Infectious Disorders - Drug Targets (Formerly Current Drug Targets - Infectious Disorders) - Volume 7, Issue 3, 2007
Volume 7, Issue 3, 2007
-
-
Zn Finger Containing Proteins as Targets for the Control of Viral Infections
Authors: C. C. Garcia and E. B. DamonteThe zinc finger proteins have fascinated many research groups because of their modular assembly, broad range of biological functions and more recently because they are attractive targets for antiviral therapy. The zinc finger domain is a very stable structural element whose hallmark is the coordination of a zinc ion by several amino acid residues, usually cysteines and histidines. These structural motifs are associated with protein-nucleic acid recognition as well as protein-protein interactions. The biological function of the zinc finger proteins is strongly dependent on the zinc ion, which assure integrity and stability. Thus, the disruption of critical zinc finger viral proteins represents a fundamentally new approach to inhibit viral replication in the absence of mutations leading to drug resistance phenotypes. This review summarizes the drug design and potential therapeutic applications of viral zinc fingers disrupting agents for the control of viral diseases.
-
-
-
Targeting Iron Acquisition by Mycobacterium tuberculosis
Authors: Ryan R. Monfeli and Craig BeesonTuberculosis (TB) caused by the pathogen Mycobacterium tuberculosis continues to be a major worldwide health problem. Lack of compliance to the complex, multi-drug therapy regimen has resulted in multidrug-resistant TB and a need for new drug targets. Siderophore molecules used for iron acquisition are good targets because pathogen survival and virulence is directly related to iron availability. Indeed, a key host defense mechanism is the production of siderocalins that sequester iron-laden siderophores and M. tuberculosis replicates poorly in the absence of these siderophores. A number of investigators have recently targeted siderophores or their synthesis for the development of novel anti-tubercular therapeutics. For example, one group has synthesized ‘dominant negative’ mycobactin siderophore analogues that significantly inhibit bacterial growth. Several other groups have developed agents that directly inhibit enzymes involved in siderophore synthesis. A profoundly different approach is to target the iron dependent regulator protein (IdeR) that represses siderophore synthesis genes and virulence factors when sustainable iron levels have been achieved. Loss of the repression leads to iron overload and oxidative damage. In contrast, enhanced IdeR repression at low iron levels attenuates M. tuberculosis virulence in mice. The structural basis for iron activation and IdeR binding to DNA has been recently reported and these insights have enabled the structure-based design of agents that target IdeR function. Small peptides that either enhance IdeR repression or inhibit IdeR dimerization demonstrate that IdeR activity can be rationally modulated.
-
-
-
Targeted Anti Bacterial Therapy
Authors: Iftach Yacoby and Itai BenharThe increasing development of bacterial resistance to traditional antibiotics has reached alarming levels, thus necessitating a strong need to develop new antimicrobial agents. These new antimicrobials should possess novel modes of action and/or different cellular targets compared with the existing antibiotics. As a result, new classes of compounds designed to avoid defined resistance mechanisms are undergoing pre clinical and clinical evaluation. Microbial and phage genomic sequencing are now being used to find previously unidentified genes and their corresponding proteins. In both traditional and newly developed antibiotics, the target selectivity lies in the drug itself, in its ability to affect a mechanism that is unique to prokaryotes. As a result, a vast number of potent agents that, due to low selectivity, in addition to the pathogen also affect the eukaryote host have been excluded from use as therapeutics. Such compounds could be re-considered for clinical use if applied as part of a targeted delivery platform where the drug selectivity is replaced by targetselectivity borne by the targeting moiety. With a large number of antibodies and antibody-drug conjugates already approved or near approval as cancer therapeutics, targeted therapy is becoming increasingly attractive and additional potential targeting moieties that are non-antibody based, such as peptides, nonantibody ligand-binding proteins and even carbohydrates are receiving increasing attention. Still, targeted therapy is mostly focused on cancer, with targeted anti bacterial therapies being suggested only very recently. This review will focus in the various methods of antimicrobial targeting, by systemic and local application of targeted antimicrobial substances.
-
-
-
Strategic Paradigm Shifts in the Antimicrobial Drug Discovery Process of the 21st Century
More LessThe numbers of global infections produced by bacterial strains that are resistant to single and multiple antimicrobial drugs are on the rise. Concomitant with this alarming upward trend, there is a clear downward trend in the intent and determination of pharmaceutical companies to develop novel antimicrobials. One of the pressing goals to confront the twenty first century's public health challenges brought about by the escalating antibacterial drug resistance problem is the development of an armamentarium of new chemotherapeutic agents. Two interconnected strategic paradigm shifts in the drug discovery process that are anticipated to facilitate the achievement of this goal are discussed herein. One is an antimicrobial to anti-infective (ATA) paradigm shift. The other is a shift from a target candidate prioritization (TCP) paradigm that is dominated by an essential target preference criterion to an alternative paradigm that relies on a less restrictive criterion, one that does not exclude conditionally essential targets. Examples of conditionally essential targets for the development of anti-infectives include the enzymes involved in the biosynthesis of small-molecule virulence effectors such as non-ribosomal peptide-polyketide-derived iron-scavenging siderophores. Siderophores are utilized for iron uptake by many pathogenic bacteria, including Mycobacterium and Yersinia species. The recent progress towards developing inhibitors of siderophore biosynthesis is discussed herein.
-
-
-
HIV-1 Capsid Protein and Cyclophilin A as New Targets for Anti-AIDS Therapeutic Agents
Authors: Jiebo Li, Shixing Tang, Indira Hewlett and Ming YangThe emergence of drug resistant mutations in current anti-HIV-1 drug regimens is an important determinant of the eventual drug failure. New drug development strategies that focus on either new targets or novel compounds are therefore critical for future effective viral suppression in HIV-1 infected individuals. Particularly, virus assembly and disassembly are attractive candidate processes for antiviral intervention. HIV-1 capsid (CA) protein and human cyclophilin A (CypA) play important roles in these processes, which consequently make them attractive targets of high priority. Inhibitors that target CA or CypA have been mainly divided into three classes: (1) compounds that specifically block capsid protein formation; (2) compounds that directly bind to the capsid and inhibit its assembly; and (3) compounds that bind to Cyp A and possibly inhibit the disassembly of capsid conical cores. Here, we give an overview of HIV-1 CA protein and Cyp A as new targets for potential anti-AIDS therapeutic agents.
-
-
-
In Search of Drug Targets for Mycobacterium tuberculosis
Authors: Hemant J. Purohit, Simrita Cheema, Sadhana Lal, Chandrakant P. Raut and Vipin C. KaliaMycobacterium tuberculosis is the etiological agent for tuberculosis in humans. The studies related to survival of this pathogen in the human host and development of drugs against reveal that the organism uses a complex physiology to adapt to the host environment. Many studies were targeted to key enzymes that allow this pathogen to either survive or remain latent within the host. Most of the models, which address the survival of pathogen, have evaluated limited dissolved oxygen and prevailing stress conditions. Hence, the truncated citric acid cycle, with the glyoxylate shunt was suggested as an option for survival of the pathogen and pathogenesis. We propose that the precursors to support this pathway could also be generated via enzymatic conversion involving poly-β-hydroxybutyrate (PHB). We have used available genome sequence data and analyzed for the possible enzymatic conversions that can generate glyoxylate, acetyl CoA, and other enolases that can also be useful for various fatty acid transformations. The enzymes for accumulation and further hydrolysis of PHB were examined in sequence data analysis. The target enzymes were searched for in the genome using identified conserved domains. Using M. tuberculosis H37Rv as a model bacterium a supportive pathway has been envisaged and integrated with glyoxylate cycle to provide a complete option to pathogen for sustainable consumption of available carbon source(s). The study proposes that the enzymes of PHB synthesis and hydrolysis are possible targets for drug design, and that this should be considered when evaluating isocitrate lyase and malate synthase as targets.
-
-
-
Interaction and Assembly of HBV Structural Proteins: Novel Target Sites of Anti-HBV Agents
Authors: In-Geol Choi and Yeon G. YuHuman hepatitis B virus (HBV) causes chronic hepatitis disease which is a major public health problem worldwide. HBV has 4 genes encoding viral DNA polymerase, protein X and two structural proteins, the surface and core proteins. HBV DNA polymerase has been a primary target for the development of anti-HBV agents due to its enzymatic nature, and several nucleoside derivatives that inhibit HBV polymerase are currently used as anti-HBV therapeutics. On the other hand, accumulating information on the capsid assembly and the maturation process of HBV particles provides additional approaches for the development of anti-HBV agents. Proper interaction between core proteins is required for assembly of the nucleocapsid, and the specificity of the interactions between the capsid and surface proteins is essential for the maturation of active HBV in infected cells. In this article, the assembly process of active HBV particles and approaches to utilize the interactions of HBV structural proteins as target site for the development of anti-HBV agents are reviewed. In particular, novel approaches to target the assembly process and the interaction between HBV structural proteins are introduced.
-
-
-
Phenothiazines as Anti-Multi-Drug Resistant Tubercular Agents
Authors: L. Amaral, M. Martins and M. ViveirosPulmonary tuberculosis (TB) has again become a global problem: it infects 2.2 billion people world-wide, caused the deaths of over 3 million last year and will produce over 8 million new cases of TB this coming year. Although effective therapy is widely available for antibiotic susceptible strains of Mycobacterium tuberculosis, current drugs are relatively useless against multi-drug resistant infections (MDRTB). Mortality is almost complete within two years regardless of therapy, and in the case of co-infection with HIV/AIDS, mortality is 100% within a few months of diagnosis especially the M. tuberculosis strain in XDRTB. As of the time of this writing no new effective anti-TB drugs have been made available by the pharmaceutical industry and XDRTB. Because TB is an intracellular infection of the non-killing macrophage of the lung, any agent that is to prove effective must have activity against MDRTB and XDRTB strains that have been phagocytosed by the human macrophage. This review intents to provide cogent in vitro, ex vivo and in vivo evidence that supports the use of a variety of commonly available phenothiazines for the therapy of MDRTB and XDRTB, especially when the prognosis of the infection is poor and the use of the recommend agents can take place along lines of “compassionate therapy”. In addition, we will describe the macrophage assay as indispensable when an agent is to be further studied for its effectiveness as an anti-TB drug. In vitro studies if not complemented by ex vivo studies will for the most part be dead-ended since few agents that have activity in vitro have any activity against phagocytosed M. tuberculosis.
-
-
-
Drug Targets from Human Pathogenic Amoebas: Entamoeba histolytica,Acanthamoeba polyphaga and Naegleria fowleri
More LessIn this review we present our search for the presence of drug targets in several species of human pathogenic parasites, mainly the amoebas Entamoeba histolytica, Acanthamoeba polyphaga and Naegleria fowleri. We started with an analysis of the concepts of essentiality and validity of the targets and continue with a description of the main characteristics of pathogenicity of these amoebas. We then proceed to evaluate these targets arranged mainly in seven groups corresponding to: a) enzymes which are secreted by these parasites to invade the human host, for example proteinases, phospholipases and pore forming peptides, b) glycolytic enzymes from Entamoeba and Naegleria, like the PPi-dependent phospho-fructokinase that differ from the host enzyme, c) thiols and enzymes of redox metabolism, present only in trypanosomatids, Entamoeba and Naegleria, such as the trypanothione/trypanothione reductase that maintains the reducing environment within the cell, d) antioxidant enzymes to regulate the oxidative stress produced by the phagocytic cells of the host or by the parasite metabolism, like the trypanothione peroxidase in connection with the NADPH-dependent trypanothione/trypanothione reductase which maybe is present in Naegleria fowleri, and peroxiredoxin in E. histolytica, e) enzymes for the synthesis of trypanothione like the ornithine decarboxylase, spermidine synthase and trypanothione synthetase, f) some of the proteins that assemble the secretory vesicles with the cell membrane, like the synaptobrevins and finally, g) encystment pathways and cyst-wall assembly proteins. Some of the above new targets will need to be studied in a more detail, including crystallographic studies of the enzymes for rational drug design. As far as we know there are no advanced crystallographic studies being conducted on targets from these three amoebas, as has been the case for various targets from the trypanosomatids.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
Most Read This Month
