable cell counts and physicochemical properties such as pH, soluble solids, and color were assessed on the day of processing before fermentation, after fermentation, after 7 days, and 14 days during storage of the preparation at 8°C.

Results and Discussion

The counts of potentially probiotic cultures M1 and M3 showed an inverse correlation with the sample pH, indicating greater bacterial adaptation. The higher survival of strains in water-soluble pequi almond extract (WSPAE) may be associated with the isolation matrix being part of the same matrix to which they were added. No differences were observed in the total soluble solids and color of the preparations added with M1 and M3.

Conclusion

WSPAE demonstrated protective effects for the maintenance and survival of the tested strains. These findings support the potential use of these strains in plant-based probiotic beverages as a sustainable alternative to dairy products.

Loading

Article metrics loading...

/content/journals/lff/10.2174/0126669390369358250518023604
2025-05-21
2025-09-02
Loading full text...

Full text loading...

References

  1. Lillo-PérezS. Guerra-ValleM. Orellana-PalmaP. PetzoldG. Probiotics in fruit and vegetable matrices: Opportunities for nondairy consumers.Lebensm. Wiss. Technol.2021151311210610.1016/j.lwt.2021.112106
    [Google Scholar]
  2. dos SantosJ.E.M. CrispimS.P. MurphyJ. de Camargo CancelaM. Health, lifestyle and sociodemographic characteristics are associated with Brazilian dietary patterns: Brazilian national health survey.PLoS One2021162e024707810.1371/journal.pone.024707833592067
    [Google Scholar]
  3. MartinsE.M.F. RamosA.M. VanzelaE.S.L. StringhetaP.C. de Oliveira PintoC.L. MartinsJ.M. Products of vegetable origin: A new alternative for the consumption of probiotic bacteria.Food Res. Int.201351276477010.1016/j.foodres.2013.01.047
    [Google Scholar]
  4. KüçükgözK. TrząskowskaM. Nondairy probiotic products: Functional foods that require more attention.Nutrients202214475310.3390/nu1404075335215403
    [Google Scholar]
  5. SethiS. TyagiS.K. AnuragR.K. Plant-based milk alternatives an emerging segment of functional beverages: A review.J. Food Sci. Technol.20165393408342310.1007/s13197‑016‑2328‑327777447
    [Google Scholar]
  6. Chalupa-KrebzdakS. LongC.J. BohrerB.M. Nutrient density and nutritional value of milk and plant-based milk alternatives.Int. Dairy J.201887849210.1016/j.idairyj.2018.07.018
    [Google Scholar]
  7. LiA. ZhengJ. HanX. Advances in low-lactose/lactose-free dairy products and their production.Foods20231213255310.3390/foods1213255337444291
    [Google Scholar]
  8. DamianiC. AlmeidaT.L. CostaN.V. Fatty acid profile and antinutritional factors of raw and roasted pequi almonds.Pesqui. Agropecu. Trop.2013431717810.1590/S1983‑40632013000100004
    [Google Scholar]
  9. MouraN.F. ChavesL.J. NavesR.V. Physical characterization of pequi tree fruits (Caryocar brasiliense Camb) from the cerrado.Rev. Arvore201337590591210.1590/S0100‑67622013000500013
    [Google Scholar]
  10. SilvaM.I. MackowiakC. MinogueP. ReisA.F. MolineE.F.V. Potential impacts of using sewage sludge biochar on the growth of plant forest seedlings.Cienc. Rural2017471e2016006410.1590/0103‑8478cr20160064
    [Google Scholar]
  11. de Oliveira SousaA.G. FernandesD.C. AlvesA.M. de FreitasJ.B. NavesM.M.V. Nutritional quality and protein value of exotic almonds and nut from the Brazilian Savanna compared to peanut.Food Res. Int.20114472319232510.1016/j.foodres.2011.02.013
    [Google Scholar]
  12. Brazilian food composition table.2023Available from: https://www.tbca.net.br/base-dados/composicao_alimentos.php
  13. De LimaA. MaraA. OliveiraD.E. Chemical composition and bioactive compounds in the pulp and almond of pequi fruit.Rev. Bras. Frutic.200729695698
    [Google Scholar]
  14. YamaguchiK.K.L. LamarãoC.V. AranhaE. HPLC-DAD profile of phenolic compounds, cytotoxicity, antioxidant and anti-inflammatory activities of the amazon fruit Caryocar villosum.Quim. Nova201740548349010.21577/0100‑4042.20170028
    [Google Scholar]
  15. RinconL. Braz Assunção BotelhoR. de AlencarE.R. Development of novel plant-based milk based on chickpea and coconut.Lebensm. Wiss. Technol.202012810947910.1016/j.lwt.2020.109479
    [Google Scholar]
  16. Guidelines for the evaluation of probiotics in food2002Available from: https://isappscience.org/wp-content/uploads/2019/ 04/probiotic_guidelines.pdf
  17. CremonC. BarbaroM.R. VenturaM. BarbaraG. Pre- and probiotic overview.Curr. Opin. Pharmacol.201843879210.1016/j.coph.2018.08.01030219638
    [Google Scholar]
  18. O’BryanC.A. CrandallP.G. RickeS.C. NdahetuyeJ.B. Lactic acid bacteria (LAB) as antimicrobials in food products.In:Handbook of Natural Antimicrobials for Food Safety and Quality.Elsevier201511713610.1016/B978‑1‑78242‑034‑7.00006‑2
    [Google Scholar]
  19. Aguilar-ToaláJ.E. ArioliS. BehareP. Postbiotics — When simplification fails to clarify.Nat. Rev. Gastroenterol. Hepatol.2021181182582610.1038/s41575‑021‑00521‑6
    [Google Scholar]
  20. MoraesA.C.F. SilvaI.T. Almeida-PitittoB. FerreiraS.R.G. Intestinal microbiota and cardiometabolic risk: Mechanisms and dietary modulation.Arq. Bras. Endocrinol. Metabol201458431732710.1590/0004‑273000000294024936725
    [Google Scholar]
  21. GuJ.R.K. Adult Short Bowel Syndrome.In:Treasure Island, (FL)StatPearls Publishing20194554
    [Google Scholar]
  22. Ruiz RodríguezL.G. Zamora GasgaV.M. PescumaM. Van NieuwenhoveC. MozziF. Sánchez BurgosJ.A. Fruits and fruit by-products as sources of bioactive compounds. Benefits and trends of lactic acid fermentation in the development of novel fruit-based functional beverages.Food Res. Int.202114010985410.1016/j.foodres.2020.10985433648172
    [Google Scholar]
  23. FilanninoP. AzziL. CavoskiI. Exploitation of the health-promoting and sensory properties of organic pomegranate (Punica granatum L.) juice through lactic acid fermentation.Int. J. Food Microbiol.20131632-318419210.1016/j.ijfoodmicro.2013.03.00223562695
    [Google Scholar]
  24. SharmaR. GargP. KumarP. BhatiaS.K. KulshresthaS. Microbial fermentation and its role in quality improvement of fermented foods.Fermentation20206410610.3390/fermentation6040106
    [Google Scholar]
  25. PimentelT.C. CostaW.K.A. BarãoC.E. RossetM. MagnaniM. Vegan probiotic products: A modern tendency or the newest challenge in functional foods.Food Res. Int.2021140811003310.1016/j.foodres.2020.11003333648260
    [Google Scholar]
  26. CéspedesM. CárdenasP. StaffolaniM. CiappiniM.C. VinderolaG. Performance in nondairy drinks of probiotic L. casei strains usually employed in dairy products.J. Food Sci.2013785M756M76210.1111/1750‑3841.1209223527588
    [Google Scholar]
  27. MaiaM.S. DomingosM.M. de São JoséJ.F.B. Viability of probiotic microorganisms and the effect of their addition to fruit and vegetable juices.Microorganisms2023115133510.3390/microorganisms1105133537317309
    [Google Scholar]
  28. GarciaE.F. de Oliveira AraújoA. LucianoW.A. The performance of five fruit‐derived and freeze‐dried potentially probiotic Lactobacillus strains in apple, orange, and grape juices.J. Sci. Food Agric.201898135000501010.1002/jsfa.903429602227
    [Google Scholar]
  29. TrindadeD.P de A. BarbosaJ.P. Isolation and identification of lactic acid bacteria in fruit processing residues from the Brazilian Cerrado and its probiotic potential.Food Biosci.2022481111
    [Google Scholar]
  30. Nascimento-SilvaN.R.R. NavesM.M.V. Potential of whole pequi (Caryocar spp.) fruit—pulp, almond, oil, and shell—as a medicinal food.J. Med. Food201922995296210.1089/jmf.2018.014931074677
    [Google Scholar]
  31. NevesM.F. TrombinV.G. MarquesV.N. MartinezL.F. Global orange juice market: A 16-year summary and opportunities for creating value.Trop. Plant Pathol.202045316617410.1007/s40858‑020‑00378‑1
    [Google Scholar]
  32. MirandaR.F. de PaulaM.M. da CostaG.M. Orange juice added with L. casei: Is there an impact of the probiotic addition methodology on the quality parameters?Lebensm. Wiss. Technol.201910618619310.1016/j.lwt.2019.02.047
    [Google Scholar]
  33. KardooniZ. Alizadeh BehbahaniB. JooyandehH. NoshadM. Probiotic viability, physicochemical, and sensory properties of probiotic orange juice.J. Food Meas. Charact.20231721817182210.1007/s11694‑022‑01771‑x
    [Google Scholar]
  34. LuckowT. DelahuntyC. Consumer acceptance of orange juice containing functional ingredients.Food Res. Int.200437880581410.1016/j.foodres.2004.04.003
    [Google Scholar]
  35. LuckowT. DelahuntyC. Which juice is ‘healthier’? A consumer study of probiotic non-dairy juice drinks.Food Qual. Prefer.2004157-875175910.1016/j.foodqual.2003.12.007
    [Google Scholar]
  36. MartinsG.N. Guerrero SánchezM. CarboniA.D. Use of legume wastewater extracts on the storage stability of freeze-dried Lactiplantibacillus plantarum WCFS1.Food Bioprocess Technol.20251821707171810.1007/s11947‑024‑03554‑2
    [Google Scholar]
  37. SimõesM.F. PereiraL. SantosC. LimaN. Polyphasic Identification and Preservation of Fungal Diversity: Concepts and Applications.In:Management of Microbial Resources in the Environment.NetherlandsDordrecht, Springer20139111710.1007/978‑94‑007‑5931‑2_5
    [Google Scholar]
  38. SchiraldiC. MarescaC. CatapanoA. GalinskiE.A. De RosaM. High-yield cultivation of Marinococcus M52 for production and recovery of hydroxyectoine.Res. Microbiol.2006157769369910.1016/j.resmic.2006.03.00416815686
    [Google Scholar]
  39. PuntilloM. GaggiottiM. OteizaJ.M. BinettiA. MasseraA. VinderolaG. Potential of lactic acid bacteria isolated from different forages as silage inoculants for improving fermentation quality and aerobic stability.Front. Microbiol.202011358671610.3389/fmicb.2020.58671633363520
    [Google Scholar]
  40. Costa FernandesA.B. MarcolinoV.A. SilvaC. BarãoC.E. PimentelT.C. Potentially synbiotic fermented beverages processed with water-soluble extract of baru almond.Food Biosci.202142610120010.1016/j.fbio.2021.101200
    [Google Scholar]
  41. dos ReisL.C.R. FaccoE.M.P. FlôresS.H. RiosA.O. Stability of functional compounds and antioxidant activity of fresh and pasteurized orange passion fruit (Passiflora caerulea) during cold storage.Food Res. Int.2018106148148610.1016/j.foodres.2018.01.01929579951
    [Google Scholar]
  42. McGuireR.G. Reporting of objective color measurements.HortScience199227121254125510.21273/HORTSCI.27.12.1254
    [Google Scholar]
  43. MeiraQ.G.S. MagnaniM. de Medeiros JúniorF.C. Effects of added Lactobacillus acidophilus and Bifidobacterium lactis probiotics on the quality characteristics of goat ricotta and their survival under simulated gastrointestinal conditions.Food Res. Int.201576Pt 382883810.1016/j.foodres.2015.08.00228455069
    [Google Scholar]
  44. HalimM. Mohd MustafaN.A. OthmanM. WasohH. KapriM.R. AriffA.B. Effect of encapsulant and cryoprotectant on the viability of probiotic Pediococcus acidilactici ATCC 8042 during freeze-drying and exposure to high acidity, bile salts and heat.Lebensm. Wiss. Technol.201781421021610.1016/j.lwt.2017.04.009
    [Google Scholar]
  45. GeS. HanJ. SunQ. Research progress on improving the freeze-drying resistance of probiotics: A review.Trends Food Sci. Technol.202414710442510.1016/j.tifs.2024.104425
    [Google Scholar]
  46. AlemanR. Montero-FernándezI. MarcíaJ. Saravia MaldonadoS. Martín-VertedorD. Application of fermentation as a strategy for the transformation and valorization of vegetable matrices.Fermentation202410312410.3390/fermentation10030124
    [Google Scholar]
  47. SheehanV.M. RossP. FitzgeraldG.F. Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices.Innov. Food Sci. Emerg. Technol.20078227928410.1016/j.ifset.2007.01.007
    [Google Scholar]
  48. Sandra GarciaK.B.G. Juçara (Euterpe edulis) pulp as a substrate for probiotic bacteria fermentation: Optimisation process and antioxidant activity.Emir. J. Food Agric.2018291294910.9755/ejfa.2017.v29.i12.1565
    [Google Scholar]
  49. CasarottiS.N. BorgonoviT.F. BatistaC.L.F.M. PennaA.L.B. Guava, orange and passion fruit by-products: Characterization and its impacts on kinetics of acidification and properties of probiotic fermented products.Lebensm. Wiss. Technol.201898697610.1016/j.lwt.2018.08.010
    [Google Scholar]
  50. de AssisB.B.T. PimentelT.C. DantasA.M. dos Santos LimaM. da Silva Campelo BorgesG. MagnaniM. Biotransformation of the Brazilian Caatinga fruit-derived phenolics by Lactobacillus acidophilus La-5 and Lacticaseibacillus casei 01 impacts bioaccessibility and antioxidant activity.Food Res. Int.202114611043510.1016/j.foodres.2021.11043534119243
    [Google Scholar]
  51. KaprasobR. KerdchoechuenO. LaohakunjitN. SarkarD. ShettyK. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria.Process Biochem.201759114114910.1016/j.procbio.2017.05.019
    [Google Scholar]
  52. PimentelT.C. KlososkiS.J. RossetM. BarãoC.E. MarcolinoV.A. Fruit juices as probiotic foods.In: Sports and Energy Drinks.Elsevier20191048351310.1016/B978‑0‑12‑815851‑7.00014‑0
    [Google Scholar]
  53. AlexandreE.M.C. AguiarN.F.B. VossG.B. PintadoM.E. Properties of fermented beverages from food wastes/by-products.Beverages2023924510.3390/beverages9020045
    [Google Scholar]
  54. Cunha JúniorP.C. OliveiraL.S. GouvêaL.P. AlcantaraM. RosenthalA. FerreiraE.H.R. Symbiotic drink based on Brazil nuts (Bertholletia excelsa H.B.K): Production, characterization, probiotic viability and sensory acceptance.Cienc. Rural2021512e2020036110.1590/0103‑8478cr20200361
    [Google Scholar]
  55. FilanninoP. CardinaliG. RizzelloC.G. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices.Appl. Environ. Microbiol.20148072206221510.1128/AEM.03885‑1324487533
    [Google Scholar]
  56. SzutowskaJ. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: A systematic literature review.Eur. Food Res. Technol.2020246335737210.1007/s00217‑019‑03425‑7
    [Google Scholar]
  57. Di CagnoR. CodaR. De AngelisM. GobbettiM. Exploitation of vegetables and fruits through lactic acid fermentation.Food Microbiol.201333111010.1016/j.fm.2012.09.00323122495
    [Google Scholar]
  58. PérezM.B. Argañaraz MartinezE. BabotJ.D. Pérez ChaiaA. SaguirF.M. Growth studies of dominant lactic acid bacteria in orange juice and selection of strains to ferment citric fruit juices with probiotic potential.Braz. J. Microbiol.20225342145215610.1007/s42770‑022‑00830‑136151453
    [Google Scholar]
  59. dos Santos RochaC. MagnaniM. Jensen KlososkiS. High-intensity ultrasound influences the probiotic fermentation of Baru almond beverages and impacts the bioaccessibility of phenolics and fatty acids, sensory properties, and in vitro biological activity.Food Res. Int.2023173Pt 211337210.1016/j.foodres.2023.11337237803712
    [Google Scholar]
  60. VivekK. MishraS. PradhanR.C. JayabalanR. Effect of probiotification with Lactobacillus plantarum MCC 2974 on quality of Sohiong juice.Lebensm. Wiss. Technol.20191082556010.1016/j.lwt.2019.03.046
    [Google Scholar]
  61. SantosR.T.S. BiasotoA.C.T. RybkaA.C.P. Physicochemical characterization, bioactive compounds, in vitro antioxidant activity, sensory profile and consumer acceptability of fermented alcoholic beverage obtained from Caatinga passion fruit (Passiflora cincinnata Mast.).Lebensm. Wiss. Technol.202114811171410.1016/j.lwt.2021.111714
    [Google Scholar]
  62. Méndez-GalarragaM.P. Hurtado-RomeroA. PirovaniM.É. VinderolaG. Van de VeldeF. García-CayuelaT. Exploring autochthonous strains with probiotic potential: A comprehensive characterization of functional properties and their application in fermented blueberry-watermelon smoothies.Food Biosci.2023561010317310.1016/j.fbio.2023.103173
    [Google Scholar]
  63. de OliveiraP.M. Leite JúniorB.R.C. MartinsE.M.F. Mango and carrot mixed juice: A new matrix for the vehicle of probiotic lactobacilli.J. Food Sci. Technol.20215819810910.1007/s13197‑020‑04518‑y33505055
    [Google Scholar]
  64. PerriconeM. BevilacquaA. AltieriC. SinigagliaM. CorboM. Challenges for the production of probiotic fruit juices.Beverages2015129510310.3390/beverages1020095
    [Google Scholar]
  65. LaranjoM. Starter cultures and their role in fermented foods.Microbial Fermentations in Nature and as Designed Processes.Wiley202328129210.1002/9781119850007.ch11
    [Google Scholar]
  66. PerezM.B. SaguirF.M. Transfer and subsequent growth and metabolism of Lactobacillus plantarum in orange juice medium during storage at 4 and 30°C.Lett. Appl. Microbiol.201254539840310.1111/j.1472‑765X.2012.03235.x22409293
    [Google Scholar]
  67. DahiyaD. NigamP.S. Nutrition and health through the use of probiotic strains in fermentation to produce non-dairy functional beverage products supporting gut microbiota.Foods20221118276010.3390/foods1118276036140888
    [Google Scholar]
  68. CorboM.R. BevilacquaA. PetruzziL. CasanovaF.P. SinigagliaM. Functional beverages: The emerging side of functional foods.Compr. Rev. Food Sci. Food Saf.20141361192120610.1111/1541‑4337.12109
    [Google Scholar]
  69. MarcoM.L. HillC. HutkinsR. Should there be a recommended daily intake of microbes?J. Nutr.2020150123061306710.1093/jn/nxaa32333269394
    [Google Scholar]
  70. HillC. TancrediD.J. CifelliC.J. Positive health outcomes associated with live microbe intake from foods, including fermented foods, assessed using the NHANES database.J. Nutr.202315341143114910.1016/j.tjnut.2023.02.01936822397
    [Google Scholar]
  71. KandylisP. PissaridiK. BekatorouA. KanellakiM. KoutinasA.A. Dairy and non-dairy probiotic beverages.Curr. Opin. Food Sci.20167586310.1016/j.cofs.2015.11.012
    [Google Scholar]
  72. Transforming our world: The 2030 agenda for sustainable development2015Available from: https://sdgs.un.org/2030agenda
  73. Rodriguez-SanchezC. Sellers-RubioR. Sustainability in the beverage industry: A research agenda from the demand side.Sustainability202013118610.3390/su13010186
    [Google Scholar]
  74. SouzaM.G.S. Characterization and use of pequi (Caryocar brasiliense) waste oil in liquid biofuels production.Interdiscip J Eng Res2019524119
    [Google Scholar]
  75. ArrudaH.S. AraújoM.V.L. MarosticaJuniorM.R. Underexploited Brazilian cerrado fruits as sources of phenolic compounds for diseases management: A review.Food Chem.202251010014810.1016/j.fochms.2022.10014836439937
    [Google Scholar]
/content/journals/lff/10.2174/0126669390369358250518023604
Loading
/content/journals/lff/10.2174/0126669390369358250518023604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test