Skip to content
2000
Volume 1, Issue 1
  • ISSN: 2949-902X
  • E-ISSN: 2949-9011

Abstract

Introduction

Diabetes mellitus is the major contributor to the morbidity and mortality of individuals worldwide and leads to consequences such as cardiovascular illnesses, renal failure, eyesight loss, and other disorders. More than half of diabetics do not obtain the appropriate care despite the disease's increasing prevalence, particularly in low- and middle-income nations. The global prevalence of diabetes has been increasing briskly, and the number of individuals with diabetes increased from 200 million in 1990 to almost 830 million in 2022. In low- and middle-income nations, this rise is particularly noticeable. An estimated 783 million persons, or 12.2% of the total adult population, are expected to have diabetes by 2045.

Methods

The treatment therapeutics which are available for the management of DM include sulfonylureas, meglitinides, thiazolidinediones, DPP-4 Inhibitors, GLP-1 receptor agonists, SGLT2 inhibitors, alpha-glucosidase inhibitors, and bile acid sequestrants. The SGLT2 inhibitor, Empagliflozin, has been proven to provide good management of DM and aids in reducing blood sugar levels. It can be taken either on its own or in conjunction with DPP-4 (dipeptidyl peptidase 4) inhibitors or metformin. Due to the fact that empagliflozin and its combination are frequently prescribed for the management of DM, the analysis becomes an important aspect of ensuring proper quality control.

Results and Discussion

The literature listed a number of analytical methods, including HPTLC, HLPC, UV spectroscopy, and other hyphenated techniques.

Conclusion

This review provided clear and detailed analytical methods and their validation, which provide full insight into the analysis of this drug and its combination.

Loading

Article metrics loading...

/content/journals/gld/10.2174/0129499011332816250311185959
2025-04-28
2025-09-12
Loading full text...

Full text loading...

References

  1. BalajiR. DuraisamyR. KumarM.P. Complications of diabetes mellitus: A review.Drug Invent. Today2019121
    [Google Scholar]
  2. ReddyE. A basic review on diabetes mellitus.J Complement Altern Med Res.201844115
    [Google Scholar]
  3. EizirikD.L. PasqualiL. CnopM. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure.Nat. Rev. Endocrinol.202016734936210.1038/s41574‑020‑0355‑732398822
    [Google Scholar]
  4. ChiangJ.L. KirkmanM.S. LaffelL.M.B. PetersA.L. Type 1 diabetes through the life span: A position statement of the American Diabetes Association.Diabetes Care20143772034205410.2337/dc14‑114024935775
    [Google Scholar]
  5. BaynesH.W. Classification, pathophysiology, diagnosis and management of diabetes mellitus.J. Diabetes Metab.20156519
    [Google Scholar]
  6. RichardsonS.J. WillcoxA. BoneA.J. MorganN.G. FoulisA.K. Immunopathology of the human pancreas in type-I diabetes.Semin. Immunopathol.201133192110.1007/s00281‑010‑0205‑020424842
    [Google Scholar]
  7. PorteD. Jr β-cells in type II diabetes mellitus.Diabetes199140216618010.2337/diab.40.2.1661991568
    [Google Scholar]
  8. AhrénB. Type 2 diabetes, insulin secretion and β-cell mass.Curr. Mol. Med.20055327528610.2174/156652405376600415892647
    [Google Scholar]
  9. ScottL.J. Empagliflozin: A review of its use in patients with type 2 diabetes mellitus.Drugs201474151769178410.1007/s40265‑014‑0298‑125274537
    [Google Scholar]
  10. MichelM.C. MayouxE. VallonV. A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans.Naunyn Schmiedebergs Arch. Pharmacol.2015388880181610.1007/s00210‑015‑1134‑126108304
    [Google Scholar]
  11. SahaA. SamadderA. NandiS. Stem cell therapy in combination with naturopathy: Current progressive management of diabetes and associated complications.Curr. Top. Med. Chem.202323864968910.2174/156802662366622120115093336464871
    [Google Scholar]
  12. BilginS. KurtkulagiO. DumanT.T. TelB.M.A. KahveciG. KiranM. ErgeE. AktasG. Sodium glucose co-transporter-2 inhibitor, empagliflozin, is associated with significant reduction in weight, body mass index, fasting glucose, and A1c levels in type 2 diabetic patients with established coronary heart disease: The SUPER GATE study.Ir. J. Med. Sci.202219141647165210.1007/s11845‑021‑02761‑634476725
    [Google Scholar]
  13. LupsaB.C. InzucchiS.E. Use of SGLT2 inhibitors in type 2 diabetes: Weighing the risks and benefits.Diabetologia201861102118212510.1007/s00125‑018‑4663‑630132031
    [Google Scholar]
  14. FramptonJ.E. Empagliflozin: A review in type 2 diabetes.Drugs201878101037104810.1007/s40265‑018‑0937‑z29946963
    [Google Scholar]
  15. ShubrookJ. Baradar-BokaieB. AdkinsS. Empagliflozin in the treatment of type 2 diabetes: Evidence to date.Drug Des. Devel. Ther.201595793580310.2147/DDDT.S6992626586935
    [Google Scholar]
  16. RavindranS. MunusamyS. Renoprotective mechanisms of sodium‐glucose co‐transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease.J. Cell. Physiol.202223721182120510.1002/jcp.3062134713897
    [Google Scholar]
  17. LevineM.J. Empagliflozin for type 2 diabetes mellitus: An overview of phase 3 clinical trials.Curr. Diabetes Rev.2017134405423[PMID: 27296042
    [Google Scholar]
  18. WhiteJ.R. Jr Empagliflozin, an SGLT2 inhibitor for the treatment of type 2 diabetes mellitus: A review of the evidence.Ann. Pharmacother.201549558259810.1177/106002801557356425712444
    [Google Scholar]
  19. BaysH. Sodium glucose co-transporter type 2 (SGLT2) inhibitors: Targeting the kidney to improve glycemic control in diabetes mellitus.Diabetes Ther.20134219522010.1007/s13300‑013‑0042‑y24142577
    [Google Scholar]
  20. JahagirdarV. BarnettA.H. Empagliflozin for the treatment of type 2 diabetes.Expert Opin. Pharmacother.201415162429244110.1517/14656566.2014.96607825301180
    [Google Scholar]
  21. GuedesE.P. HohlA. de MeloT.G. LauandF. Linagliptin: Farmacology, efficacy and safety in type 2 diabetes treatment.Diabetol. Metab. Syndr.2013512510.1186/1758‑5996‑5‑2523697612
    [Google Scholar]
  22. McGillJ.B. Linagliptin for type 2 diabetes mellitus: A review of the pivotal clinical trials.Ther. Adv. Endocrinol. Metab.20123411312410.1177/204201881244940623185685
    [Google Scholar]
  23. Graefe-ModyU. RetlichS. FriedrichC. Clinical pharmacokinetics and pharmacodynamics of linagliptin.Clin. Pharmacokinet.201251741142710.2165/11630900‑000000000‑0000022568694
    [Google Scholar]
  24. JanardhanS. SastryG. Dipeptidyl peptidase IV inhibitors: A new paradigm in type 2 diabetes treatment.Curr. Drug Targets201415660062110.2174/138945011566614031110263824611684
    [Google Scholar]
  25. SeinoY. YabeD. Glucose‐dependent insulinotropic polypeptide and glucagon‐like peptide‐1: Incretin actions beyond the pancreas.J. Diabetes Investig.20134210813010.1111/jdi.1206524843641
    [Google Scholar]
  26. SortinoM.A. SinagraT. CanonicoP.L. Linagliptin: A thorough characterization beyond its clinical efficacy.Front. Endocrinol. (Lausanne)201341610.3389/fendo.2013.0001623550180
    [Google Scholar]
  27. RojasL.B.A. GomesM.B. Metformin: An old but still the best treatment for type 2 diabetes.Diabetol. Metab. Syndr.201351610.1186/1758‑5996‑5‑623415113
    [Google Scholar]
  28. SongR. Mechanism of metformin: A tale of two sites.Diabetes Care201639218718910.2337/dci15‑001326798149
    [Google Scholar]
  29. LunderM. JanićM. JapeljM. JuretičA. JanežA. ŠabovičM. Empagliflozin on top of metformin treatment improves arterial function in patients with type 1 diabetes mellitus.Cardiovasc. Diabetol.201817115310.1186/s12933‑018‑0797‑630509271
    [Google Scholar]
  30. RenaG. HardieD.G. PearsonE.R. The mechanisms of action of metformin.Diabetologia20176091577158510.1007/s00125‑017‑4342‑z28776086
    [Google Scholar]
  31. PernicovaI. KorbonitsM. Metformin—mode of action and clinical implications for diabetes and cancer.Nat. Rev. Endocrinol.201410314315610.1038/nrendo.2013.25624393785
    [Google Scholar]
  32. Szymczak-PajorI. WenclewskaS. ŚliwińskaA. Metabolic action of metformin.Pharmaceuticals (Basel)202215781010.3390/ph1507081035890109
    [Google Scholar]
  33. RenaG. PearsonE.R. SakamotoK. Molecular mechanism of action of metformin: Old or new insights?Diabetologia20135691898190610.1007/s00125‑013‑2991‑023835523
    [Google Scholar]
  34. ForetzM. GuigasB. ViolletB. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus.Nat. Rev. Endocrinol.2019151056958910.1038/s41574‑019‑0242‑231439934
    [Google Scholar]
  35. GlossmannH.H. LutzO.M.D. Pharmacology of metformin – An update.Eur. J. Pharmacol.201986517278210.1016/j.ejphar.2019.17278231705902
    [Google Scholar]
  36. WuT. HorowitzM. RaynerC.K. New insights into the anti-diabetic actions of metformin: from the liver to the gut.Expert Rev. Gastroenterol. Hepatol.201711215716610.1080/17474124.2017.127376927983877
    [Google Scholar]
  37. HurK.Y. LeeM.S. New mechanisms of metformin action: Focusing on mitochondria and the gut.J. Diabetes Investig.20156660060910.1111/jdi.1232826543531
    [Google Scholar]
  38. AyoubB.M. Quantitative analysis of drugs with highly different concentrations of pharmaceutical components using spectral subtraction techniques.J. Appl. Spectrosc.201784588488710.1007/s10812‑017‑0560‑x
    [Google Scholar]
  39. PadmajaN. VeerabhadramG. Development and validation of analytical method for simultaneous estimation of Empagliflozin and Linagliptin in bulk drugs and combined dosage forms using UV-visible spectroscopy.Pharm. Lett.2015712306312
    [Google Scholar]
  40. AyoubB.M. Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation.Spectrochim. Acta A Mol. Biomol. Spectrosc.201616811812210.1016/j.saa.2016.06.01027288963
    [Google Scholar]
  41. PatilS.D. ChaureS.K. KshirsagarS. Development and validation of UV spectrophotometric method for simultaneous estimation of empagliflozin and metformin hydrochloride in bulk drugs.Asian J. Pharm. Anal.20177211712310.5958/2231‑5675.2017.00019.9
    [Google Scholar]
  42. KumarD.V. RaoJ.S. A new validated stability indicating RP-HPLC method for simultaneous estimation of metformin hydrochloride and empagliflozin in tablet dosage forms.IRJPMS201811622
    [Google Scholar]
  43. RaoM.S. RambhauD.K. Development and validation for the simultaneous estimation in of metformin and empagliflozin in drug product by RP-HPLC.European J. Biomed. Pharma. Sci.201852404410
    [Google Scholar]
  44. PatelD. ShahU. PatelJ. PatelD. PatelP. A stability indicating RP-HPLC method validation for simultaneous estimation of linagliptin and empagliflozin in pharmaceutical dosage form.Curr. Aspects Pharm. Res. Dev.2022812814310.9734/bpi/caprd/v8/15564D
    [Google Scholar]
  45. VijayaV. UjjwalaK. PallaviD. ChoudhariV.P. Development of validated RP-HPLC method for estimation of empagliflozin and metformin in combined formulation.J. Pharm. Res. Int.20213360A1710.9734/jpri/2021/v33i60A34446
    [Google Scholar]
  46. DonepudiS. AchantaS. Validated HPLC-UV method for simultaneous estimation of linagliptin and empagliflozin in human plasma.Int. J. App. Pharm.2018103566110.22159/ijap.2018v10i3.24662
    [Google Scholar]
  47. GaikwadA.V. KhulbeP. HPLC method development for the estimation of empagliflozin in bulk and pharmaceutical formulation.J. Pharm. Res. Int.20223423B223110.9734/jpri/2022/v34i23B35926
    [Google Scholar]
  48. ShirishaV. BolleK. SantoshI. RaoK.N.V. RajeswarD.K. A new simple method development, validation and forced degradation studies of empagliflozin by using RP-HPLC.Int. J. Pharm. Biol. Sci.2019912535
    [Google Scholar]
  49. MadhusudhanP. ReddyM.R. DevannaN. RPHPLC method development and validation for simultaneous determination of linagliptin and empagliflozine in tablet dosage form.Int Adv Res J Sci Eng Technol.2015229599
    [Google Scholar]
  50. JaiswalS.H. KatariyaM.V. KatariyaV.R. KarvaG.S. KosheK. Validated stability indicating HPLC method for determination of process related impurities in empagliflozin drug substances.World J. Pharm. Res.2017671025103710.20959/wjpr20177‑8741
    [Google Scholar]
  51. KhalilG.A. SalamaI. GomaaM.S. HelalM.A. Validated RP-HPLC method for simultaneous determination of canagliflozin, dapagliflozin, empagliflozin and metformin.Int. J. Pharm. Chem. Biol. Sci.201881
    [Google Scholar]
  52. AyoubB.M. UPLC simultaneous determination of empagliflozin, linagliptin and metformin.RSC Advances20155116957039570910.1039/C5RA17231D
    [Google Scholar]
  53. MabroukM.M. SolimanS.M. El-AgizyH.M. MansourF.R.A. UPLC/DAD method for simultaneous determination of empagliflozin and three related substances in spiked human plasma.BMC Chem.20191318310.1186/s13065‑019‑0604‑931384830
    [Google Scholar]
  54. DonepudiS. AchantaS. Validated HPLC-UV method for simultaneous estimation of linagliptin and empagliflozin in human plasma.Int J Appl Pharm2018103566110.22159/ijap.2018v10i3.24662
    [Google Scholar]
  55. van der Aart-van der BeekA.B. WesselsA.M.A. HeerspinkH.J.L. TouwD.J. Simple, fast and robust LC-MS/MS method for the simultaneous quantification of canagliflozin, dapagliflozin and empagliflozin in human plasma and urine.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2020115212225710.1016/j.jchromb.2020.12225732663790
    [Google Scholar]
  56. AyoubB.M. MowakaS. LC–MS/MS determination of empagliflozin and metformin.J. Chromatogr. Sci.201755774274710.1093/chromsci/bmx03028383657
    [Google Scholar]
  57. AyoubB.M. MowakaS. ElzanfalyE.S. AshoushN. ElmazarM.M. MousaS.A. Pharmacokinetic evaluation of empagliflozin in healthy Egyptian volunteers using LC-MS/MS and comparison with other ethnic populations.Sci. Rep.201771258310.1038/s41598‑017‑02895‑728566743
    [Google Scholar]
  58. ThallapalliA.K.G. MandaR.M. Development and validation of empagliflozin and linagliptin simultaneous estimation in rat plasma using freezing lipid precipitation and SCX-SPE assisted HPLC–MS/MS method and its application in pharmacokinetic studies.Anal. Sci.202440118519810.1007/s44211‑023‑00444‑z37921942
    [Google Scholar]
  59. El-GizawyS.M. AtiaN.N. AliM.F.B. RushdyD.H. Development of a highly sensitive and eco-friendly high-performance thin-layer chromatography approach for the determination of empagliflozin, pioglitazone, and rosuvastatin simultaneously in pharmaceutical preparations and different biological fluids.J. Planar Chromatogr. Mod. TLC202336540141410.1007/s00764‑023‑00264‑x
    [Google Scholar]
  60. BholeR.P. WankhedeS.B. pandey, M. Stability indicating HPTLC method for simultaneous estimation of empagliflozin and linagliptin in pharmaceutical formulation.Anal. Chem. Lett.201771768510.1080/22297928.2017.1279567
    [Google Scholar]
/content/journals/gld/10.2174/0129499011332816250311185959
Loading
/content/journals/gld/10.2174/0129499011332816250311185959
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test