Skip to content
2000
Volume 19, Issue 7
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Lower limb-assisted exoskeleton robots have gained wide attention today because of their practicality, complete functions, and advanced technology.

Objective

By analyzing the current research status and key technology classification of lower limb-assisted exoskeleton robots and thinking about the future development direction of lower limb-assisted exoskeleton robots, the feasibility of future development is proposed to provide a reference for the readers.

Methods

This patent paper systematically describes the classification and development history of lower limb-assisted exoskeleton robots, introduces the working principles of various types of lower limb-assisted exoskeleton robots, summarizes the current research status of lower limb-assisted exoskeleton robots through a study of patents and journals, analyzes the critical technologies of active/passive lower limb-assisted exoskeleton robots, and outlooks their future development direction.

Results

Through the research and analysis of active and passive exoskeleton robots, both of them have their shortcomings to be improved. Although exoskeleton robots at this stage have been able to be applied, there are still many problems such as insufficient endurance and poor structural flexibility.

Conclusion

Finally, based on the analysis and comparison of the current situation and key technologies of active/passive lower limb-assisted exoskeleton robots, the future development trend of lower limb-assisted exoskeleton robots is predicted, and it is believed that the ultimate development trend is the exoskeleton robots with the combination of rigid and flexible structure and active-passive assistance mode.

Loading

Article metrics loading...

/content/journals/eng/10.2174/1872212118666230915103111
2023-10-11
2025-10-31
Loading full text...

Full text loading...

References

  1. CaoW.J. WangD.S. HeY. WuX.Y. Current status and challenges of exoskeleton robot development and application.Artif. Intell.202203105112
    [Google Scholar]
  2. ZhangL.Y. HeY.D. LiJ.F. SuP. TaoC.J. JiR. DongM.J. Ergonomic design and gait prediction of flexible booster outerwear for lower limbs.J. Cent. South Univ.2021520411711184[Natural Science Edition].
    [Google Scholar]
  3. DengJ. Research on the key technology of active assistance for lower limb exoskeleton robotHarbin Institute of TechnologyHeilongjiang, China2019
    [Google Scholar]
  4. MaY. Research on human-machine cooperative control strategy of lower limb exoskeleton robotUniversity of Chinese Academy of SciencesPeking, China2020
    [Google Scholar]
  5. ZhangG.A. Research on active-passive combined whole-body exoskeleton assisted robotHarbin Institute of TechnologyHeilongjiang, China2018
    [Google Scholar]
  6. ZhouJ.Y. WangB.H. MaJ.J. WuX.P. LiB.Z. Research status and development trend of wearable power-assisted robots.Machine Tools Hydraulics20225007148157
    [Google Scholar]
  7. ZhuH.Y. YangH.L. LinX.Y. A review of exoskeleton wearable assistive walking robot technologyMeasurement and Testing Technology20194675458
    [Google Scholar]
  8. WangR.C. ShenQ. YangZ.D. Research progress of mobility-assisting exoskeletons at home and abroadIn Eighth Proceedings of Beijing International Rehabilitation Forum, 2013 Beijing, China, pp. 329-336.
    [Google Scholar]
  9. ChenB. MaH. QinL.Y. GaoF. ChanK.M. LawS.W. QinL. LiaoW.H. Recent developments and challenges of lower extremity exoskeletons.J. Orthop. Translat.20155C263730035072
    [Google Scholar]
  10. ChenC.J. Research on power-assisted full-body exoskeleton robotic system based on flexible driveShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen, China2017
    [Google Scholar]
  11. LiangD.K. Research on control of pneumatic artificial muscle-actuated robotsNankai UniversityNankai , China2021
    [Google Scholar]
  12. ShaoZ.Y. Research on soft elbow exoskeleton actuated by tendon-sheath artificial muscleNanjing University of Aeronautics and AstronauticsNanjing , China,2020
    [Google Scholar]
  13. MainJ. Exoskeletons for human performance augmentation (EHPA): A program summary.J. Robo. Soc. Jpn.20022008
    [Google Scholar]
  14. GhanJ. StegerR. KazerooniH. Control and system identification for the Berkeley lower extremity exoskeleton (BLEEX).Adv. Robot.2006209989101410.1163/156855306778394012
    [Google Scholar]
  15. StegerR. KimS.H. KazerooniH. Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX)IEEE International Conference on Robotics and Automation, 2006 Orlando, FL, USA 15-19 May 2006, Orlando, FL, pp.3469-3476.10.1109/ROBOT.2006.1642232
    [Google Scholar]
  16. Berkeley Lower Extremity Exoskeleton ExoHikerTMAvailable from: https://bleex.me.berkeley.edu/research/exoskeleton/exohiker/
  17. Berkeley Lower Extremity Exoskeleton ExoClimberTMAvailable from: https://bleex.me.berkeley.edu/research/exoskeleton/exoclimber/
  18. BogueR. Exoskeletons and robotic prosthetics: A review of recent developments.Ind. Rob.200936542142710.1108/01439910910980141
    [Google Scholar]
  19. US Army NSRDEC awards contract to lock heed for ONYX exoskeleton.Available From: https://www.armytechnology.com/news/nsrdeclockheed-onyx-exoskeleton
  20. WehnerM. QuinlivanB. AubinP.M. Martinez-VillalpandoE. BaumannM. StirlingL. HoltK. WoodR. WalshC. A light weight soft exosuit for gait assistance2013 IEEE International Conference on Robotics and Automation, 2013 06-10 May 2013, Karlsruhe, Germany, pp.3362-336910.1109/ICRA.2013.6631046
    [Google Scholar]
  21. WalshC.J. EndoK. HerrH. A quasi passive leg exoskeleton for load carrying augmentation.Int. J. HR20074348750610.1142/S0219843607001126
    [Google Scholar]
  22. KarlinS. Raiding iron man’s closet geek life.IEEE Spectr.20114882510.1109/MSPEC.2011.5960158
    [Google Scholar]
  23. StricklandE. “Iron man” suits are coming to factory floors.IEEE Spectr.2019561272910.1109/MSPEC.2019.8594789
    [Google Scholar]
  24. SuzukiK. MitoG. KawamotoH. HasegawaY. SankaiY. Intention-based walking support for paraplegia patients with robot suit HAL.Adv. Robot.200721121441146910.1163/156855307781746061
    [Google Scholar]
  25. KawamotoH. LEES. KANBES. SankaiY. Power assist method for HAL-3 using EMG-based feedback controllerIEEE International Conference on Systems, 2003 Washington, DC, USA 08-08 October 2003, Washington, DC, USA, pp.1648-1653.
    [Google Scholar]
  26. HyonS.H. MorimotoJ. MatsubaraT. NodaT. KawatoM. XoR: Hybrid Drive Exoskeleton Robot That Can Balance2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2011 San Francisco, CA, USA 25-30 September 2011, San Francisco, CA, USA, pp.3975-3981.10.1109/IROS.2011.6095079
    [Google Scholar]
  27. HyonS.H. HayashiT. YagiA. NodaT. MorimotoJ. Design of hybrid drive exoskeleton robot XoR2IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013 03-07 November 2013, Tokyo, Japan, pp.4642-4648.
    [Google Scholar]
  28. NakamuraT. SaitoK. WangZ.D. KosugeK. Realizing a posture-based wearable antigravity muscles support system for lower extremitiesProceedings of International Conference on Rehabilitation Robotics, 2005 Chicago, IL, USA 28 June 2005, Chicago, IL, pp.273-27610.1109/ICORR.2005.1501100
    [Google Scholar]
  29. IkeuchiY. AshiharaJ. HikiY. KudohH. NodaT. Walking assist device with bodyweight support systemProceedings of the 2009 IEEE/RSJ international conference on Intelligent robots and systems, 2009 St. Louis, MO, USA 10-15 October 2009, St. Louis, MO, USA, pp.4073-4079.10.1109/IROS.2009.5354543
    [Google Scholar]
  30. IshidaT. KiyamaT. OsukaK. Movement analysis of power-assistive machinery with high strength-amplificationProceedings of SICE Annual Conference 2010, 2010 18-21 August 2010, Taipei, Taiwan, pp.2022-2025
    [Google Scholar]
  31. Logy review2015. Available From:https://www.technologyreview.com/s/539251/theexoskeletons-are-coming/
  32. ChuG. HongJ. JeongD.H. KimD. KimS. JeongS. ChooJ. The experiments of wearable robot for carrying heavy-weight objects of shipbuilding works2014 IEEE International Conference on Automation Science and Engineering (CASE), 2014 New Taipei, Taiwan 18-22 August 2014, New Taipei, Taiwan, pp.978-983.10.1109/CoASE.2014.6899445
    [Google Scholar]
  33. HyunD.J. ParkH. HaT. ParkS. JungK. Biomechanical design of an agile, electricity-powered lower-limb exoskeleton for weight-bearing assistance.Robot. Auton. Syst.20179518119510.1016/j.robot.2017.06.010
    [Google Scholar]
  34. RB3DExoback and Exopush. Available From: http://www.rb3d.com/en/
  35. MengF. PengX.Y. XuY.N. Analysis and research on the development status of wearable exoskeletons for lower limbs.Mech. Transmission20224610163169
    [Google Scholar]
  36. ZhangC. Research on lower limb-assisted exoskeleton robotHarbin Institute of TechnologyHarbin, Heilongjiang, China2016
    [Google Scholar]
  37. HuaY. FanJ. LiuG. ZhangX. LaiM. LiM. ZhengT. ZhangG. ZhaoJ. ZhuY. A novel weight bearing lower limb exoskeleton based on motion in- stension prediction and locomotion state identification.IEEE Access20197376203763810.1109/ACCESS.2019.2904709
    [Google Scholar]
  38. ChenC.F. Research on the design and interaction control strategy of wearable lower limb exoskeleton systemHarbin Institute of TechnologyHarbin, Heilongjiang, China2020
    [Google Scholar]
  39. ZhouG.Y. ZhangA.N. MoX.M. Design of hydraulic system for hydraulically driven weight-bearing exoskeleton robot.Machine Tools Hydraulics201644213034
    [Google Scholar]
  40. Northwest Institute of Mechanical and Electrical EngineeringExoskeleton wearable robot product introduction.Robotics Technol. Appl.201624748
    [Google Scholar]
  41. SongP. LiR.Y. MoX.M. Research on a flexible ankle joint assist mechanism.Manufactur. Automat.20204248385
    [Google Scholar]
  42. WangT. PeiX. HouT. FanY. YangX. HerrH.M. YangX. An untethered cable-driven ankle exoskeleton with plantarflexion-dorsiflexion bidirectional movement assistance.Front. Inform. Technol. Electr. Eng.202021572373910.1631/FITEE.1900455
    [Google Scholar]
  43. LiuW.Z.Y. ZhengY.H. SunJ.Q. FuR.Q. WangD.S. Design and performance experiments of a lightweight flexible lower limb-assisted exoskeleton.Robotics20214304433442
    [Google Scholar]
  44. ZengC. XuS. DingY. Design and control of a walking-assisted lower limb exoskeleton robot.Mech. Electr.202240076974
    [Google Scholar]
  45. HeY. Design of a self-balancing exoskeleton robot system and its control strategyUniversity of Chinese Academy of SciencesShenzhen, China2022
    [Google Scholar]
  46. HouW. W. HouZ. G. ShiW. G. JiaoY. Z. Lower limb exoskeleton robot2022. CN Patent 114831857A2015
    [Google Scholar]
  47. ZhongB. MaL. L. HuangC. Z. ChengQ. GuoC. Z. ZhangP. GaoL. N. Lower limb exoskeleton robot2021.CN Patent 112873177A2016
    [Google Scholar]
  48. Chairless Chair 2.0: the new generationAvailable From: https://www.noonee.com/en/der-chairless-chair-2-0
  49. The Bionic AmplifyTMAvailable From: https://bionic-power.com/amplify/
  50. Mawashi's new product—UPRISE non-powered exoskeleton technologyAvailable From: https://www.junpin360.com/html/2017-0727/6047.html
  51. Fortis Exoskeleton of Lockheed MartinAvailable From: https://www.lockheedmartin.com/enus/products/exoskeleton/FORTIS.html
  52. LeeK.M. WangD.H. Design analysis of a passive weight-support lower extremity exoskeleton with compliant knee-joint2015 IEEE International Conference on Robotics and Automation (ICRA), 2015 26-30 May, Seattle, WA, USA, pp.5572-5577, 2015.10.1109/ICRA.2015.7139978
    [Google Scholar]
  53. Unpowered energy storage exoskeletonAvailable From: http://www.adi.tsinghua.edu.cn/info/xsky_xmal/20730
  54. CuiJ.S. Design and analysis of a lower limb exoskeleton for gravity support during squattingHuazhong University of Science and TechnologyWuhan, Hubei, China2019
    [Google Scholar]
  55. FanH.Q. Design principles and methods of weight-bearing lower limb exoskeleton based on passive variable stiffness jointsHuazhong University of Science and TechnologyWuhan, Hubei, China2021
    [Google Scholar]
  56. LiY. Z. Lower limb exoskeleton robotCN Patent 113021314B2021
    [Google Scholar]
  57. Pulik passive weight-bearing exoskeleton2021. Available From: http://www.niudi.tech/product1.html
  58. Pulik passive handling exoskeleton2021. Available From: http://www.niudi.tech/product2.html
  59. GuoT.Y. HuZ.G. FuD.L. A review of upper limb assisted exoskeleton research.Mechanical Transmission2020115
    [Google Scholar]
  60. JieX.Y. ZhouL.K. SiY.C. Review of the development status and key technologies of military powered exoskeleton.Military Automation202241101420
    [Google Scholar]
  61. VanderborghtB. Albu-SchaefferA. BicchiA. BurdetE. CaldwellD.G. CarloniR. CatalanoM. EibergerO. FriedlW. GaneshG. GarabiniM. GrebensteinM. GrioliG. HaddadinS. HoppnerH. JafariA. LaffranchiM. LefeberD. PetitF. StramigioliS. TsagarakisN. Van DammeM. Van HamR. VisserL.C. WolfS. Variable impedance actuators: A review.Robot. Auton. Syst.201361121601161410.1016/j.robot.2013.06.009
    [Google Scholar]
  62. OuyangS. FanB.Q. DingS.H. Status and outlook of assisted lower limb exoskeleton robots.Science and Technology Herald201533239299
    [Google Scholar]
  63. JiaS. HanY.L. LuX.L. Design of lower limb exoskeleton mechanism based on human special gait analysis.Robotics20143604392401
    [Google Scholar]
  64. PONSJ.L. Wearable robots: Biomechatronic exoskeletons.New YorkJohn Wiley & Sons Inc2008
    [Google Scholar]
  65. ChengL. XiaX.Z. A review of intelligent control of upper limb rehabilitation exoskeletons.Robotics20224406750768
    [Google Scholar]
  66. DingT.W. TuL.J. LiuY.X. ZhangJ.C. ShuaiM. Research progress of wearable lower limb exoskeleton rehabilitation robot.Robotics20224405522532
    [Google Scholar]
  67. LiZ. XieH. LiW. YaoZ. Z.Q. LI Proceeding of human exoskeleton technology and discussions on future research.Chin. J. Mech. Eng.201427343744710.3901/CJME.2014.03.437
    [Google Scholar]
  68. AmsüssS. GoebelP.M. Ning Jiang GraimannB. ParedesL. FarinaD. Self-correcting pattern recognition system of surface EMG signals for upper limb prosthesis control.IEEE Trans. Biomed. Eng.20146141167117610.1109/TBME.2013.229627424658241
    [Google Scholar]
  69. LiY.D. Hsiao-WeckslerE.T. Gait mode recognition and control for a portable-powered ankle-foot orthosisInternational Conference on Rehabilitation Robotics, 2013 Seattle, WA, USA 24-26 June 2013, Seattle, WA, USA pp.1-8, 2013.10.1109/ICORR.2013.6650373
    [Google Scholar]
  70. BartlettH.L. GoldfarbM. A phase variable approach for IMU based locomotion activity recognition.IEEE Trans. Biomed. Eng.20186561330133810.1109/TBME.2017.275013928910754
    [Google Scholar]
  71. TaubeW. LeukelC. GollhoferA. How neurons make us jump: The neural control of stretch-shortening cycle movements.Exerc. Sport Sci. Rev.201240210611510.1097/JES.0b013e31824138da22089697
    [Google Scholar]
  72. Villa-ParraA.C. Delisle-RodríguezD. Lopez-DelisA. BastosT. ZamoraR.S. FrizeraA. Towards a robotic knee exoskeleton control based on human motion intention through eeg and semg signalsInternational Conference on Applied Human Factors and Ergonomics and the Affiliated Conferences (AHFE)201513791386
    [Google Scholar]
  73. PlanellesD. HortalE. CostaÁ. ÚbedaA. IáezE. AzorínJ. Evaluating classifiers to detect arm movement intention from EEG signals.Sensors20141410181721818610.3390/s14101817225268915
    [Google Scholar]
  74. WuH.F. Research on human knee motion intention recognition based on muscle tone and CNN-SVM modelUniversity of Science and Technology of China, Peking, China2018
    [Google Scholar]
  75. LiuD.X. Research on multimode fusion control strategy for lower limb exoskeleton robotUniversity of Chinese Academy of Sciences, Shenzhen, China2018
    [Google Scholar]
  76. ChengX. ZhangD.G. Lower limb motion intention recognition based on multi-source information.Machine Des. Res.202036065458
    [Google Scholar]
  77. GuoY.Z. EEG-EMG hybrid information human motion intent recognition method for exoskeleton robotsUniversity of Electronic Science and Technology, Chengdu, Sichuan, China2019
    [Google Scholar]
  78. ZhengC.K. WangH.X. GuL.Y. ZhangC. WangF. A lower limb motion intention recognition method based on EEG and EMG signals.China Med. Dev.202136056166
    [Google Scholar]
  79. WangH.L. Research on multi-source perception method of brain muscle for human lower limb motion intentionNorthwestern Polytechnic University, Xi'an, Shaanxi, China2018
    [Google Scholar]
  80. ZengY. Research on human motion intention understanding and active flexibility of lower limb exoskeleton based on Gaussian process autoregressive learningShanghai Jiaotong University, Shanghai, China2019
    [Google Scholar]
  81. WangF.Z. Research on human-computer coordination-oriented phase recognition technology for human lower limb motionBeijing Forestry University, Peking, China2020
    [Google Scholar]
  82. HuangR. Research on interactive learning control algorithm of lower limb-assisted exoskeleton layersUniversity of Electronic Science and Technology, Chengdu, Sichuan, China2018
    [Google Scholar]
  83. ChenY. MaW. B. LiuH. Y. ZhuZ. Y. Flexible lower limb exoskeleton robot and bionic control method2020. CN Patent 111568703A
    [Google Scholar]
  84. HOUZ.L. ZhaoD.J. WanJ. Application of thermal conductivity of carbon fiber hollow fabric reinforced resin matrix composite.Engineering Plastics Application20194794649
    [Google Scholar]
  85. HouJ.Y. JiP.X. X.M. MO, “Application and development trend of 3D printing technology in military field”.Mechanical Engineering & Automation20156217219
    [Google Scholar]
  86. SunC.Z. Progress, challenges and prospects of brain-computer interfaceIntelligent IOT Technology20225316
    [Google Scholar]
  87. ZhengT.Z. Development of a compact walking assistance exoskeleton and research on gait generation methodHarbin Institute of TechnologyHarbin, Heilongjiang, China2020
    [Google Scholar]
  88. ZhaoW. LiuL.W. SunJ. LengJ.S. LiuY.J. Advances in deformable structure technology for aerospace based on shape memory polymer composites.Aerospace Materials Technology202151047383
    [Google Scholar]
/content/journals/eng/10.2174/1872212118666230915103111
Loading
/content/journals/eng/10.2174/1872212118666230915103111
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test