Skip to content
2000
Volume 3, Issue 1
  • ISSN: 3050-5070
  • E-ISSN: 3050-5089

Abstract

Introduction

Kolkata is located on the western bank of the Hooghly River. Wastewater from the city is discharged into this river and pollutes the river water. It causes maximum negative effects than positive impacts. Many uncertainties and bipolarity occur for this reason. Through the bipolar fuzzy concept, we can easily determine this situation.

Methods

A bipolar fuzzy is an effective tool for illustrating uncertainty and fuzziness for a decision-making problem. Therefore, in this paper, we have invented the bipolar expected value of bipolar fuzzy numbers. In addition, we have invented a few formulae and a theorem based on bipolar expected values.

Results and Discussion

Using this bipolar expected value, we developed a novel MCDM technique, which is employed for wastewater management problems in Kolkata under a bipolar environment. Numerically, we have solved the wastewater management problem in a bipolar fuzzy environment.

Conclusion

A useful ranking method for TBpF numbers has been invented. We designed a novel MCDM method based on bipolar expected value under a bipolar fuzzy environment. This MCDM technique analysed a wastewater management problem in Kolkata under a bipolar fuzzy environment.

Loading

Article metrics loading...

/content/journals/iscce/10.2174/0126662949326075240917101847
2025-01-01
2025-09-02
Loading full text...

Full text loading...

References

  1. ZadehL.A. Fuzzy sets, fuzzy logic, and fuzzy systems.World Scientific19966184610.1142/2895
    [Google Scholar]
  2. ZhangW.R. Yin Yang bipolar fuzzy setsIEEE International Conference on Fuzzy Systems Proceedings199810.1109/FUZZY.1998.687599.
    [Google Scholar]
  3. DuboisD. PradeH. An introduction to bipolar representations of information and preference.Int. J. Intell. Syst.200823886687710.1002/int.20297
    [Google Scholar]
  4. AkramM. Bipolar fuzzy graphs.Inf. Sci.2011181245548556410.1016/j.ins.2011.07.037
    [Google Scholar]
  5. AkramM. MuhammadG. AllahviranlooT. Bipolar fuzzy linear system of equations.Comput. Appl. Math.20193826910.1007/s40314‑019‑0814‑8
    [Google Scholar]
  6. AkramM. ArshadM. Ranking of trapezoidal bipolar fuzzy information system based on total ordering.Applied Mathematics E-Notes2019Vol. 19292309
    [Google Scholar]
  7. GhanbariR. Ghorbani-MoghadamK. Mahdavi-AmiriN. Duality in bipolar fuzzy number linear programming problem.Fuzzy Information and Engineering201911217518510.1080/16168658.2021.1886818
    [Google Scholar]
  8. AlghamdiM.A. AlshehriN.O. AkramM. Multi-criteria decision-making methods in bipolar fuzzy environment.Int. J. Fuzzy Syst.20182062057206410.1007/s40815‑018‑0499‑y
    [Google Scholar]
  9. SainiN. BajajR.K. GandotraN. DwivediR.P. Multi-criteria decision making with triangular intuitionistic fuzzy number based on distance measure & parametric entropy approach.Procedia Comput. Sci.2018125344110.1016/j.procs.2017.12.007
    [Google Scholar]
  10. YildirimF.S. SayanM. SanlidagT. UzunB. OzsahinD.U. OzsahinI. Comparative evaluation of the treatment of COVID-19 with multicriteria decision-making techniques.J. Healthc. Eng.2021202111110.1155/2021/886452233552457
    [Google Scholar]
  11. FarhadiniaB. Similarity-based multi-criteria decision making technique of pythagorean fuzzy sets.Artif. Intell. Rev.20225532103214810.1007/s10462‑021‑10054‑8
    [Google Scholar]
  12. DeliI. AliM. SmarandacheF. Bipolar neutrosophic sets and their application based on multi-criteria decision making problemsInternational conference on advanced mechatronic systems (ICAMechS), Beijing, China,201524925410.1109/ICAMechS.2015.7287068
    [Google Scholar]
  13. RiazM. GargH. Muhammad Athar FaridH. ChinramR. Multi-criteria decision making based on bipolar picture fuzzy operators and new distance measures.Comput. Model. Eng. Sci.2021127277180010.32604/cmes.2021.014174
    [Google Scholar]
  14. DongJ.Y. WanS.P. A new method for prioritized multi-criteria group decision making with triangular intuitionistic fuzzy numbers.J. Intell. Fuzzy Syst.20163031719173310.3233/IFS‑151882
    [Google Scholar]
  15. WanS. XuJ. A method for multi-attribute group decision making with triangular intuitionistic fuzzy numbers and application to trustworthy service selection.Sci. Iran.2017242794807
    [Google Scholar]
  16. GaraiT. GargH. Multi-criteria decision making of water resource management problem (in Agriculture field, Purulia district) based on possibility measures under generalized single valued non-linear bipolar neutrosophic environment.Expert Syst. Appl.202220511771510.1016/j.eswa.2022.117715
    [Google Scholar]
  17. GaraiT. GargH. Multi-criteria decision making of COVID-19 vaccines (in India) based on ranking interpreter technique under single valued bipolar neutrosophic environment.Expert Syst. Appl.202220811816010.1016/j.eswa.2022.11816035873110
    [Google Scholar]
  18. GaraiT. GargH. BiswasG. A fraction ranking-based multi-criteria decision-making method for water resource management under bipolar neutrosophic fuzzy environment.Artif. Intell. Rev.20235612148651490610.1007/s10462‑023‑10514‑3
    [Google Scholar]
  19. WarsiT. MukherjeeS. BiswaG. MitranT. RizviS.S. Urban water resources and its sustainable managementIn: Urban Water Crisis and Management - Strategies for Sustainable Development,6202248950910.1016/B978‑0‑323‑91838‑1.00020‑8
    [Google Scholar]
  20. NaidooS. OlaniranA. Treated wastewater effluent as a source of microbial pollution of surface water resources.Int. J. Environ. Res. Public Health201311124927010.3390/ijerph11010024924366046
    [Google Scholar]
  21. LofranoG. BrownJ. Wastewater management through the ages: A history of mankind.Sci. Total Environ.2010408225254526410.1016/j.scitotenv.2010.07.06220817263
    [Google Scholar]
  22. DaiggerG.T. Wastewater management in the 21st century.J. Environ. Eng.2007133767168010.1061/(ASCE)0733‑9372(2007)133:7(671)
    [Google Scholar]
  23. GoelP.K. Water pollution: causes, effects, and control.New Age International2006
    [Google Scholar]
  24. ParkinsonJ. TaylerK. Decentralized wastewater management in peri-urban areas in low-income countries.Environ. Urban.2003151759010.1177/095624780301500119
    [Google Scholar]
  25. HarlemanD. MurcottS. An innovative approach to urban wastewater treatment in the developing world.Water2001214448
    [Google Scholar]
  26. SinghD.V. UpadhyayA.K. SinghR. SinghD.P. Microalgal competence in urban wastewater management: Phycoremediation and lipid production.Int. J. Phytoremediation202224883184110.1080/15226514.2021.197946334748446
    [Google Scholar]
  27. QuJ. DaiX. HuH.Y. HuangX. ChenZ. LiT. CaoY. DaiggerG.T. Emerging trends and prospects for municipal wastewater management in China.ACS ES T Eng.20222332333610.1021/acsestengg.1c00345
    [Google Scholar]
  28. NadellaA. SenD. Application of wastewater quality index (WWQI) as an evaluation tool: A case of stormwater flow channel (SWF) of Kolkata, India.Environ. Monit. Assess.202219428010.1007/s10661‑021‑09714‑735006348
    [Google Scholar]
  29. BeraT. KumarV. SarkarD.J. DeviM.S. BeheraB.K. DasB.K. Pollution assessment and mapping of potentially toxic elements (PTE) distribution in urban wastewater fed natural wetland, Kolkata, India.Environ. Sci. Pollut. Res. Int.20222945678016782010.1007/s11356‑022‑20573‑835525894
    [Google Scholar]
  30. MukherjeeS. PaulS. DasR. BhattacharyaC. DuttaA. A comparative analysis of treating urban wastewater using the bioremediation method in Kolkata, India.J. Indian Chem. Soc.2019964523526
    [Google Scholar]
  31. DursunM. A new integrated fuzzy MCDM approach and its application to wastewater management.Int. J. Intell. Syst. Appl. Eng.201816192810.18201/ijisae.2018634723
    [Google Scholar]
  32. AliY. PervezH. KhanJ. Selection of the most feasible wastewater treatment technology in Pakistan using multi-criteria decision-making (MCDM).Water Conserv. Sci. Eng.202053-419921310.1007/s41101‑020‑00094‑6
    [Google Scholar]
  33. ZolfagharyP. ZakeriniaM. KazemiH. A model for the use of urban treated wastewater in agriculture using multiple criteria decision making (MCDM) and geographic information system (GIS).Agric. Water Manage.202124310649010.1016/j.agwat.2020.106490
    [Google Scholar]
  34. ChoudhuryS. HowladarP. MajumderM. SahaA.K. Application of novel MCDM for location selection of surface water treatment plant.IEEE Trans. Eng. Manage.20226951865187710.1109/TEM.2019.2938907
    [Google Scholar]
  35. NatarajanE. AugustinF. A bipolar fuzzy decision-making system for assessing high-risk coexisting tuberculosis disease in pregnant women.Heliyon20241011e3141610.1016/j.heliyon.2024.e3141638828312
    [Google Scholar]
  36. WangC.N. HuangY.F. ChaiY.C. NguyenV.T. A multi-criteria decision making (MCDM) for renewable energy plants location selection in vietnam under a fuzzy environment.Appl. Sci. (Basel)2018811206910.3390/app8112069
    [Google Scholar]
  37. RenJ. LützenM. Fuzzy multi-criteria decision-making method for technology selection for emissions reduction from shipping under uncertainties.Transp. Res. Part D Transp. Environ.201540436010.1016/j.trd.2015.07.012
    [Google Scholar]
  38. StanujkicD. KarabasevicD. ZavadskasE.K. SmarandacheF. BrauersW.K.M. A bipolar fuzzy extension of the multimoora method.Informatica (Vilnius)201930113515210.15388/Informatica.2019.201
    [Google Scholar]
  39. JeevarajS. Ranking of trapezoidal bipolar fuzzy numbers based on a new improved score function.Front. Artif. Intell. Appl.20217415310.3233/FAIA210174
    [Google Scholar]
/content/journals/iscce/10.2174/0126662949326075240917101847
Loading
/content/journals/iscce/10.2174/0126662949326075240917101847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test