Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-5704
  • E-ISSN: 2950-5712

Abstract

Background

Acetaminophen overdose is a leading cause of acute liver failure globally. Current treatment options, primarily N-acetylcysteine (NAC), have limitations. Mito-TEMPO (Mito-T), a mitochondria-targeted antioxidant, has shown potential in preclinical studies. This systematic review evaluated the evidence for Mito-T's hepatoprotective effects against acetaminophen-induced liver injury.

Methods

We conducted a comprehensive search of databases and grey literature following PRISMA guidelines. Studies published between 2000 and 2023 on Mito-T and acetaminophen-induced hepatotoxicity in animal models were included. Data on study characteristics, interventions, outcomes, and risk of bias were extracted.

Results

Six high-quality studies were included. Mito-T administration significantly reduced serum alanine transaminase (ALT) levels, a marker of liver injury, compared to controls. Mito-T also protects against hepatocellular necrosis, apoptosis, and mitochondrial dysfunction. These effects were likely mediated by Mito-T's ability to scavenge reactive oxygen and nitrogen species within mitochondria.

Conclusion

This review provides strong evidence that Mito-T effectively protects against acetaminophen-induced liver injury in animal models. Mito-T’s mechanisms of action address a critical pathophysiological pathway in acetaminophen toxicity. While limitations, including the use of animal models and potential for publication bias, exist, the findings suggest Mito-T holds promise as a novel therapeutic option. Further studies are needed to assess Mito-T's safety, pharmacokinetics, and optimal dosing in humans. Clinical trials comparing Mito-T against NAC are warranted if toxicity profiles are favorable. Additionally, investigating Mito-T's potential in other diseases involving oxidative stress is crucial.

Loading

Article metrics loading...

/content/journals/jctv/10.2174/0126661217306815240723070112
2024-08-28
2025-12-13
Loading full text...

Full text loading...

References

  1. Acetaminophen (APAP) hepatotoxicity-Isn’t it time for APAP to go away?J. Hepatol.20176761324133110.1016/j.jhep.2017.07.005 28734939
    [Google Scholar]
  2. LarsonA.M. Acetaminophen Hepatotoxicity.Clin. Liver Dis.2007113525548 vi10.1016/j.cld.2007.06.006 17723918
    [Google Scholar]
  3. McGillM.R. WilliamsC.D. XieY. RamachandranA. JaeschkeH. Acetaminophen-induced liver injury in rats and mice: Comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity.Toxicol. Appl. Pharmacol.2012264338739410.1016/j.taap.2012.08.015 22980195
    [Google Scholar]
  4. CohenS.D. PumfordN.R. KhairallahE.A. Selective protein covalent binding and target organ toxicity.Toxicol. Appl. Pharmacol.1997143111210.1006/taap.1996.8074 9073586
    [Google Scholar]
  5. RamachandranA. JaeschkeH. Acetaminophen hepatotoxicity: A mitochondrial perspective.Adv. Pharmacol.20198519521910.1016/bs.apha.2019.01.007 31307587
    [Google Scholar]
  6. HinsonJ.A. RobertsD.W. JamesL.P. Mechanisms of acetaminophen-induced liver necrosis.Handb. Exp. Pharmacol.2010201019636940510.1007/978‑3‑642‑00663‑0_12
    [Google Scholar]
  7. McGillM.R. JaeschkeH. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis.Pharm. Res.20133092174218710.1007/s11095‑013‑1007‑6 23462933
    [Google Scholar]
  8. SmilksteinM.J. KnappG.L. KuligK.W. RumackB.H. Efficacy of oral N-acetylcysteine in the treatment of acetaminophen overdose. Analysis of the national multicenter study (1976 to 1985).N. Engl. J. Med.1988319241557156210.1056/NEJM198812153192401 3059186
    [Google Scholar]
  9. SchwalfenbergG.K. N‐acetylcysteine: a review of clinical usefulness (an old drug with new tricks).J. Nutr. Metab.20212021111310.1155/2021/9949453 34221501
    [Google Scholar]
  10. BunchorntavakulC. ReddyK.R. Acetaminophen-related Hepatotoxicity.Clin. Liver Dis.2013174587607, viii10.1016/j.cld.2013.07.005 24099020
    [Google Scholar]
  11. JaeschkeH. McGillM.R. RamachandranA. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity.Drug Metab. Rev.20124418810610.3109/03602532.2011.602688 22229890
    [Google Scholar]
  12. ShettyS. KumarR. BharatiS. Mito-TEMPO, a mitochondria-targeted antioxidant, prevents N-nitrosodiethylamine-induced hepatocarcinogenesis in mice.Free Radic. Biol. Med.2019136768610.1016/j.freeradbiomed.2019.03.037 30946961
    [Google Scholar]
  13. CoverC. MansouriA. KnightT.R. Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity.J. Pharmacol. Exp. Ther.2005315287988710.1124/jpet.105.088898 16081675
    [Google Scholar]
  14. BarzegariA. NouriM. GueguenV. SaeediN. Pavon-DjavidG. OmidiY. Mitochondria‐targeted antioxidant mito‐TEMPO alleviate oxidative stress induced by antimycin A in human mesenchymal stem cells.J. Cell. Physiol.20202357-85628563610.1002/jcp.29495 31989645
    [Google Scholar]
  15. Abdullah-Al-ShoebM. SasakiK. KikutaniS. The late-stage protective effect of Mito-TEMPO against acetaminophen-induced hepatotoxicity in mouse and three-dimensional cell culture models.Antioxidants202091096510.3390/antiox9100965 33050213
    [Google Scholar]
  16. MohammadAAS In vivo and in vitro protective effect of Mito-TEMPO against In vivoliver injury.2020Available from: http://www.file:///C:/Users/Test-1/Downloads/yakugaku_kou297youyaku%20(4).pdf
  17. WangP.F. XieK. CaoY.X. ZhangA. Hepatoprotective effect of mitochondria-targeted antioxidant mito-tempo against lipopolysaccharide-induced liver injury in mouse.Mediators Inflamm.20222022111410.1155/2022/6394199 35769207
    [Google Scholar]
  18. StuderA. VoglerT. Applications of TEMPO in synthesis.Synthesis20082008131979199310.1055/s‑2008‑1078445
    [Google Scholar]
  19. LinM. LiS. YangL. Plasma membrane vesicles of human umbilical cord mesenchymal stem cells ameliorate acetaminophen-induced damage in HepG2 cells: a novel stem cell therapy.Stem Cell Res. Ther.202011122510.1186/s13287‑020‑01738‑z 32513263
    [Google Scholar]
  20. DuK. RamachandranA. WeemhoffJ.L. Mito-tempo protects against acute liver injury but induces limited secondary apoptosis during the late phase of acetaminophen hepatotoxicity.Arch. Toxicol.201993116317810.1007/s00204‑018‑2331‑8 30324313
    [Google Scholar]
  21. WangY. ZhaoY. WangZ. Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS.Front. Immunol.20211265278210.3389/fimmu.2021.652782 34054813
    [Google Scholar]
  22. KimH. LeeJ.H. ParkJ.W. IDH2 deficiency exacerbates acetaminophen hepatotoxicity in mice via mitochondrial dysfunction-induced apoptosis.Biochim. Biophys. Acta Mol. Basis Dis.2019186592333234110.1016/j.bbadis.2019.05.012 31121248
    [Google Scholar]
  23. DuK. FarhoodA. JaeschkeH. Mitochondria-targeted antioxidant Mito-Tempo protects against acetaminophen hepatotoxicity.Arch. Toxicol.201791276177310.1007/s00204‑016‑1692‑0 27002509
    [Google Scholar]
  24. MustacichD. PowisG. Thioredoxin reductase.Biochem. J.200034611810.1042/bj3460001 10657232
    [Google Scholar]
  25. Young ParkS. LeeS.M. Woo ShinS. ParkJ.W. Inactivation of mitochondrial NADP + -dependent isocitrate dehydrogenase by hypochlorous acid.Free Radic. Res.200842546747310.1080/10715760802098834 18484410
    [Google Scholar]
  26. MaldonadoEN LemastersJJ ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect.Mitochondrion 201419Pt A788410.1016/j.mito.2014.09.002 25229666
    [Google Scholar]
  27. AritomiK. IshitsukaY. TomishimaY. Evaluation of three-dimensional cultured HepG2 cells in a nano culture plate system: an in vitro human model of acetaminophen hepatotoxicity.J. Pharmacol. Sci.2014124221822910.1254/jphs.13135FP 24492462
    [Google Scholar]
  28. SekiE. BrennerD.A. KarinM. A liver full of JNK: signaling in regulation of cell function and disease pathogenesis, and clinical approaches.Gastroenterology2012143230732010.1053/j.gastro.2012.06.004 22705006
    [Google Scholar]
  29. HanawaN. ShinoharaM. SaberiB. GaardeW.A. HanD. KaplowitzN. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury.J. Biol. Chem.200828320135651357710.1074/jbc.M708916200 18337250
    [Google Scholar]
  30. UziD. BardaL. ScaiewiczV. CHOP is a critical regulator of acetaminophen-induced hepatotoxicity.J. Hepatol.201359349550310.1016/j.jhep.2013.04.024 23665281
    [Google Scholar]
  31. BudnitzD.S. LovegroveM.C. CrosbyA.E. Emergency department visits for overdoses of acetaminophen-containing products.Am. J. Prev. Med.201140658559210.1016/j.amepre.2011.02.026 21565648
    [Google Scholar]
  32. NelsonS.D. Ed. Thieme Medical Publishers, Inc.1990
    [Google Scholar]
  33. LoGuidiceA. BoelsterliU.A. Acetaminophen overdose-induced liver injury in mice is mediated by peroxynitrite independently of the cyclophilin D-regulated permeability transition.Hepatology201154396997810.1002/hep.24464 21626531
    [Google Scholar]
  34. RamachandranA. LebofskyM. BainesC.P. LemastersJ.J. JaeschkeH. Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury.Free Radic. Res.201145215616410.3109/10715762.2010.520319 20942566
    [Google Scholar]
  35. JaeschkeH. WilliamsC.D. FarhoodA. No evidence for caspase-dependent apoptosis in acetaminophen hepatotoxicity.Hepatology201153271871910.1002/hep.23940 21274895
    [Google Scholar]
  36. GujralJ.S. KnightT.R. FarhoodA. BajtM.L. JaeschkeH. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis?Toxicol. Sci.200267232232810.1093/toxsci/67.2.322 12011492
    [Google Scholar]
  37. ShiC. HaoB. YangY. JNK signaling pathway mediates acetaminophen-induced hepatotoxicity accompanied by changes of glutathione S-transferase A1 content and expression.Front. Pharmacol.201910109210.3389/fphar.2019.01092 31620005
    [Google Scholar]
  38. ChenY. ParkH.J. ParkJ. Carbon monoxide ameliorates acetaminophen‐induced liver injury by increasing hepatic HO‐1 and Parkin expression.FASEB J.20193312139051391910.1096/fj.201901258RR 31645120
    [Google Scholar]
  39. KnightT.R. KurtzA. BajtM.L. HinsonJ.A. JaeschkeH. Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress.Toxicol. Sci.200162221222010.1093/toxsci/62.2.212 11452133
    [Google Scholar]
  40. DuK. WilliamsC.D. McGillM.R. JaeschkeH. Lower susceptibility of female mice to acetaminophen hepatotoxicity: Role of mitochondrial glutathione, oxidant stress and c-jun N-terminal kinase.Toxicol. Appl. Pharmacol.20142811586610.1016/j.taap.2014.09.002 25218290
    [Google Scholar]
  41. SaitoC. ZwingmannC. JaeschkeH. Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine.Hepatology201051124625410.1002/hep.23267 19821517
    [Google Scholar]
  42. JamesL.P. McCulloughS.S. LampsL.W. HinsonJ.A. Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation.Toxicol. Sci.200375245846710.1093/toxsci/kfg181 12883092
    [Google Scholar]
  43. AgarwalR. MacMillan-CrowL.A. RaffertyT.M. Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase.J. Pharmacol. Exp. Ther.2011337111011810.1124/jpet.110.176321 21205919
    [Google Scholar]
  44. HurK.Y. SoJ.S. RudaV. IRE1α activation protects mice against acetaminophen-induced hepatotoxicity.J. Exp. Med.2012209230731810.1084/jem.20111298 22291093
    [Google Scholar]
  45. MobasherM.A. González-RodríguezÁ. SantamaríaB. RamosS. MartínM.Á. GoyaL. Protein tyrosine phosphatase 1B modulates GSK3β/Nrf2 and IGFIR signaling pathways in acetaminophen-induced hepatotoxicity.Cell Death Dis.201345626
    [Google Scholar]
  46. LiuF.C. LeeH.C. LiaoC.C. LiA.H. YuH.P. Tropisetron protects against acetaminophen‐induced liver injury via suppressing hepatic oxidative stress and modulating the activation of JNK/ERK MAPK pathways.BioMed Res. Int.2016201611910.1155/2016/1952947 27891510
    [Google Scholar]
  47. YangR. MikiK. HeX. KilleenM.E. FinkM.P. Prolonged treatment with N-acetylcystine delays liver recovery from acetaminophen hepatotoxicity.Crit. Care2009132R5510.1186/cc7782 19358737
    [Google Scholar]
  48. MuldrewK.L. JamesL.P. CoopL. Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection.Drug Metab. Dispos.200230444645110.1124/dmd.30.4.446 11901099
    [Google Scholar]
  49. BhushanB. ChavanH. BorudeP. Dual role of epidermal growth factor receptor in liver injury and regeneration after acetaminophen overdose in mice.Toxicol. Sci.2017155236337810.1093/toxsci/kfw213 28123000
    [Google Scholar]
  50. ChoiY.H. LeeH.S. ChungC.K. KimE.J. KangI.J. Protective effects of an ethanol extract of Angelica keiskei against acetaminophen-induced hepatotoxicity in HepG2 and HepaRG cells.Nutr. Res. Pract.20171129710410.4162/nrp.2017.11.2.97 28386382
    [Google Scholar]
  51. XieY. McGillM.R. DorkoK. Mechanisms of acetaminophen-induced cell death in primary human hepatocytes.Toxicol. Appl. Pharmacol.2014279326627410.1016/j.taap.2014.05.010 24905542
    [Google Scholar]
/content/journals/jctv/10.2174/0126661217306815240723070112
Loading
/content/journals/jctv/10.2174/0126661217306815240723070112
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test