Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5265
  • E-ISSN: 2212-3989

Abstract

The increasing incidence of multidrug-resistant tuberculosis (MDR-TB) is one of the most challenging tasks in tuberculosis treatment. Conventional TB treatment regimens have proven ineffective in treating MDR-TB, thus demanding the development of new drugs followed by delivery systems. Bedaquiline, a novel anti-TB drug, has been reported to inhibit the ATP synthase required for the growth and replication of TB bacteria. Bedaquiline is able to target the persistent or latent form of TB, which remains difficult to treat with conventional drugs. This makes bedaquiline an important drug in the fight against MDR-TB. The drug has been approved by the US FDA as well as European Medicines Agency and is now widely used as part of combination therapy for the treatment of MDR-TB. Bedaquiline and its advanced drug delivery system play a key role in tackling MDR-TB, providing a much-needed boost to control and eventually eliminate the disease. However, the cost of the drug remains a concern, and efforts are underway to make bedaquiline more accessible and affordable to patients in resource-limited settings. Nevertheless, the development of bedaquiline nanoformulations represents a significant step forward in the fight against TB and offers hope to millions of patients across the globe.

Loading

Article metrics loading...

/content/journals/iddt/10.2174/0118715265318306240816104553
2024-09-19
2025-10-27
Loading full text...

Full text loading...

References

  1. AlMatarM. MakkyE.A. YakıcıG. VarI. KayarB. KöksalF. Antimicrobial peptides as an alternative to anti-tuberculosis drugs.Pharmacol. Res.201812828830510.1016/j.phrs.2017.10.011 29079429
    [Google Scholar]
  2. World Health OrganizationGlobal tuberculosis report. In:2015
    [Google Scholar]
  3. BarryC.E.III BoshoffH.I. DartoisV. The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies.Nat. Rev. Microbiol.200971284585510.1038/nrmicro2236 19855401
    [Google Scholar]
  4. EsmailH. BarryC.E.III YoungD.B. WilkinsonR.J. The ongoing challenge of latent tuberculosis.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916452013043710.1098/rstb.2013.0437 24821923
    [Google Scholar]
  5. AlMatarM. AlMandealH. VarI. KayarB. KöksalF. New drugs for the treatment of Mycobacterium tuberculosis infection.Biomed. Pharmacother.20179154655810.1016/j.biopha.2017.04.105 28482292
    [Google Scholar]
  6. AndriesK. VerhasseltP. GuillemontJ. Drug Active on the ATP synthase of Mycobacterium tuberculosis.Science 1979; 307(2005):22322710.1126/science.1106753
    [Google Scholar]
  7. ZengS. ZhangJ. SunM. ZhangX. CookG.M. ZhangT. Nitric oxide-dependent electron transport chain inhibition by the cytochrome bc1 inhibitor and pretomanid combination kills Mycobacterium tuberculosis.Antimicrob. Agents Chemother.2021659e00956e2110.1128/AAC.00956‑21 34152815
    [Google Scholar]
  8. Van den BosscheA. VaretH. SuryA. Transcriptional profiling of a laboratory and clinical Mycobacterium tuberculosis strain suggests respiratory poisoning upon exposure to delamanid.Tuberculosis2019117182310.1016/j.tube.2019.05.002 31378263
    [Google Scholar]
  9. KapoorB. GulatiM. KaurR. Discovery and development of antibacterial agents: Fortuitous and designed.Mini Rev. Med. Chem.2022227984102910.2174/1570193X19666211221150119 34939541
    [Google Scholar]
  10. CarboneJ. ParadisN.J. BennetL. AlesianiM.C. HausmanK.R. WuC. Inhibition mechanism of anti-TB Drug SQ109: Allosteric inhibition of TMM translocation of Mycobacterium tuberculosis mmpl3 transporter.J. Chem. Inf. Model.202363165356537410.1021/acs.jcim.3c00616 37589273
    [Google Scholar]
  11. FooC.S.Y. LechartierB. KollyG.S. Characterization of DprE1-mediated benzothiazinone resistance in Mycobacterium tuberculosis.Antimicrob. Agents Chemother.201660116451645910.1128/AAC.01523‑16 27527085
    [Google Scholar]
  12. UptonA.M. ChoS. YangT.J. In vitro and in vivo activities of the nitroimidazole TBA-354 against Mycobacterium tuberculosis.Antimicrob. Agents Chemother.201559113614410.1128/AAC.03823‑14 25331696
    [Google Scholar]
  13. HillemannD. Rüsch-GerdesS. RichterE. In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants.Antimicrob. Agents Chemother.200852280080110.1128/AAC.01189‑07 18070973
    [Google Scholar]
  14. YangY. ZhaoN. XuX. Discovery and Mechanistic Study of Novel Mycobacterium tuberculosis ClpP1P2 Inhibitors.J. Med. Chem.20236624165971661410.1021/acs.jmedchem.3c01054 38088921
    [Google Scholar]
  15. BhardwajA.K. KumarD. RainaS.K. SharmaS. ChanderV. Assessment of extra pulmonary tuberculosis (EPTB) cases from selected tuberculosis units (TUs) of Himachal Pradesh, India.Int. J. Healthc.201532293310.14419/ijh.v3i2.4567
    [Google Scholar]
  16. ShrivastavaD.A.K. BrahmachariD.S. PathakD.P. Clinico-Epidemiological Profile of Extra-pulmonary Tuberculosis in Central India.Int. J. Med. Res. Rev.20153222323010.17511/ijmrr.2015.i2.046
    [Google Scholar]
  17. World Health OrganizationGlobal Tuberculosis Report.2018
    [Google Scholar]
  18. World Health OrganizationGlobal tuberculosis report.2023
    [Google Scholar]
  19. AlifanoP. PalumboC. PasanisiD. TalàA. Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering.J. Biotechnol.2015202607710.1016/j.jbiotec.2014.11.024 25481100
    [Google Scholar]
  20. CadeC.E. DlouhyA.C. MedzihradszkyK.F. Salas-CastilloS.P. GhiladiR.A. Isoniazid‐resistance conferring mutations in Mycobacterium tuberculosis KatG: Catalase, peroxidase, and INH‐NADH adduct formation activities.Protein Sci.201019345847410.1002/pro.324 20054829
    [Google Scholar]
  21. Nebenzahl-GuimaraesH. JacobsonK.R. FarhatM.R. MurrayM.B. Systematic review of allelic exchange experiments aimed at identifying mutations that confer drug resistance in Mycobacterium tuberculosis.J. Antimicrob. Chemother.201469233134210.1093/jac/dkt358 24055765
    [Google Scholar]
  22. SalamonH YamaguchiKD CirilloDM Integration of published information into a resistance-associated mutation database for Mycobacterium tuberculosis.J Infect Dis2015211Suppl 2)(Suppl. 2S50S5710.1093/infdis/jiu816 25765106
    [Google Scholar]
  23. ZhengX. NingZ. DrobniewskiF. pncA mutations are associated with slower sputum conversion during standard treatment of multidrug-resistant tuberculosis.Int. J. Antimicrob. Agents201749218318810.1016/j.ijantimicag.2016.10.012 28012685
    [Google Scholar]
  24. IslamM.M. TanY. HameedH.M.A. Detection of novel mutations associated with independent resistance and cross-resistance to isoniazid and prothionamide in Mycobacterium tuberculosis clinical isolates.Clinical Microbiology and Infection2019251041.e11041.e710.1016/j.cmi.2018.12.008
    [Google Scholar]
  25. ChienJ.Y. ChiuW.Y. ChienS.T. ChiangC.J. YuC.J. HsuehP.R. Mutations in gyrA and gyrB among Fluoroquinolone- and Multidrug-Resistant Mycobacterium tuberculosis Isolates.Antimicrob. Agents Chemother.20166042090209610.1128/AAC.01049‑15 26787695
    [Google Scholar]
  26. GeorghiouS.B. MaganaM. GarfeinR.S. CatanzaroD.G. CatanzaroA. RodwellT.C. Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: A systematic review.PLoS One201273e3327510.1371/journal.pone.0033275 22479378
    [Google Scholar]
  27. PankhurstL.J. del Ojo EliasC. VotintsevaA.A. COMPASS-TB Study GroupRapid, comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: A prospective study.Lancet Respir. Med.201641495810.1016/S2213‑2600(15)00466‑X 26669893
    [Google Scholar]
  28. WalkerT.M. KohlT.A. OmarS.V. Modernizing medical microbiology (MMM) informatics group.Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study.Lancet Infect. Dis.201515101193120210.1016/S1473‑3099(15)00062‑6 26116186
    [Google Scholar]
  29. BradleyP. GordonN.C. WalkerT.M. Correction: Corrigendum: Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.Nat. Commun.2016711146510.1038/ncomms11465 27095245
    [Google Scholar]
  30. DomínguezJ. BoettgerE.C. CirilloD. TBNET.RESIST-TB networks.Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement.Int. J. Tuberc. Lung Dis.2016201244210.5588/ijtld.15.0221 26688526
    [Google Scholar]
  31. AhmadN. AhujaS.D. AkkermanO.W. Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment–2017.Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis.Lancet20183921015082183410.1016/S0140‑6736(18)31644‑1 30215381
    [Google Scholar]
  32. TranS.L. CookG.M. The F1Fo-ATP synthase of Mycobacterium smegmatis is essential for growth.J. Bacteriol.2005187145023502810.1128/JB.187.14.5023‑5028.2005 15995221
    [Google Scholar]
  33. WorleyM.V. EstradaS.J. Bedaquiline: A novel antitubercular agent for the treatment of multidrug-resistant tuberculosis.Pharmacotherapy201434111187119710.1002/phar.1482 25203970
    [Google Scholar]
  34. KoulA. VranckxL. DharN. Delayed bactericidal response of Mycobacterium tuberculosis to bedaquiline involves remodelling of bacterial metabolism.Nat. Commun.201451336910.1038/ncomms4369 24569628
    [Google Scholar]
  35. GothamD. McKennaL. FrickM. LessemE. Public investments in the clinical development of bedaquiline.PLoS One2020159e023911810.1371/journal.pone.0239118 32946474
    [Google Scholar]
  36. MaseS. ChorbaT. LobueP. CastroK. Centers for Disease Control and Prevention.Provisional CDC guidelines for the use and safety monitoring of bedaquiline fumarate (Sirturo) for the treatment of multidrug-resistant tuberculosis.MMWR Recomm. Rep.201362RR-09112 24157696
    [Google Scholar]
  37. PalominoJ.C. MartinA. TMC207 becomes bedaquiline, a new anti-TB drug.Future Microbiol.2013891071108010.2217/fmb.13.85 24020736
    [Google Scholar]
  38. Drug-resistant T.BIn: Centers for Disease Control and Prevention.2022n.d
    [Google Scholar]
  39. SaxenaA. MukherjeeU. KumariR. SinghP. LalR. Synthetic biology in action: Developing a drug against MDR-TB.Indian J. Microbiol.201454436937510.1007/s12088‑014‑0498‑0 25320433
    [Google Scholar]
  40. FieldS.K. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment?Ther. Adv. Chronic Dis.20156417018410.1177/2040622315582325 26137207
    [Google Scholar]
  41. LubanyanaH. ArvidssonP.I. GovenderT. KrugerH.G. NaickerT. Improved Synthesis and Isolation of Bedaquiline.ACS Omega2020573607361110.1021/acsomega.9b04037 32118176
    [Google Scholar]
  42. SarathyJ.P. GruberG. DickT. Re-understanding the mechanisms of action of the anti-mycobacterial drug bedaquiline.Antibiotics20198426110.3390/antibiotics8040261 31835707
    [Google Scholar]
  43. WangZ. SoniV. MarrinerG. Mode-of-action profiling reveals glutamine synthetase as a collateral metabolic vulnerability of M. tuberculosis to bedaquiline.Proc. Natl. Acad. Sci. USA201911639196461965110.1073/pnas.1907946116 31501323
    [Google Scholar]
  44. SarathyJ.P. RagunathanP. ShinJ. TBAJ-876 retains bedaquiline’s activity against subunits c and ε of Mycobacterium tuberculosis F-ATP Synthase.Antimicrob. Agents Chemother.20196310e01191e1910.1128/AAC.01191‑19 31358589
    [Google Scholar]
  45. SaeedD.K. ShakoorS. RazzakS.A. Variants associated with Bedaquiline (BDQ) resistance identified in Rv0678 and efflux pump genes in Mycobacterium tuberculosis isolates from BDQ naïve TB patients in Pakistan.BMC Microbiol.20222216210.1186/s12866‑022‑02475‑4 35209842
    [Google Scholar]
  46. SonejaM. SinghB.K. SharmaR. Mutation in atpE and Rv0678 genes associated with bedaquline resistance among drug-resistant tuberculosis patients: A pilot study from a high-burden setting in Northern India.Int. J. Mycobacteriol.20209221221510.4103/ijmy.ijmy_30_20 32474547
    [Google Scholar]
  47. TomaliaD.A. NaylorA.M. GoddardW.A.III Starburst dendrimers: Molecular‐level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter.Angew. Chem. Int. Ed. Engl.199029213817510.1002/anie.199001381
    [Google Scholar]
  48. HouraniR. KakkarA. Advances in the elegance of chemistry in designing dendrimers.Macromol. Rapid Commun.2010311194797410.1002/marc.200900712 21590844
    [Google Scholar]
  49. SvensonS. TomaliaD.A. Dendrimers in biomedical applications—reflections on the field.Adv. Drug Deliv. Rev.20126410211510.1016/j.addr.2012.09.030 16305813
    [Google Scholar]
  50. LeeC.C. MacKayJ.A. FréchetJ.M.J. SzokaF.C. Designing dendrimers for biological applications.Nat. Biotechnol.200523121517152610.1038/nbt1171 16333296
    [Google Scholar]
  51. LiuM. KonoK. FréchetJ.M.J. Water-soluble dendritic unimolecular micelles.J. Control. Release2000651-212113110.1016/S0168‑3659(99)00245‑X 10699276
    [Google Scholar]
  52. WolinskyJ. GrinstaffM. Therapeutic and diagnostic applications of dendrimers for cancer treatment.Adv. Drug Deliv. Rev.20086091037105510.1016/j.addr.2008.02.012 18448187
    [Google Scholar]
  53. OkadaH. ToguchiH. Biodegradable microspheres in drug delivery.Crit. Rev. Ther. Drug Carrier Syst.199512119910.1615/CritRevTherDrugCarrierSyst.v12.i1.10 8521523
    [Google Scholar]
  54. GomesC. MoreiraR.G. Castell-PerezE. Poly (DL-lactide-co-glycolide) (PLGA) nanoparticles with entrapped trans-cinnamaldehyde and eugenol for antimicrobial delivery applications.J. Food Sci.2011762N16N2410.1111/j.1750‑3841.2010.01985.x 21535781
    [Google Scholar]
  55. KeawchaoonL. YoksanR. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles.Colloids Surf. B Biointerfaces201184116317110.1016/j.colsurfb.2010.12.031 21296562
    [Google Scholar]
  56. HosseiniS.F. ZandiM. RezaeiM. FarahmandghaviF. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study.Carbohydr. Polym.2013951505610.1016/j.carbpol.2013.02.031 23618238
    [Google Scholar]
  57. MalamY. LoizidouM. SeifalianA.M. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer.Trends Pharmacol. Sci.2009301159259910.1016/j.tips.2009.08.004 19837467
    [Google Scholar]
  58. GregoriadisG. FlorenceA.T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential.Drugs1993451152810.2165/00003495‑199345010‑00003 7680982
    [Google Scholar]
  59. Sonneville-AubrunO. SimonnetJ.T. L’AlloretF. Nanoemulsions: a new vehicle for skincare products.Adv. Colloid Interface Sci.2004108-10914514910.1016/j.cis.2003.10.026 15072937
    [Google Scholar]
  60. MasonT.G. WilkingJ.N. MelesonK. ChangC.B. GravesS.M. Nanoemulsions: formation, structure, and physical properties.J. Phys. Condens. Matter20061841R635R66610.1088/0953‑8984/18/41/R01
    [Google Scholar]
  61. JeetahR. Bhaw-LuximonA. JhurryD. Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment.J. Biomed. Nanotechnol.20141091810184010.1166/jbn.2014.1884 25992442
    [Google Scholar]
  62. LetchfordK. BurtH. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes.Eur. J. Pharm. Biopharm.200765325926910.1016/j.ejpb.2006.11.009 17196803
    [Google Scholar]
  63. VonarbourgA. PassiraniC. SaulnierP. BenoitJ.P. Parameters influencing the stealthiness of colloidal drug delivery systems.Biomaterials200627244356437310.1016/j.biomaterials.2006.03.039 16650890
    [Google Scholar]
  64. JonesM.C. LerouxJ.C. Polymeric micelles – a new generation of colloidal drug carriers.Eur. J. Pharm. Biopharm.199948210111110.1016/S0939‑6411(99)00039‑9 10469928
    [Google Scholar]
  65. KwonG.S. YokoyamaM. OkanoT. SakuraiY. KataokaK. Biodistribution of micelle-forming polymer-drug conjugates.Pharm. Res.199310797097410.1023/A:1018998203127 8378259
    [Google Scholar]
  66. VentolaC.L. Progress in Nanomedicine: Approved and Investigational Nanodrugs.P&T20174212742755 29234213
    [Google Scholar]
  67. PatraJ.K. DasG. FracetoL.F. Nano based drug delivery systems: recent developments and future prospects.J. Nanobiotechnology20181617110.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  68. ShakeriA. SahebkarA. Opinion Paper: Nanotechnology: A Successful Approach to Improve Oral Bioavailability of Phytochemicals.Recent Pat. Drug Deliv. Formul.20161014610.2174/1872211309666150611120724 26063398
    [Google Scholar]
  69. SavjaniK.T. GajjarA.K. SavjaniJ.K. Drug solubility: importance and enhancement techniques.ISRN Pharm.2012201211010.5402/2012/195727 22830056
    [Google Scholar]
  70. DaisyS. MohitS. SandeepK. SandeepK. Solubility enhancement deminent role in poorly soluble drugs.Res J Pharm Technol20092220224
    [Google Scholar]
  71. AjazuddinS. SarafS. Applications of novel drug delivery system for herbal formulations.Fitoterapia201081768068910.1016/j.fitote.2010.05.001 20471457
    [Google Scholar]
  72. SilvaP. BonifácioB. RamosM. NegriK. Maria BauabT. ChorilliM. Nanotechnology-based drug delivery systems and herbal medicines: a review.Int. J. Nanomedicine20131110.2147/IJN.S52634
    [Google Scholar]
  73. GuptaS. KesarlaR. OmriA. Formulation strategies to improve the bioavailability of poorly absorbed drugs with special emphasis on self-emulsifying systems.ISRN Pharm.2013201311610.1155/2013/848043 24459591
    [Google Scholar]
  74. KumariA. YadavS.K. YadavS.C. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf. B Biointerfaces201075111810.1016/j.colsurfb.2009.09.001 19782542
    [Google Scholar]
  75. de JongDrug delivery and nanoparticles: Applications and hazards.Int. J. Nanomedicine200813313310.2147/IJN.S596
    [Google Scholar]
  76. DevalapallyH. ShenoyD. LittleS. LangerR. AmijiM. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs: part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model.Cancer Chemother. Pharmacol.200759447748410.1007/s00280‑006‑0287‑5 16862429
    [Google Scholar]
  77. NairA. GreenyA. NandanA. Advanced drug delivery and therapeutic strategies for tuberculosis treatment.J. Nanobiotechnology202321141410.1186/s12951‑023‑02156‑y 37946240
    [Google Scholar]
  78. ZacaronT.M. SilvaM.L.S. CostaM.P. Advancements in chitosan-based nanoparticles for pulmonary drug delivery.Polymers20231518384910.3390/polym15183849 37765701
    [Google Scholar]
  79. EedaraB.B. FanC. SinhaS. KhadkaP. DasS.C. Inhalable combination powder formulations for treating latent and multidrug-resistant tuberculosis: Formulation and In vitro characterization.Pharmaceutics2023159235410.3390/pharmaceutics15092354 37765321
    [Google Scholar]
  80. SuyashM. Pulmonary delivery of bedaquiline-loaded cubosomes for non-small cell lung cancer (NSCLC) treatment.Drug Delivery to the Lungs202132
    [Google Scholar]
  81. De MatteisL. JaryD. LucíaA. New active formulations against M. tuberculosis: Bedaquiline encapsulation in lipid nanoparticles and chitosan nanocapsules.Chem. Eng. J.201834018119110.1016/j.cej.2017.12.110
    [Google Scholar]
  82. RawalT. PatelS. ButaniS. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline.Eur. J. Pharm. Sci.201812427328710.1016/j.ejps.2018.08.038 30176365
    [Google Scholar]
  83. PatilS.M. SawantS.S. KundaN.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC).Int. J. Pharm.202160712104610.1016/j.ijpharm.2021.121046 34450225
    [Google Scholar]
  84. Najib UllahS.N.M. AfzalO. AltamimiA.S.A. Bedaquiline-loaded solid lipid nanoparticles drug delivery in the management of non-small-cell lung cancer (NSCLC).Pharmaceuticals2023169130910.3390/ph16091309 37765117
    [Google Scholar]
  85. RudolphD. RedingerN. SchwarzK. Amorphous drug nanoparticles for inhalation therapy of multidrug-resistant tuberculosis.ACS Nano202317109478948610.1021/acsnano.3c01664 37160267
    [Google Scholar]
  86. Andries Koenraad Jozef Lodewijk Marcel, Esther Dina Guido Basstanie, Maristella BERNINILong-acting formulations of bedaquiline. 20223943070A1
    [Google Scholar]
  87. Gupta ManishKumar Marathe ShripadWasudeo Tambwekar KaustubhRamesh Nair ShreedeviVelayudhan Dispersible compositions comprising bedaquiline fumarate.2016CA2973301A1
    [Google Scholar]
  88. XuJinyi ZhangLiang ZhangXiangyang Crystal forms of bedaquiline fumarate and preparation methods therefor.10196360B22019
    [Google Scholar]
  89. ZvatoraPavel DammerOndrej RidvanLudek Salts of bedaquiline.2016058564A12016
    [Google Scholar]
  90. NingDongbo PanJihong YiZhu GuoYabing BoYang GuoTingting Tingting, Purification of bedaquiline and preparation method of stable crystal form.CN109422679B2021
    [Google Scholar]
  91. MalhotraGeena JoshiKalpana RautPreeti GhosalkarJeevan. Neeta DIXIT, Pharmaceutical Formulations.20210100786A12021
    [Google Scholar]
  92. ChenHaijian LiuYingying GaoJianlong ZhengXuejing YuGeng YunxiaXiansheng Bedaquinoline pharmaceutical preparation.CN111888477A2020
    [Google Scholar]
  93. Costa-GouveiaJ. AínsaJ.A. BrodinP. LucíaA. How can nanoparticles contribute to antituberculosis therapy?Drug Discov. Today201722360060710.1016/j.drudis.2017.01.011 28137645
    [Google Scholar]
  94. KalhapureR.S. SulemanN. MocktarC. SeedatN. GovenderT. Nanoengineered drug delivery systems for enhancing antibiotic therapy.J. Pharm. Sci.2015104387290510.1002/jps.24298 25546108
    [Google Scholar]
  95. IsrallsS. BaisleyK. NgamE. GrantA.D. MillardJ. QT interval prolongation in people treated with bedaquiline for drug-resistant tuberculosis under programmatic conditions: A retrospective cohort study.Open Forum Infect. Dis.202188ofab41310.1093/ofid/ofab413 34466629
    [Google Scholar]
  96. AgrahariV. AgrahariV. Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities.Drug Discov. Today201823597499110.1016/j.drudis.2018.01.047 29406263
    [Google Scholar]
/content/journals/iddt/10.2174/0118715265318306240816104553
Loading
/content/journals/iddt/10.2174/0118715265318306240816104553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test