Skip to content
2000
  • E-ISSN:

Abstract

Recent work on a number of different classes of anticancer agents that alkylate DNA in the minor groove is reviewed. Attachment of nitrogen mustards to a variety of carrier molecules (intercalators, polypyrroles, polyimidazoles, bis(benzimidazoles), anilinoquinolinium salts and polybenzamides) can alter their normal patterns of both regio- and sequence-selectivity, from reaction primarily at most guanine N7 sites in the major groove to selected adenine N3 sites at the 3'-end of poly(A / T) sequences in the minor groove. In contrast, similar targeting of pyrrolizidine alkylators by a variety of carriers has little effect on their patterns of alkylation (at the 2-amino group of guanine). Finally, the pyrrolobenzodiazepine and cyclopropaindolone classes of natural products are intrinsic minor groove alkylating agents. Due to their large DNA binding site size, minor groove alkylators are highly sequence-selective, with potential as selective inhibitors of gene expression. However, their direct clinical use is limited by myelotoxicity, and a major new application for the more potent compounds is as effectors for prodrugs.

Loading

Article metrics loading...

/content/journals/fmc/10.2174/1567204043396712
2004-01-01
2025-10-13
Loading full text...

Full text loading...

/content/journals/fmc/10.2174/1567204043396712
Loading

  • Article Type:
    Review Article
Keyword(s): DNA Minor Groove Alkylators
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test