Skip to content
2000
image of An Overview of Pixel-Level Multi-Modal Medical Image Fusion: Modalities, Methods and Recent Trends

Abstract

Image fusion is a methodology of registering and merging data from manifold sources of the same location taken at different time, from various sensors, or at separate positions. It improves the quality of an image, reduces randomness and redundancy thereby attracting wide variety of application areas. Medical image fusion generates a final fused image which is more descriptive and instructive than the independent source images. It is emerging as a powerful research area as it progresses the clinical accuracy by combining images of different modalities for diagnosis and evaluation of medical problems. Firstly, an extensive survey of image fusion levels and traditional image fusion approaches are presented to give thorough view of the image fusion process. In addition, the merits and demerits of various fusion methods are presented. Then, the existing metrics used to quantify the performance of image fusion results are summarized. Next, the three benchmark datasets are considered for experimental analysis of various image fusion methods and quantitative analysis is done using standard metrics followed by discussion. Eventually, this review paper concludes that although numerous fusion methods outperformed the fusion process but still a lot of challenges are associated in the field of medical imaging. Hence, the technical challenges are highlighted, and the patent paper is concluded giving insight into several future directions in the research field. Hence, efforts are made on summarizing main approaches in image fusion process at pixel level that would produce valuable help to developers and researchers owing to explore this research field.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121342243241122045901
2024-12-10
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/eng/10.2174/0118722121342243241122045901/BMS-ENG-2024-HT66-5822-11.html?itemId=/content/journals/eng/10.2174/0118722121342243241122045901&mimeType=html&fmt=ahah

References

  1. Blum R. S. Xue Z. Zhang Z. An overview of image. Multisensor image fusion ans its applications. CRC Press 2006
    [Google Scholar]
  2. Pohl C. Genderen J. L.V. Review article Multisensor image fusion in remote sensing: Concepts, methods and applications. Int. J. Remote Sens. 1998 19 5 823 854 10.1080/014311698215748
    [Google Scholar]
  3. El-Gamal F.E.Z.A. Elmogy M. Atwan A. Current trends in medical image registration and fusion. Egypt. Inform. J. 2016 17 1 99 124 10.1016/j.eij.2015.09.002
    [Google Scholar]
  4. James A.P. Dasarathy B.V. Medical image fusion: A survey of the state of the art. Inf. Fusion 2014 19 1 4 19 10.1016/j.inffus.2013.12.002
    [Google Scholar]
  5. Azam M.A. Khan K.B. Salahuddin S. Rehman E. Khan S.A. Khan M.A. Kadry S. Gandomi A.H. A review on multimodal medical image fusion: Compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics. Comput. Biol. Med. 2022 144 105253 105253 10.1016/j.compbiomed.2022.105253 35245696
    [Google Scholar]
  6. Li S. Kang X. Fang L. Hu J. Yin H. Pixel-level image fusion: A survey of the state of the art. Inf. Fusion 2017 33 100 112 10.1016/j.inffus.2016.05.004
    [Google Scholar]
  7. James A.P. Dasarathy B.P. A Review of feature and data fusion with medical images arXiv 2015
    [Google Scholar]
  8. Meher B. Agrawal S. Panda R. Abraham A. A survey on region based image fusion methods. Inf. Fusion 2019 48 119 132 10.1016/j.inffus.2018.07.010
    [Google Scholar]
  9. Dogra A. Goyal B. Agrawal S. From multi-scale decomposition to non-multi-scale decomposition methods: A comprehensive survey of image fusion techniques and its applications. IEEE Access 2017 5 16040 16067 10.1109/ACCESS.2017.2735865
    [Google Scholar]
  10. Kaur H. Koundal D. Kadyan V. Image fusion techniques: A survey. Arch. Comput. Methods Eng. 2021 28 7 4425 4447 10.1007/s11831‑021‑09540‑7 33519179
    [Google Scholar]
  11. Ma J. Ma Y. Li C. Infrared and visible image fusion methods and applications: A survey. Inf. Fusion 2019 45 153 178 10.1016/j.inffus.2018.02.004
    [Google Scholar]
  12. Tawfik N. Elnemr H.A. Fakhr M. Dessouky M.I. Abd El-Samie F.E. Survey study of multimodality medical image fusion methods. Multimedia Tools Appl. 2021 80 4 6369 6396 10.1007/s11042‑020‑08834‑5
    [Google Scholar]
  13. Hermessi H. Mourali O. Zagrouba E. Multimodal medical image fusion review: Theoretical background and recent advances. Signal Process. 2021 183 108036 10.1016/j.sigpro.2021.108036
    [Google Scholar]
  14. Du J. Li W. Lu K. Xiao B. An overview of multi-modal medical image fusion. Neurocomputing 2016 215 3 20 10.1016/j.neucom.2015.07.160
    [Google Scholar]
  15. Xuming Z. Mingwei W. Quan Z. Three-dimensional medical image segmentation method and system based on long and short term memory self-attention model. CN Patent 116129107A, 2023
  16. Yadav S.P. Yadav S. Image fusion using hybrid methods in multimodality medical images. Med. Biol. Eng. Comput. 2020 58 4 669 687 10.1007/s11517‑020‑02136‑6 31993885
    [Google Scholar]
  17. Li S. Yang B. Hu J. Performance comparison of different multi-resolution transforms for image fusion. Inf. Fusion 2011 12 2 74 84 10.1016/j.inffus.2010.03.002
    [Google Scholar]
  18. Mitianoudis N. Stathaki T. Pixel-based and region-based image fusion schemes using ICA bases. Inf. Fusion 2007 8 2 131 142 10.1016/j.inffus.2005.09.001
    [Google Scholar]
  19. He C. Liu Q. Li H. Wang H. Multimodal medical image fusion based on IHS and PCA. Procedia Eng. 2010 7 280 285 10.1016/j.proeng.2010.11.045
    [Google Scholar]
  20. Sun J. Han Q. Kou L. Zhang L. Zhang K. Jin Z. Multi-focus image fusion algorithm based on Laplacian pyramids. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2018 35 3 480 490 10.1364/JOSAA.35.000480 29522052
    [Google Scholar]
  21. Sahu A. Bhateja V. Krishn A. Medical image fusion with Laplacian Pyramids. 2014 International Conference on Medical Imaging, m-Health and Emerging Communication Systems (MedCom), Greater Noida, India, 07-08 November 2014, pp. 448-453. 10.1109/MedCom.2014.7006050
    [Google Scholar]
  22. Toet A. van Ruyven L.J. Valeton J.M. Merging Thermal And Visual Images By A Contrast Pyramid. Opt. Eng. 1989 28 7 789 792 10.1117/12.7977034
    [Google Scholar]
  23. Mingjing Li Yubing Dong Image fusion algorithm based on contrast pyramid and application. Int. Conf. Mechatron. Sci. Electr. Eng. Comput. 2013 2 1342 1345 10.1109/MEC.2013.6885276
    [Google Scholar]
  24. Haibo D. Yide M. 2009 Image fusion based on steerable pyramid and PCNN. Second International Conference on the Applications of Digital Information and Web Technologies, London, UK, 04-06 August 2009, pp. 569-573. 10.1109/ICADIWT.2009.5273861
    [Google Scholar]
  25. Toet A. Image fusion by a ratio of low-pass pyramid. Pattern Recognit. Lett. 1989 9 4 245 253 10.1016/0167‑8655(89)90003‑2
    [Google Scholar]
  26. Liu S. Zhao J. Shi M. Medical image fusion based on improved sum-modified-Laplacian. Int. J. Imaging Syst. Technol. 2015 25 3 206 212 10.1002/ima.22138
    [Google Scholar]
  27. Pajares G. Manuel de la Cruz J. A wavelet-based image fusion tutorial. Pattern Recognit. 2004 37 9 1855 1872 10.1016/j.patcog.2004.03.010
    [Google Scholar]
  28. Yang Y. Park D.S. Huang S. Rao N. Medical image fusion via an effective wavelet-based approach. EURASIP J. Adv. Signal Process. 2010 2010 1 579341 10.1155/2010/579341
    [Google Scholar]
  29. Bhavana V Krishnappa H.K. Krishnappa H.K. Multi-modality medical image fusion using discrete wavelet transform. Procedia Comput. Sci. 2015 70 625 631 10.1016/j.procs.2015.10.057
    [Google Scholar]
  30. Singh R. Khare A. Multiscale medical image fusion in wavelet domain. Sci. World J. 2013 2013 1 521034 10.1155/2013/521034 24453868
    [Google Scholar]
  31. Kushwaha A. Khare A. Prakash O. Song J.I. Jeon M. 2015 3D medical image fusion using dual tree complex wavelet transform. International Conference on Control, Automation and Information Sciences (ICCAIS) Changshu, China, 29-31 October 2015, pp. 251-256. 10.1109/ICCAIS.2015.7338671
    [Google Scholar]
  32. PadmavathiK.KarkiM.V.BhatM.2016Medical image fusion of different modalities using dual tree complex wavelet transform with PCA.International Conference on Circuits, Controls, Communications and Computing (I4C) Bangalore, India, 04-06 October 2016, pp. 1-5.10.1109/CIMCA.2016.8053288
    [Google Scholar]
  33. Gambhir D. Manchanda M. A Novel fusion rule for medical image fusion in complex wavelet transform domain. Int. J. Image Graph. 2016 16 4 1650022 10.1142/S0219467816500224
    [Google Scholar]
  34. Singh R. Srivastava R. Prakash O. Khare A. 2012 Mixed scheme based multimodal medical image fusion using Daubechies complex wavelet transform. International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 18-19 May 2012, pp. 304-309. 10.1109/ICIEV.2012.6317394
    [Google Scholar]
  35. Singh R. Khare A. Fusion of multimodal medical images using Daubechies complex wavelet transform – A multiresolution approach. Inf. Fusion 2014 19 1 49 60 10.1016/j.inffus.2012.09.005
    [Google Scholar]
  36. Ravi P. Krishnan J. Image enhancement with medical image fusion using multiresolution discrete cosine transform. Mater. Today Proc. 2018 5 1 1936 1942 10.1016/j.matpr.2017.11.296
    [Google Scholar]
  37. Wang M. Shang X. A fast image fusion with discrete cosine transform. IEEE Signal Process. Lett. 2020 27 990 994 10.1109/LSP.2020.2999788
    [Google Scholar]
  38. Shreyamsha Kumar B.K. Multifocus and multispectral image fusion based on pixel significance using discrete cosine harmonic wavelet transform. Signal Image Video Process. 2013 7 6 1125 1143 10.1007/s11760‑012‑0361‑x
    [Google Scholar]
  39. Xiao X. Wu Z. 2010 Image fusion based on lifting wavelet transform. International Symposium on Intelligence Information Processing and Trusted Computing, Huanggang, China, 28-29 October 2010, pp. 659-662. 10.1109/IPTC.2010.26
    [Google Scholar]
  40. Singh R. Vatsa M. Noore A. 2009 Multimodal medical image fusion using Redundant Discrete Wavelet Transform. Seventh International Conference on Advances in Pattern Recognition, Kolkata, India, 04-06 February 2009, pp. 232-235. 10.1109/ICAPR.2009.97
    [Google Scholar]
  41. Singh R. Khare A. Redundant discrete wavelet transform based medical image fusion. Adv. Intell. Syst. Comput 2014 264 505 515 10.1007/978‑3‑319‑04960‑1_44
    [Google Scholar]
  42. Aymaz S. Kose C. Multi-focus image fusion using stationary wavelet transform (SWT) with principal component analysis (PCA). 10th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 November 2017 - 02, pp. 1176-1180
    [Google Scholar]
  43. Chavan S. Pawar A. Talbar S. Multimodality medical image fusion using rotated wavelet transform. Adv. Intel. Syst. Res. 2017 137 627 635 10.2991/iccasp‑16.2017.89
    [Google Scholar]
  44. Xu X. Wang Y. Chen S. Medical image fusion using discrete fractional wavelet transform. Biomed. Signal Process. Control 2016 27 103 111 10.1016/j.bspc.2016.02.008
    [Google Scholar]
  45. Polinati S. Dhuli R. Multimodal medical image fusion using empirical wavelet decomposition and local energy maxima. Optik (Stuttg.) 2020 205 163947 163947 10.1016/j.ijleo.2019.163947
    [Google Scholar]
  46. Bhatnagar G. Jonathan Wu Q.M. Liu Z. Human visual system inspired multi-modal medical image fusion framework. Expert Syst. Appl. 2013 40 5 1708 1720 10.1016/j.eswa.2012.09.011
    [Google Scholar]
  47. Zaouali M. Bouzidi S. Zagrouba E. Review of multiscale geometric decompositions in a remote sensing context. J. Electron. Imaging 2016 25 6 061617-1 061617-20 10.1117/1.JEI.25.6.061617
    [Google Scholar]
  48. Krishn A. Bhateja V. Himanshi Sahu A. PCA based medical image fusion in ridgelet domain. Adv. Intel. Syst. Res. 2015 328 475 482 10.1007/978‑3‑319‑12012‑6_52
    [Google Scholar]
  49. Bhateja V. Krishn A. Patel H. Sahu A. Medical image fusion in wavelet and ridgelet domains. Int. J. Rough Sets Data Anal. 2015 2 2 78 91 10.4018/IJRSDA.2015070105
    [Google Scholar]
  50. Srivastava R. Prakash O. Khare A. Local energy‐based multimodal medical image fusion in curvelet domain. IET Comput. Vis. 2016 10 6 513 527 10.1049/iet‑cvi.2015.0251
    [Google Scholar]
  51. Himanshi B. Bhateja V. Krishn A. Sahu A. Medical image fusion in curvelet domain employing PCA and maximum selection rule. Adv. Intel. Syst. Comp. 2016 379 1 9 10.1007/978‑81‑322‑2517‑1_1
    [Google Scholar]
  52. Do M.N. Vetterli M. The contourlet transform: An efficient directional multiresolution image representation. IEEE Trans. Image Process. 2005 14 12 2091 2106 10.1109/TIP.2005.859376 16370462
    [Google Scholar]
  53. Khare A. Srivastava R. Singh R. Edge preserving image fusion based on contourlet transform. Image and Signal Processing Springer 2012 93 102 10.1007/978‑3‑642‑31254‑0_11
    [Google Scholar]
  54. Aisha Moin Vikrant Bhateja Anuja Srivastava Weighted-PCA based multimodal medical image fusion in contourlet domain. Adv. Intel. Syst. Comp. 2016 439 597 605 10.1007/978‑981‑10‑0755‑2_63
    [Google Scholar]
  55. Xu J. Yang L. Wu D. Ripplet: A new transform for image processing. J. Vis. Commun. Image Represent. 2010 21 7 627 639 10.1016/j.jvcir.2010.04.002
    [Google Scholar]
  56. Das S. Chowdhury M. Kundu M.K. Medical image fusion based on ripplet transform type-I. Prog. Electromagn. Res. B Pier B 2011 30 355 370 10.2528/PIERB11040601
    [Google Scholar]
  57. Le Pennec E. Mallat S. Sparse geometric image representations with bandelets. IEEE Trans. Image Process. 2005 14 4 423 438 10.1109/TIP.2005.843753 15825478
    [Google Scholar]
  58. Donoho D.L. Wedgelets: Nearly minimax estimation of edges. Ann. Stat. 1999 27 3 859 897 10.1214/aos/1018031261
    [Google Scholar]
  59. Lu H. Li Y. Zhang L. Yang S. Serikawa S. A new method for CT/MR image fusion based on bandelets transform. Lect. Notes Electr. Eng. 2012 141 1 587 592 10.1007/978‑3‑642‑27311‑7_78
    [Google Scholar]
  60. Liu X. Zhou Y. Wang J. Image fusion based on shearlet transform and regional features. AEU Int. J. Electron. Commun. 2014 68 6 471 477 [AEU]. 10.1016/j.aeue.2013.12.003
    [Google Scholar]
  61. Wang L. Li B. Tian L. Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients. Inf. Fusion 2014 19 20 28 10.1016/j.inffus.2012.03.002
    [Google Scholar]
  62. Wang L. Li B. Tian L. EGGDD: An explicit dependency model for multi-modal medical image fusion in shift-invariant shearlet transform domain. Inf. Fusion 2014 19 29 37 10.1016/j.inffus.2013.04.005
    [Google Scholar]
  63. Da Cunha A.L. Zhou J. Do M.N. The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process. 2006 15 10 3089 3101 10.1109/TIP.2006.877507 17022272
    [Google Scholar]
  64. Bhatnagar G. Wu Q.M.J. Liu Z. Directive contrast based multimodal medical image fusion in NSCT domain. IEEE Trans. Multimed. 2013 15 5 1014 1024 10.1109/TMM.2013.2244870
    [Google Scholar]
  65. Yang Y. Tong S. Huang S. Lin P. Log-Gabor energy based multimodal medical image fusion in NSCT domain. Comput. Math. Methods Med. 2014 2014 1 12 10.1155/2014/835481 25214889
    [Google Scholar]
  66. Ganasala P. Kumar V. CT and MR image fusion scheme in nonsubsampled contourlet transform domain. J. Digit. Imaging 2014 27 3 407 418 10.1007/s10278‑013‑9664‑x 24474580
    [Google Scholar]
  67. Zhu Z. Zheng M. Qi G. Wang D. Xiang Y. A phase congruency and local laplacian energy based multi-modality medical image fusion method in NSCT domain. IEEE Access 2019 7 20811 20824 10.1109/ACCESS.2019.2898111
    [Google Scholar]
  68. Ch M.M.I. Ghafoor A. Bakhshi A.D. Saghir N.J. Medical image fusion using non subsampled contourlet transform and iterative joint filter. Multimedia Tools Appl. 2022 81 3 4495 4509 10.1007/s11042‑021‑11753‑8
    [Google Scholar]
  69. Yin M. Liu W. Zhao X. Yin Y. Guo Y. A novel image fusion algorithm based on nonsubsampled shearlet transform. Optik (Stuttg.) 2014 125 10 2274 2282 10.1016/j.ijleo.2013.10.064
    [Google Scholar]
  70. Zhang B. Lu X. Pei H. Zhao Y. A fusion algorithm for infrared and visible images based on saliency analysis and non-subsampled Shearlet transform. Infrared Phys. Technol. 2015 73 286 297 10.1016/j.infrared.2015.10.004
    [Google Scholar]
  71. Bavirisetti D.P. Kollu V. Gang X. Dhuli R. Fusion of MRI and CT images using guided image filter and image statistics. Int. J. Imaging Syst. Technol. 2017 27 3 227 237 10.1002/ima.22228
    [Google Scholar]
  72. Shreyamsha Kumar B.K. Image fusion based on pixel significance using cross bilateral filter. Sig. Image. Vid. Process. 2015 9 5 1193 1204 10.1007/s11760‑013‑0556‑9
    [Google Scholar]
  73. Shutao Li Xudong Kang Jianwen Hu Image fusion with guided filtering. IEEE Trans. Image Process. 2013 22 7 2864 2875 10.1109/TIP.2013.2244222 23372084
    [Google Scholar]
  74. Zhang X. Ma Y. Fan F. Zhang Y. Huang J. Infrared and visible image fusion via saliency analysis and local edge-preserving multi-scale decomposition. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 2017 34 8 1400 1410 10.1364/JOSAA.34.001400 29036107
    [Google Scholar]
  75. Xu Z. Medical image fusion using multi-level local extrema. Inf. Fusion 2014 19 1 38 48 10.1016/j.inffus.2013.01.001
    [Google Scholar]
  76. Bavirisetti D.P. Xiao G. Liu G. Multi-sensor image fusion based on fourth order partial differential equations 20th International Conference on Information Fusion (Fusion), Xi'an, China, 10-13 July 2017, pp. 1-9. 10.23919/ICIF.2017.8009719
    [Google Scholar]
  77. Bin Yang Shutao Li Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 2010 59 4 884 892 10.1109/TIM.2009.2026612
    [Google Scholar]
  78. Yu N. Qiu T. Bi F. Wang A. Image features extraction and fusion based on joint sparse representation. IEEE J. Sel. Top. Signal Process. 2011 5 5 1074 1082 10.1109/JSTSP.2011.2112332
    [Google Scholar]
  79. Yang B. Li S. Pixel-level image fusion with simultaneous orthogonal matching pursuit. Inf. Fusion 2012 13 1 10 19 10.1016/j.inffus.2010.04.001
    [Google Scholar]
  80. Liu Y. Wang Z. Simultaneous image fusion and denoising with adaptive sparse representation. IET Image Process. 2015 9 5 347 357 10.1049/iet‑ipr.2014.0311
    [Google Scholar]
  81. Aishwarya N. Bennila Thangammal C. A novel multimodal medical image fusion using sparse representation and modified spatial frequency. Int. J. Imaging Syst. Technol. 2018 28 3 175 185 10.1002/ima.22268
    [Google Scholar]
  82. Rubinstein R. Bruckstein A.M. Elad M. Dictionaries for sparse representation modeling. Proc. IEEE 2010 98 6 1045 1057 10.1109/JPROC.2010.2040551
    [Google Scholar]
  83. Zhang Q. Liu Y. Blum R.S. Han J. Tao D. Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: A review. Inf. Fusion 2018 40 57 75 10.1016/j.inffus.2017.05.006
    [Google Scholar]
  84. Wang Z. Wang S. Zhu Y. Ma Y. Review of image fusion based on pulse-coupled neural network. Arch. Comput. Methods Eng. 2016 23 4 659 671 10.1007/s11831‑015‑9154‑z
    [Google Scholar]
  85. Li S. Kwok J.T. Wang Y. Multifocus image fusion using artificial neural networks. Pattern Recognit. Lett. 2002 23 8 985 997 10.1016/S0167‑8655(02)00029‑6
    [Google Scholar]
  86. Wang Z. Ma Y. Medical image fusion using m-PCNN. Inf. Fusion 2008 9 2 176 185 10.1016/j.inffus.2007.04.003
    [Google Scholar]
  87. Zhao Y. Zhao Q. Hao A. Multimodal medical image fusion using improved multi-channel PCNN. Biomed. Mater. Eng. 2014 24 1 221 228 10.3233/BME‑130802 24211901
    [Google Scholar]
  88. Das S. Kundu M.K. Corrections to “A neuro-fuzzy approach for medical image fusion”. IEEE Trans. Biomed. Eng. 2015 62 4 1226 10.1109/TBME.2015.2405137 25793745
    [Google Scholar]
  89. Manchanda M. Sharma R. A novel method of multimodal medical image fusion using fuzzy transform. J. Vis. Commun. Image Represent. 2016 40 197 217 10.1016/j.jvcir.2016.06.021
    [Google Scholar]
  90. Biswas B. Sen B.K. Medical image fusion using type-2 fuzzy and near-fuzzy set approach. Int. J. Comput. Appl. 2020 42 4 399 414 10.1080/1206212X.2017.1402588
    [Google Scholar]
  91. Ananthi V.P. Balasubramaniam P. Image fusion using interval-valued intuitionistic fuzzy sets. Int. J. Image Data Fusion 2015 6 3 249 269 10.1080/19479832.2015.1053996
    [Google Scholar]
  92. Liu Y. Chen X. Wang Z. Wang Z.J. Ward R.K. Wang X. Deep learning for pixel-level image fusion: Recent advances and future prospects Inf. Fusion 2017 42 158 173 10.1016/j.inffus.2017.10.007
    [Google Scholar]
  93. Anwar S.M. Majid M. Qayyum A. Awais M. Alnowami M. Khan M.K. Medical image analysis using convolutional neural networks: A review. J. Med. Syst. 2018 42 11 226 10.1007/s10916‑018‑1088‑1 30298337
    [Google Scholar]
  94. Liu Y. Chen X. Peng H. Wang Z. Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 2017 36 191 207 10.1016/j.inffus.2016.12.001
    [Google Scholar]
  95. Xia K. Yin H. Wang J. A novel improved deep convolutional neural network model for medical image fusion. Cluster Comput. 2019 22 S1 1515 1527 10.1007/s10586‑018‑2026‑1
    [Google Scholar]
  96. Azarang A. Manoochehri H.E. Kehtarnavaz N. Convolutional autoencoder-based multispectral image fusion. IEEE Access 2019 7 35673 35683 10.1109/ACCESS.2019.2905511
    [Google Scholar]
  97. Ma J. Yu W. Liang P. Li C. Jiang J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf. Fusion 2019 48 11 26 10.1016/j.inffus.2018.09.004
    [Google Scholar]
  98. Tang W. Liu Y. Zhang C. Cheng J. Peng H. Chen X. Green fluorescent protein and phase-contrast image fusion via generative adversarial networks. Comput. Math. Methods Med. 2019 2019 1 11 10.1155/2019/5450373 31885682
    [Google Scholar]
  99. Wohlberg B. Efficient algorithms for convolutional sparse representations. IEEE Trans. Image Process. 2016 25 1 301 315 10.1109/TIP.2015.2495260 26529765
    [Google Scholar]
  100. Li Y. Zhao J. Lv Z. Li J. Medical image fusion method by deep learning. Int. J. Cogn. Comput. Eng 2021 2 21 29 10.1016/j.ijcce.2020.12.004
    [Google Scholar]
  101. Liang N. Medical image fusion with deep neural networks. Sci. Rep. 2024 14 1 7972 10.1038/s41598‑024‑58665‑9 38575689
    [Google Scholar]
  102. Zhou T. Cheng Q. Lu H. Li Q. Zhang X. Qiu S. Deep learning methods for medical image fusion: A review. Comput. Biol. Med. 2023 160 106959 10.1016/j.compbiomed.2023.106959 37141652
    [Google Scholar]
  103. Huang B. Yang F. Yin M. Mo X. Zhong C. A review of multimodal medical image fusion techniques. Comput. Math. Methods Med. 2020 2020 1 16 10.1155/2020/8279342 32377226
    [Google Scholar]
  104. Al-Azzawi N. Wan Abdullah W.A.K. Medical image fusion schemes using contourlet transform and PCA bases. Image Fusion and Its Applications InTech 2011 93 110 10.5772/16368
    [Google Scholar]
  105. Kavitha C.T. Chellamuthu C. Rajesh R. Medical image fusion using combined discrete wavelet and ripplet transforms. Procedia Eng. 2012 38 813 820 10.1016/j.proeng.2012.06.102
    [Google Scholar]
  106. Das S. Kundu M.K. NSCT-based multimodal medical image fusion using pulse-coupled neural network and modified spatial frequency. Med. Biol. Eng. Comput. 2012 50 10 1105 1114 10.1007/s11517‑012‑0943‑3 22825746
    [Google Scholar]
  107. Wang N. Ma Y. Zhan K. Yuan M. Multimodal medical image fusion framework based on simplified PCNN in nonsubsampled contourlet transform domain. J. Multimed. 2013 8 3 270 276 10.4304/jmm.8.3.270‑276
    [Google Scholar]
  108. Venkataraman A. Alirezaie J. Babyn P. Ahmadian A. Medical image fusion based on joint sparse method. 2nd Middle East Conference on Biomedical Engineering, Doha, Qatar, 7-20 February 2014, pp. 103-106 10.1109/MECBME.2014.6783216
    [Google Scholar]
  109. Liu Y. Liu S. Wang Z. A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 2015 24 147 164 10.1016/j.inffus.2014.09.004
    [Google Scholar]
  110. Agarwal J. Bedi S.S. Implementation of hybrid image fusion technique for feature enhancement in medical diagnosis. Hum.-centric Comput. Inf. Sci. 2015 5 1 3 10.1186/s13673‑014‑0020‑z
    [Google Scholar]
  111. Biswas B. Ghoshal S. Chatterjee P. Chakrabarti A. Dey K.N. Medical image fusion by combining SVD and shearlet transform 2nd International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 2015, pp. 148-153. 10.1109/SPIN.2015.7095385
    [Google Scholar]
  112. Bhateja V. Patel H. Krishn A. Sahu A. Lay-Ekuakille A. Multimodal medical image sensor fusion framework using cascade of wavelet and contourlet transform domains. IEEE Sens. J. 2015 15 12 6783 6790 10.1109/JSEN.2015.2465935
    [Google Scholar]
  113. Yang Y. Que Y. Huang S. Lin P. Multimodal sensor medical image fusion based on Type-2 fuzzy logic in NSCT domain. IEEE Sens. J. 2016 16 10 3735 3745 10.1109/JSEN.2016.2533864
    [Google Scholar]
  114. Qiu C. Wang Y. Zhang H. Xia S. Image fusion of CT and MR with sparse representation in NSST domain. Comput Math Methods Med 2017 2017 9308745 10.1155/2017/9308745
    [Google Scholar]
  115. Haddadpour M. Daneshvar S. Seyedarabi H. PET and MRI image fusion based on combination of 2-D Hilbert transform and IHS method. Biomed. J. 2017 40 4 219 225 10.1016/j.bj.2017.05.002 28918910
    [Google Scholar]
  116. Xia J. Chen Y. Chen A. Chen Y. Medical image fusion based on sparse representation and PCNN in NSCT domain. Comput. Math. Methods Med. 2018 2018 1 12 10.1155/2018/2806047 29991960
    [Google Scholar]
  117. Ramlal S.D. Sachdeva J. Ahuja C.K. Khandelwal N. Multimodal medical image fusion using non-subsampled shearlet transform and pulse coupled neural network incorporated with morphological gradient. Signal. Image. Video Process. 2018 12 8 1479 1487 10.1007/s11760‑018‑1303‑z
    [Google Scholar]
  118. Bhateja V. Srivastava A. Moin A. Lay-Ekuakille A. Multispectral medical image fusion scheme based on hybrid contourlet and shearlet transform domains. Rev. Sci. Instrum. 2018 89 8 084301 10.1063/1.5016947 30184631
    [Google Scholar]
  119. Rajalingam B. Priya R. Bhavani R. Hybrid multimodal medical image fusion using combination of transform techniques for disease analysis. Procedia Comput. Sci. 2019 152 150 157 10.1016/j.procs.2019.05.037
    [Google Scholar]
  120. Yin M. Liu X. Liu Y. Chen X. Medical image fusion with parameter-adaptive pulse coupled neural network in nonsubsampled shearlet transform domain. IEEE Trans. Instrum. Meas. 2019 68 1 49 64 10.1109/TIM.2018.2838778
    [Google Scholar]
  121. Tan L. Yu X. Medical image fusion based on fast finite shearlet transform and sparse representation. Comput. Math. Methods Med. 2019 2019 1 14 10.1155/2019/3503267 30944576
    [Google Scholar]
  122. Tan W. Tiwari P. Pandey H.M. Moreira C. Jaiswal A.K. Multimodal medical image fusion algorithm in the era of big data. Neural Comput. Appl. 2010 10.1007/s00521‑020‑05173‑2
    [Google Scholar]
  123. Xia J. Lu Y. Tan L. Research of multimodal medical image fusion based on parameter-adaptive pulse-coupled neural network and convolutional sparse representation. Comput. Math. Methods Med. 2010 3290136 10.1155/2020/3290136 32411280
    [Google Scholar]
  124. Wang L. Chang C. Liu Z. Huang J. Liu C. Liu C. A medical image fusion method based on SIFT and deep convolutional neural network in the SIST domain. J. Healthc. Eng. 2021 2021 1 8 10.1155/2021/9958017 33968357
    [Google Scholar]
  125. Zhao M. Peng Y. A Multi-module medical image fusion method based on non-subsampled shear wave transformation and convolutional neural network. Sens. Imaging 2021 22 1 9 10.1007/s11220‑021‑00330‑w
    [Google Scholar]
  126. Kong W. Chen Y. Lei Y. Medical image fusion using guided filter random walks and spatial frequency in framelet domain. Signal Process. 2021 181 107921 107921 10.1016/j.sigpro.2020.107921
    [Google Scholar]
  127. Rajalingam B. Al-Turjman F. Santhoshkumar R. Rajesh M. Intelligent multimodal medical image fusion with deep guided filtering. Multimedia Syst. 2022 28 4 1449 1463 10.1007/s00530‑020‑00706‑0
    [Google Scholar]
  128. Jie Y. Li X. wang M. Zhou F. Tan H. Medical image fusion based on extended difference-of-Gaussians and edge-preserving. Expert Syst. Appl. 2023 227 120301 120301 10.1016/j.eswa.2023.120301
    [Google Scholar]
  129. Liu Z. Blasch E. Xue Z. Zhao J. Laganiére R. Wu W. Objective assessment of multiresolution image fusion algorithms for context enhancement in Night vision: A comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 2012 34 1 94 109 10.1109/TPAMI.2011.109 21576753
    [Google Scholar]
  130. Jagalingam P. Hegde A.V. A review of quality metrics for fused image. Aquat. Procedia 2015 4 133 142 10.1016/j.aqpro.2015.02.019
    [Google Scholar]
  131. Hossny M. Nahavandi S. Creighton D. Comments on ‘Information measure for performance of image fusion’. Electron. Lett. 2008 44 18 1066 10.1049/el:20081754
    [Google Scholar]
  132. Mittal A. Soundararajan R. Bovik A.C. Making a ‘completely blind’ image quality analyzer. IEEE Signal Process. Lett. 2013 20 3 209 212 10.1109/LSP.2012.2227726
    [Google Scholar]
  133. Wang Z. Bovik A.C. Sheikh H.R. Simoncelli E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004 13 4 600 612 10.1109/TIP.2003.819861 15376593
    [Google Scholar]
  134. Lin Zhang Lei Zhang Xuanqin Mou Zhang D. FSIM: A feature similarity index for image quality assessment. IEEE Trans. Image Process. 2011 20 8 2378 2386 10.1109/TIP.2011.2109730 21292594
    [Google Scholar]
  135. Sheikh H.R. Bovik A.C. Image information and visual quality IEEE International Conference on Acoustics, Speech, and Signal Processing, Montreal, QC, Canada, 17-21 May 2004, pp. iii-709 10.1109/ICASSP.2004.1326643
    [Google Scholar]
  136. Zhou Wang Bovik A.C. A universal image quality index. IEEE Signal Process. Lett. 2002 9 3 81 84 10.1109/97.995823
    [Google Scholar]
  137. Aslantas V. Bendes E. A new image quality metric for image fusion: The sum of the correlations of differences. AEU Int. J. Electron. Commun. 2015 69 12 1890 1896 10.1016/j.aeue.2015.09.004
    [Google Scholar]
  138. Han Y. Cai Y. Cao Y. Xu X. A new image fusion performance metric based on visual information fidelity. Inf. Fusion 2013 14 2 127 135 10.1016/j.inffus.2011.08.002
    [Google Scholar]
  139. Qu G. Zhang D. Yan P. Information measure for performance of image fusion. Electron. Lett. 2002 38 7 313 315 10.1049/el:20020212
    [Google Scholar]
  140. Xydeas C.S. Petrović V. Objective image fusion performance measure. Electron. Lett. 2000 36 4 308 309 10.1049/el:20000267
    [Google Scholar]
  141. Cvejic N. Loza A.C. Bull D. Canagarajah N. A similarity metric for assessment of image fusion algorithms. Int. J. Comput. Inf. Sci. Eng 2008 2 8 2826 2830
    [Google Scholar]
  142. You C. Liu Y. Zhao B. Yang S. An objective quality metric for image fusion based on mutual information and muti-scale structural similarity. J. Softw. 2014 9 4 1050 1054 10.4304/jsw.9.4.1050‑1054
    [Google Scholar]
  143. Chen Y. Xue Z. Blum R.S. Theoretical analysis of an information-based quality measure for image fusion. Inf. Fusion 2008 9 2 161 175 10.1016/j.inffus.2007.03.002
    [Google Scholar]
  144. Haghighat M.B.A. Aghagolzadeh A. Seyedarabi H. A non-reference image fusion metric based on mutual information of image features. Comput. Electr. Eng. 2011 37 5 744 756 10.1016/j.compeleceng.2011.07.012
    [Google Scholar]
  145. Zhao J. Laganiere R. Liu Z. Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. Int. J. Innov. Comput., Inf. Control 2007 3 6 1403 1447
    [Google Scholar]
  146. Piella G. Heijmans H. 2003 A new quality metric for image fusion. International Conference on Image Processing (Cat. No.03CH37429), Barcelona, Spain, 14-17 September 2003, pp. III-173 10.1109/ICIP.2003.1247209
    [Google Scholar]
  147. Sheikh H.R. Sabir M.F. Bovik A.C. A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 2006 15 11 3440 3451 10.1109/TIP.2006.881959 17076403
    [Google Scholar]
  148. Zheng Y. Essock E.A. Hansen B.C. Haun A.M. A new metric based on extended spatial frequency and its application to DWT based fusion algorithms. Inf. Fusion 2007 8 2 177 192 10.1016/j.inffus.2005.04.003
    [Google Scholar]
  149. Kaur H. Vig R. Kumar N. Dogra A. Sharma A. Goyal B. Objective image quality assessment of pixel level image fusion algorithms for medical imaging. IEEE ICEEICT 2023 2023 01 08 10.1109/ICEEICT56924.2023.10157703
    [Google Scholar]
  150. Wang E. Yang B. Pang L. Superpixel-based structural similarity metric for image fusion quality evaluation. Sens. Imaging 2021 22 1 16 10.1007/s11220‑021‑00339‑1
    [Google Scholar]
  151. Guided-bilateral filter-based medical image fusion using visual saliency map in the wavelet domain. Available from: https://github.com/biswajitcsecu/Guided-Bilateral-Filter-based-Medical-Image-Fusion Using-Visual-Saliency-Map-in-the-Wavelet-Domain/blob/master/README.md
  152. Available from:https://github.com/WeiTan1992/NSST-MSMG-PCNN
/content/journals/eng/10.2174/0118722121342243241122045901
Loading
/content/journals/eng/10.2174/0118722121342243241122045901
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test