Skip to content
2000
Volume 19, Issue 7
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Artificial intelligence (AI) has made its own place in the present world. Almost in every field, AI is being utilized for betterment and advancement. Machine learning (ML) is a part of AI and has been applied extensively currently in various fields of science and technology including healthcare system. ML is the technique that uses AI to analyze, interpret and make decisions.

To summarize the applications of ML in various healthcare systems in order to understand the strength and loopholes of the use of ML in medical science.

The mechanisms and methods of ML approach in various medical issues have been analyzed and discussed. ML technique is being used to make decisions in medical cases, for determining the treatment regime of a particular patient, for designing and developing drugs, in personalized medicine, in designing and selecting diagnoses for any particular disease, for automated tracking of patient's recovery. Available clinical data and history are being used by ML techniques to compare, classify, select and execute results for any task being assigned. In a nutshell, ML uses earlier available information and data about the disease, the treatment protocols followed, and the results in correspondence with the clinical symptoms and pathological findings.

Several achievements using ML in the healthcare system, yielded significant novel results that have been patented. There have been several thousand patents in the field of application of ML in healthcare systems from the years 2012 to 2023.

Though, ML in healthcare comes with some risks and unknown possibilities yet, restricted and monitored application of ML in healthcare may hasten the healthcare system, save time, help to make efficient decisions in non-invasive ways, and may open up new possibilities in the healthcare system.

Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121291771240216044918
2024-02-22
2025-10-03
Loading full text...

Full text loading...

References

  1. AllgaierJ. MulanskyL. DraelosR.L. PryssR. How does the model make predictions? A systematic literature review on the explainability power of machine learning in healthcare.Artif. Intell. Med.202314310261610.1016/j.artmed.2023.10261637673561
    [Google Scholar]
  2. Machine learning.Available from: https://www.techtarget.com/searchenterpriseai/definition/machine-learning-ML [accessed on 29.10.2023].
  3. SarkerI.H. Machine learning: Algorithms, real-world applications and research directions.SN Comput. sci.20212316010.1007/s42979‑021‑00592‑x33778771
    [Google Scholar]
  4. GreenerJ.G. KandathilS.M. MoffatL. JonesD.T. A guide to machine learning for biologists.Nat. Rev. Mol. Cell Biol.2022231405510.1038/s41580‑021‑00407‑034518686
    [Google Scholar]
  5. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑434393317
    [Google Scholar]
  6. DeoR.C. Machine learning in medicine.Circulation2015132201920193010.1161/CIRCULATIONAHA.115.00159326572668
    [Google Scholar]
  7. HabehhH. GohelS. Machine learning in healthcare.Curr. Genomics202122429130010.2174/138920292266621070512435935273459
    [Google Scholar]
  8. GoecksJ. JaliliV. HeiserL.M. GrayJ.W. How machine learning will transform biomedicine.Cell202018119210110.1016/j.cell.2020.03.02232243801
    [Google Scholar]
  9. VenterJ.C. AdamsM.D. MyersE.W. LiP.W. MuralR.J. SuttonG.G. SmithH.O. YandellM. EvansC.A. HoltR.A. GocayneJ.D. AmanatidesP. BallewR.M. HusonD.H. WortmanJ.R. ZhangQ. KodiraC.D. ZhengX.H. ChenL. SkupskiM. SubramanianG. ThomasP.D. ZhangJ. Gabor MiklosG.L. NelsonC. BroderS. ClarkA.G. NadeauJ. McKusickV.A. ZinderN. LevineA.J. RobertsR.J. SimonM. SlaymanC. HunkapillerM. BolanosR. DelcherA. DewI. FasuloD. FlaniganM. FloreaL. HalpernA. HannenhalliS. KravitzS. LevyS. MobarryC. ReinertK. RemingtonK. Abu-ThreidehJ. BeasleyE. BiddickK. BonazziV. BrandonR. CargillM. ChandramouliswaranI. CharlabR. ChaturvediK. DengZ. FrancescoV.D. DunnP. EilbeckK. EvangelistaC. GabrielianA.E. GanW. GeW. GongF. GuZ. GuanP. HeimanT.J. HigginsM.E. JiR.R. KeZ. KetchumK.A. LaiZ. LeiY. LiZ. LiJ. LiangY. LinX. LuF. MerkulovG.V. MilshinaN. MooreH.M. NaikA.K. NarayanV.A. NeelamB. NusskernD. RuschD.B. SalzbergS. ShaoW. ShueB. SunJ. WangZ.Y. WangA. WangX. WangJ. WeiM.H. WidesR. XiaoC. YanC. YaoA. YeJ. ZhanM. ZhangW. ZhangH. ZhaoQ. ZhengL. ZhongF. ZhongW. ZhuS.C. ZhaoS. GilbertD. BaumhueterS. SpierG. CarterC. CravchikA. WoodageT. AliF. AnH. AweA. BaldwinD. BadenH. BarnsteadM. BarrowI. BeesonK. BusamD. CarverA. CenterA. ChengM.L. CurryL. DanaherS. DavenportL. DesiletsR. DietzS. DodsonK. DoupL. FerrieraS. GargN. GluecksmannA. HartB. HaynesJ. HaynesC. HeinerC. HladunS. HostinD. HouckJ. HowlandT. IbegwamC. JohnsonJ. KalushF. KlineL. KoduruS. LoveA. MannF. MayD. McCawleyS. McIntoshT. McMullenI. MoyM. MoyL. MurphyB. NelsonK. PfannkochC. PrattsE. PuriV. QureshiH. ReardonM. RodriguezR. RogersY.H. RombladD. RuhfelB. ScottR. SitterC. SmallwoodM. StewartE. StrongR. SuhE. ThomasR. TintN.N. TseS. VechC. WangG. WetterJ. WilliamsS. WilliamsM. WindsorS. Winn-DeenE. WolfeK. ZaveriJ. ZaveriK. AbrilJ.F. GuigóR. CampbellM.J. SjolanderK.V. KarlakB. KejariwalA. MiH. LazarevaB. HattonT. NarechaniaA. DiemerK. MuruganujanA. GuoN. SatoS. BafnaV. IstrailS. LippertR. SchwartzR. WalenzB. YoosephS. AllenD. BasuA. BaxendaleJ. BlickL. CaminhaM. Carnes-StineJ. CaulkP. ChiangY.H. CoyneM. DahlkeC. MaysA.D. DombroskiM. DonnellyM. ElyD. EsparhamS. FoslerC. GireH. GlanowskiS. GlasserK. GlodekA. GorokhovM. GrahamK. GropmanB. HarrisM. HeilJ. HendersonS. HooverJ. JenningsD. JordanC. JordanJ. KashaJ. KaganL. KraftC. LevitskyA. LewisM. LiuX. LopezJ. MaD. MajorosW. McDanielJ. MurphyS. NewmanM. NguyenT. NguyenN. NodellM. PanS. PeckJ. PetersonM. RoweW. SandersR. ScottJ. SimpsonM. SmithT. SpragueA. StockwellT. TurnerR. VenterE. WangM. WenM. WuD. WuM. XiaA. ZandiehA. ZhuX. The sequence of the human genome.Science200129155071304135110.1126/science.105804011181995
    [Google Scholar]
  10. AndreolettiG. PalL.R. MoultJ. BrennerS.E. Reports from the fifth edition of CAGI: The critical assessment of genome interpretation.Hum Mutat.201940911971201
    [Google Scholar]
  11. ShiloS. RossmanH. SegalE. Axes of a revolution: Challenges and promises of big data in healthcare.Nat. Med.2020261293810.1038/s41591‑019‑0727‑531932803
    [Google Scholar]
  12. ArfatY MittoneG EspositoR CantalupoB, DE FerrariGM AldinucciM Machine learning for cardiology.Minerva Cardiol Angiol2022701759110.23736/S2724‑5683.21.05709‑4
    [Google Scholar]
  13. ZhangJ. BajariR. AndricD. GerthoffertF. LepsaA. Nahal-BoseH. SteinL.D. FerrettiV. The international cancer genome consortium data portal.Nat. Biotechnol.201937436736910.1038/s41587‑019‑0055‑930877282
    [Google Scholar]
  14. EllisM.J. GilletteM. CarrS.A. PaulovichA.G. SmithR.D. RodlandK.K. TownsendR.R. KinsingerC. MesriM. RodriguezH. LieblerD.C. Clinical Proteomic Tumor Analysis Consortium (CPTAC) Connecting genomic alterations to cancer biology with proteomics: The NCI clinical proteomic tumor analysis consortium.Cancer Discov.20133101108111210.1158/2159‑8290.CD‑13‑021924124232
    [Google Scholar]
  15. LeeY.W. ChoiJ.W. ShinE.H. Machine learning model for predicting malaria using clinical information.Comput. Biol. Med.202112910415110.1016/j.compbiomed.2020.10415133290932
    [Google Scholar]
  16. Machine learning —fundamentals.Available from: https://towardsdatascience.com/machine-learning-basics-part-1-a36d38c7916 [Accessed on 29.10.2023].
  17. LinardatosP. PapastefanopoulosV. KotsiantisS. ExplainableA.I. Explainable AI: A review of machine learning interpretability methods.Entropy20202311810.3390/e2301001833375658
    [Google Scholar]
  18. Black-box vs. white-box models.Available from: https://towardsdatascience.com/machine-learning-interpretability-techniques-662c723454f3 [Acessed on 29.10.2023]
  19. Advantages and disadvantages of artificial intelligence.Avaialabe from: https://towardsdatascience.com/advantages-and-disadvantages-of-artificial-intelligence-182a5ef6588c [Acessed on 29.10.2023]
  20. How does artificial intelligence relate to machine learning and deep learning?Available from: https://www.quora.com/How-does-artificial-intelligence-relate-to-machine-learning-and-deep-learning [Acessed on 29.10.2023]
  21. StaffordI.S. KellermannM. MossottoE. BeattieR.M. MacArthurB.D. EnnisS. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases.NPJ Digit. Med.2020313010.1038/s41746‑020‑0229‑332195365
    [Google Scholar]
  22. KingsmoreK.M. PuglisiC.E. GrammerA.C. LipskyP.E. An introduction to machine learning and analysis of its use in rheumatic diseases.Nat. Rev. Rheumatol.2021171271073010.1038/s41584‑021‑00708‑w34728818
    [Google Scholar]
  23. ForrestI.S. PetrazziniB.O. DuffyÁ. ParkJ.K. O’NealA.J. JordanD.M. RocheleauG. NadkarniG.N. ChoJ.H. BlazerA.D. DoR. A machine learning model identifies patients in need of autoimmune disease testing using electronic health records.Nat. Commun.2023141238510.1038/s41467‑023‑37996‑737169741
    [Google Scholar]
  24. GiacobbeD.R. SignoriA. Del PuenteF. MoraS. CarmiscianoL. BrianoF. VenaA. BallL. RobbaC. PelosiP. GiacominiM. BassettiM. Early detection of sepsis with machine learning techniques: A brief clinical perspective.Front. Med.2021861748610.3389/fmed.2021.61748633644097
    [Google Scholar]
  25. WoldaregayA.Z. ÅrsandE. WalderhaugS. AlbersD. MamykinaL. BotsisT. HartvigsenG. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.Artif. Intell. Med.20199810913410.1016/j.artmed.2019.07.00731383477
    [Google Scholar]
  26. MeskóB. Analysis of over 10,000 healthcare AI patents highlights future trends: Our new study.Available from: https://www.linkedin.com/pulse/analysis-over-10000-healthcare-ai-patents-highlights-mesk%C3%B3-md-phd/ [Accessed on 17.01.2024].
  27. The importance of patents for ml-based medical device inventions.Available from: https://www.jdsupra.com/legalnews/the-importance-of-patents-for-ml-based-4810225/#:~:text=Deterring%20others%20from%20practicing%20the,to%20innovate%20their%20own%20products. [Accessed on 17.01.2024].
  28. What is Deep Learning?Available from: https://aws.amazon.com/what-is/deep-learning/#:~:text=Deep%20learning%20is%20a%20method,produce%20accurate%20insights%20and%20predictions [Accessed on 19.01.2024].
    [Google Scholar]
  29. HuffakerR. BittelliM. RosaR. Phase space reconstruction.In: Nonlinear Time Series Analysis with R. Oxford Academic201710.1093/oso/9780198782933.003.0003
    [Google Scholar]
  30. Al FahoumA. ZyoutA. Early detection of neurological abnormalities using a combined phase space reconstruction and deep learning approach.Intell.-Based Med.2023810012310.1016/j.ibmed.2023.100123
    [Google Scholar]
  31. IlakiyaselvanN. Nayeemulla KhanA. ShahinaA. Deep learning approach to detect seizure using reconstructed phase space images.J. Biomed. Res.202034324025010.7555/JBR.34.2019004332561702
    [Google Scholar]
  32. SrinivasanS. DayalaneS. MathivananS. RajaduraiH. JayagopalP. DaluG.T. Detection and classification of adult epilepsy using hybrid deep learning approach.Sci. Rep.20231311757410.1038/s41598‑023‑44763‑737845403
    [Google Scholar]
  33. Al FahoumA.S. Abu Al-HaijaA.O. AlshraidehH.A. Identification of coronary artery diseases using photoplethysmography signals and practical feature selection process.Bioengineering202310224910.3390/bioengineering1002024936829743
    [Google Scholar]
  34. LiangZ. ZhangG. HuangJ.X. HuQ.V. Deep learning for healthcare decision making with EMRs.Proc - 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM),Belfast, UK, November 2-5, . 2014. pp. 556–559.10.1109/BIBM.2014.6999219
    [Google Scholar]
  35. GeY. WangQ. WangL. WuH. PengC. WangJ. XuY. XiongG. ZhangY. YiY. Predicting post-stroke pneumonia using deep neural network approaches.Int. J. Med. Inform.201913210398610.1016/j.ijmedinf.2019.10398631629312
    [Google Scholar]
  36. LiuJ. ZhangZ. RazavianN. Deep EHR: Chronic disease prediction using medical notes.arXiv2018180804928
    [Google Scholar]
  37. AhmadF.S. AliL. A hybrid machine learning framework to predict mortality in paralytic ileus patients using electronic health records (EHRs).J. Ambient Intell. Humaniz. Comput.20201223283329310.1007/s12652‑020‑02509‑7
    [Google Scholar]
  38. ArcaduF. BenmansourF. MaunzA. WillisJ. HaskovaZ. PrunottoM. Deep learning algorithm predicts diabetic retinopathy progression in individual patients.NPJ Digit. Med.2019219210.1038/s41746‑019‑0172‑331552296
    [Google Scholar]
  39. RajpurkarP IrvinJ ZhuK YangB MehtaH DuanT CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning.arXiv201739
    [Google Scholar]
  40. McKinneyS.M. SieniekM. GodboleV. GodwinJ. AntropovaN. AshrafianH. BackT. ChesusM. CorradoG.S. DarziA. EtemadiM. Garcia-VicenteF. GilbertF.J. Halling-BrownM. HassabisD. JansenS. KarthikesalingamA. KellyC.J. KingD. LedsamJ.R. MelnickD. MostofiH. PengL. ReicherJ.J. Romera-ParedesB. SidebottomR. SuleymanM. TseD. YoungK.C. De FauwJ. ShettyS. International evaluation of an AI system for breast cancer screening.Nature20205777788899410.1038/s41586‑019‑1799‑631894144
    [Google Scholar]
  41. EstevaA. KuprelB. NovoaR.A. KoJ. SwetterS.M. BlauH.M. ThrunS. Dermatologist-level classification of skin cancer with deep neural networks.Nature2017542763911511810.1038/nature2105628117445
    [Google Scholar]
  42. PatelM.J. AndreescuC. PriceJ.C. EdelmanK.L. ReynoldsC.F.III AizensteinH.J. Machine learning approaches for integrating clinical and imaging features in late‐life depression classification and response prediction.Int. J. Geriatr. Psychiatry201530101056106710.1002/gps.426225689482
    [Google Scholar]
  43. FaturrahmanM. WasitoI. HanifahN. MufidahR. Structural MRI classification for Alzheimer’s disease detection using deep belief network.2017 11th International Conference on Information Communication Technology and System (ICTS),Surabaya, Indonesia, 2017. pp. 37–42.
    [Google Scholar]
  44. TangJ. LiuR. ZhangY.L. LiuM.Z. HuY.F. ShaoM.J. ZhuL.J. XinH.W. FengG.W. ShangW.J. MengX.G. ZhangL.R. MingY.Z. ZhangW. Application of machine-learning models to predict tacrolimus stable dose in renal transplant recipients.Sci. Rep.2017714219210.1038/srep4219228176850
    [Google Scholar]
  45. MaloneB. SimovskiB. MolinéC. ChengJ. GheorgheM. FontenelleH. VardaxisI. TennøeS. MalmbergJ.A. StratfordR. ClancyT. Artificial intelligence predicts the immunogenic landscape of SARS-CoV-2 leading to universal blueprints for vaccine designs.Sci. Rep.20201012237510.1038/s41598‑020‑78758‑533361777
    [Google Scholar]
  46. AntoniadiA.M. DuY. GuendouzY. WeiL. MazoC. BeckerB.A. MooneyC. Current challenges and future opportunities for xai in machine learning-based clinical decision support systems: A systematic review.Appl. Sci.20211111508810.3390/app11115088
    [Google Scholar]
  47. JavaidM. HaleemA. Pratap SinghR. SumanR. RabS. Significance of machine learning in healthcare: Features, pillars and applications.IJIN20223587310.1016/j.ijin.2022.05.002
    [Google Scholar]
  48. GubbiJ. BuyyaR. MarusicS. PalaniswamiM. Internet of things (IoT): A vision, architectural elements, and future directions.Future Gener. Comput. Syst.20132971645166010.1016/j.future.2013.01.010
    [Google Scholar]
  49. DashS. ShakyawarS.K. SharmaM. KaushikS. Big data in healthcare: Management, analysis and future prospects.J. Big Data2019615410.1186/s40537‑019‑0217‑0
    [Google Scholar]
  50. HanW. XueyeC. A review: Applications of ion transport in micro-nanofluidic systems based on ion concentration polarization.J. Chem. Technol. Biotechnol.20199561622163110.1002/jctb.6288
    [Google Scholar]
  51. HanW. ChenX. A review on microdroplet generation in microfluidics.J. Braz. Soc. Mech. Sci. Eng.202143524710.1007/s40430‑021‑02971‑0
    [Google Scholar]
  52. HanW. ChenX. WuZ. ZhengY. Three-dimensional numerical simulation of droplet formation in a microfluidic flow-focusing device.J. Braz. Soc. Mech. Sci. Eng.201941626510.1007/s40430‑019‑1767‑y
    [Google Scholar]
  53. HanW. ChenX. Numerical simulation of the droplet formation in a T-junction microchannel by a level-set method.Aust. J. Chem.2018711295710.1071/CH18320
    [Google Scholar]
  54. HanW. ChenX. Nano-electrokinetic ion enrichment of highly viscous fluids in micro-nanochannel.Chem. Eng. Process.201914310762610.1016/j.cep.2019.107626
    [Google Scholar]
  55. HanW. ChenX. New insights into the pressure during the merged droplet formation in the squeezing time.Chem. Eng. Res. Des.201914521322510.1016/j.cherd.2019.03.002
    [Google Scholar]
  56. ConroyB. XuM. Learning and applying contextual similiarities between entities.U.S. patent 118752772024
    [Google Scholar]
  57. JeanH. YanoY. HuH.P. ChenK. Analyzing content of digital images.U.S. Patent 118683942021
    [Google Scholar]
  58. HsiehJ. AvinashG. SiroheyS. Deep learning medical systems and methods for medical procedures.U.S. Patent 10242443B22019
    [Google Scholar]
/content/journals/eng/10.2174/0118722121291771240216044918
Loading
/content/journals/eng/10.2174/0118722121291771240216044918
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test