Skip to content
2000
image of A Machine Learning-Based Multi-Model Approach for Predicting Post-Deep Brain Stimulation Outcomes in Alzheimer’s disease Patients

Abstract

Objectives and Background

Deep-brain stimulation (DBS) is a demonstrated rehabilitation for Alzheimer's Disease (AD), regularly resulting in an upgrade of engine work. In any case, some unfortunate incidental upshots can occur past DBS, which can deteriorate the patient's satisfaction. In this way, the medical group must painstakingly choose patients over whom to perform DBS. In the past, there have been a few endeavors to associate pre-usable information and DBS experimental results, generally centered on engine symptomatology.

Objectives & Methodology

A machine learning (ML)-based strategy called a multimodel pipeline alluded to as FlowModel is designed and implemented to anticipate an enormous number of DBS medical results for AD. It is composed of a patented Artificial Neural Network (ANN) for processing medical data, using a conventional image handling technique to extract morphological biomarkers from T1 imaging, and employing a Support Vector Machine (SVM) to perform regressions. We authenticated it in 256 AD patients who underwent DBS.

Results

The FlowModel demonstrated high predictive precision, achieving a correlation coefficient of as high as 0.82 and successfully predicting 63 out of 84 clinical outcome scores. Importantly, FlowModel outperformed traditional linear models, demonstrating the capability to learn effectively from preoperative data alone.

Conclusion

The uniqueness of this study lies in its ability to predict multiple clinical outcomes across different modalities, independent of stimulation parameters. The introduction of this ML pipeline contributes to the precision medicine landscape by providing a robust, data-driven tool to select patients for DBS, potentially improving clinical decision-making and patient outcomes.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121342036241125093028
2024-12-10
2025-10-29
Loading full text...

Full text loading...

/deliver/fulltext/eng/10.2174/0118722121342036241125093028/BMS-ENG-2024-HT66-5822-10.html?itemId=/content/journals/eng/10.2174/0118722121342036241125093028&mimeType=html&fmt=ahah

References

  1. SinhaRoy R. Sen A. A Hybrid Deep Learning framework to predict alzheimer’s disease progression using generative adversarial networks and deep convolutional neural networks. Arab. J. Sci. Eng. 2024 49 3 3267 3284 10.1007/s13369‑023‑07973‑9
    [Google Scholar]
  2. Bajaj D. Renjith P.N. 2024 Developing ML model for early detection and prediction of alzheimer’s disease using multi modal biomarkers. Conference on Electrical, Electronics and Computer Science (SCEECS) Bhopal, India, 24-25 February 2024, pp. 1-6. 10.1109/SCEECS61402.2024.10481979
    [Google Scholar]
  3. Reddy L.V. Rao M.N. 2024 Detection and classification of MRI images using multistage classifier for early prediction of alzheimer’s disease. International Conference on Multidisciplinary Research and Sustainable Development (ICMED 2024) Vol. 392, pp. 01119. 10.1051/matecconf/202439201119
    [Google Scholar]
  4. Stalin Babu G. Rao S.T. Rao R.R. 2022 Alzheimer’s disease prediction via optimized Deep Learning framework. Proceedings of Second International Conference on Advances in Computer Engineering and Communication Systems: ICACECS 2021 Singapore, 22 February 2022, pp.183–190. 10.1007/978‑981‑16‑7389‑4_17
    [Google Scholar]
  5. Upadhyay P. Tomar P. Yadav S.P. Comprehensive systematic computation on alzheimer’s disease classification. Arch. Comput. Methods Eng. 2024 ••• 1 32 10.1007/s11831‑024‑10120‑8
    [Google Scholar]
  6. Malik P. Singh S. Deep Learning approaches and biomarkers in medical diagnosis. Recent Pat. Eng. 2024 18 3 e300123213249 10.2174/1872212117666230130100048
    [Google Scholar]
  7. Pranjal P. Mallick S. Das A. Negi A. Panda M.R. 2024 Alzheimer’s Disease Prediction Using Modern Machine Learning Techniques. 2024 International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC) Bhubaneswar, India, 27-29 January 2024, pp. 1-6. 1 6 IEEE. 10.1109/ASSIC60049.2024.10507810
    [Google Scholar]
  8. Shin M. Seo M. Yoo S.S. Yoon K. tFUSFormer: Physics-guided super-resolution Transformer for simulation of transcranial focused ultrasound propagation in brain stimulation. IEEE J. Biomed. Health Inform. 2024 28 7 4024 4035 10.1109/JBHI.2024.3389708 38625763
    [Google Scholar]
  9. Wang Y. Gao R. Wei T. Johnston L. Yuan X. Zhang Y. Yu Z. Predicting long-term progression of alzheimer’s disease using a multimodal deep learning model incorporating interaction effects. J. Transl. Med. 2024 22 1 265 10.1186/s12967‑024‑05025‑w 38468358
    [Google Scholar]
  10. Martí-Juan G. Lorenzi M. Piella G. MC-RVAE: Multi-channel recurrent variational autoencoder for multimodal alzheimer’s disease progression modelling. Neuroimage 2023 268 119892 10.1016/j.neuroimage.2023.119892 36682509
    [Google Scholar]
  11. Tiwari V.K. Indic P. Tabassum S. Machine Learning classification of alzheimer’s disease stages using Cerebrospinal fluid biomarkers alone arXiv:2401.00981 2024
    [Google Scholar]
  12. Zhang Y. Liu T. Lanfranchi V. Yang P. Explainable tensor multi-task ensemble learning based on brain structure variation for alzheimer’s disease dynamic prediction. IEEE J. Transl. Eng. Health Med. 2023 11 1 12 10.1109/JTEHM.2022.3219775 36478772
    [Google Scholar]
  13. Doe J. Smith J. Artificial Intelligence-based system for early detection of alzheimer's disease Patent US20230012345A1, 2023
  14. Lee M.W. Kim H.W. Choe Y.S. Yang H.S. Lee J. Lee H. Yong J.H. Kim D. Lee M. Kang D.W. Jeon S.Y. Son S.J. Lee Y.M. Kim H.G. Kim R.E.Y. Lim H.K. A multimodal machine learning model for predicting dementia conversion in alzheimer’s disease. Sci. Rep. 2024 14 1 12276 10.1038/s41598‑024‑60134‑2 38806509
    [Google Scholar]
  15. Saleh H. ElRashidy N. Abd Elaziz M. Aseeri O. Genetic algorithm-based hybrid deep learning model for explainable alzheimer’s disease prediction using temporal multimodal cognitive data. Int. J. Data Sci. Anal. 2024 ••• 1 31 10.1007/s41060‑024‑00514‑z
    [Google Scholar]
  16. Suneel S. Balaram A. Amina Begum M. Umapathy K. Reddy P.C.S. Talasila V. Quantum mesh neural network model in precise image diagnosing. Opt. Quantum Electron. 2024 56 4 559 10.1007/s11082‑023‑06245‑y
    [Google Scholar]
  17. Peralta M. Haegelen C. Jannin P. Baxter J.S.H. PassFlow: A multimodal workflow for predicting deep brain stimulation outcomes. Int. J. CARS 2021 16 8 1361 1370 10.1007/s11548‑021‑02435‑9 34216319
    [Google Scholar]
  18. Arafa D.A. Moustafa H.E.D. Ali H.A. Ali-Eldin A.M.T. Saraya S.F. A deep learning framework for early diagnosis of alzheimer’s disease on MRI images. Multimedia Tools Appl. 2024 83 2 3767 3799 10.1007/s11042‑023‑15738‑7
    [Google Scholar]
  19. Alatrany A.S. Khan W. Hussain A. Kolivand H. Al-Jumeily D. An explainable machine learning approach for alzheimer’s disease classification. Sci. Rep. 2024 14 1 2637 10.1038/s41598‑024‑51985‑w 38302557
    [Google Scholar]
  20. Nair R. Mahajan N. Pote U. Badwaik P. Tupe U. Machine and Deep Learning approaches for alzheimer’s disease prediction: A comprehensive survey GJET 2024 10 1 410
    [Google Scholar]
  21. Sudhakar B. Sikrant P.A. Prasad M.L. Latha S.B. Kumar G.R. Sarika S. Shaker Reddy P.C. Brain tumor image prediction from MR images using CNN based deep learning networks. J. Inf. Technol. Manage. 2024 16 1 44 60
    [Google Scholar]
  22. Shivahare B.D. Singh J. Ravi V. Chandan R.R. Alahmadi T.J. Singh P. Diwakar M. Delving into Machine Learning’s influence on disease diagnosis and prediction. Open Public Health J. 2024 17 1 e18749445297804 10.2174/0118749445297804240401061128
    [Google Scholar]
  23. Prasad M.L. Kiran A. Shaker Reddy P.C. Chronic kidney disease risk prediction using machine learning techniques. J. Inf. Technol. Manage. 2024 16 1 118 134
    [Google Scholar]
  24. Cheng H. Yuan S. Li W. Yu X. Liu F. Liu X. Bezabih T.T. De-accumulated error collaborative learning framework for predicting alzheimer’s disease progression. Biomed. Signal Process. Control 2024 89 105767 10.1016/j.bspc.2023.105767
    [Google Scholar]
  25. Lei B. Liang E. Yang M. Yang P. Zhou F. Tan E.L. Lei Y. Liu C.M. Wang T. Xiao X. Wang S. Predicting clinical scores for alzheimer’s disease based on joint and deep learning. Expert Syst. Appl. 2022 187 115966 10.1016/j.eswa.2021.115966
    [Google Scholar]
  26. Zhang C. Lei X. Ma W. Long J. Long S. Chen X. Luo J. Tao Q. Diagnosis framework for probable alzheimer's disease and mild cognitive impairment based on multi-dimensional emotion features J Alzheimers Dis 2024 97 3 1125 1137
    [Google Scholar]
  27. Sowjanya S. Reddy I.S. Muralikrishna C. Prasad T.S.L. Reddy P.C.S. Sharma V. 2024 Bioacoustics Signal Authentication for E-Medical Records Using Blockchain. 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS) Chikkaballapur, India, 18-19 April 2024, pp. 1-6. 10.1109/ICKECS61492.2024.10617376
    [Google Scholar]
  28. din dar Mohi ud . A novel framework for classification of different alzheimer’s disease stages using CNN model Electronics 2023 12 1 469
    [Google Scholar]
  29. Kasula B.Y. A Machine Learning approach for differential diagnosis and prognostic prediction in alzheimer’s disease. IJSDC 2023 5 4 1 8
    [Google Scholar]
  30. El-Gawady A. Makhlouf M.A. Tawfik B.S. Nassar H. Machine learning framework for the prediction of alzheimer’s disease using gene expression data based on efficient gene selection. Symmetry (Basel) 2022 14 3 491 10.3390/sym14030491
    [Google Scholar]
  31. Rani R.Y. Prasad M.L. Reddy I.S. Tayubi I.A. Sultan G. Reddy P.C.S. 2024 Early Prediction and Diagnosis Cardiovascular Disease Using Deep Learning Models. 2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS) Bengaluru, India, 22-23 April 2024, pp. 1-6. 10.1109/ICETCS61022.2024.10543851
    [Google Scholar]
  32. Rao K.N. Gandhi B.R. Rao M.V. Javvadi S. Vellela S.S. Basha S.K. 2023 Prediction and classification of alzheimer’s disease using Machine Learning techniques in 3D MR images. 2023 International Conference on Sustainable Computing and Smart Systems (ICSCSS) 2023, pp. 85-90. 10.1109/ICSCSS57650.2023.10169550
    [Google Scholar]
  33. Pang Z. Wang X. Wang X. Qi J. Zhao Z. Gao Y. Yang Y. Yang P. A multi-modal data platform for diagnosis and prediction of alzheimer’s disease using machine learning methods. Mob. Netw. Appl. 2021 26 6 2341 2352 10.1007/s11036‑021‑01834‑1
    [Google Scholar]
  34. Shaik M.K. Vanaparthi K. Swarnalatha G. Reddy P.C.S. Dalai R.P. Jayaram B. 2024 A Deep Learning Framework for Prognosis Patients with COVID-19. 2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS) Krishnankoil, Virudhunagar district, Tamil Nadu, India, 14-16 March 2024, pp. 1-6. 10.1109/INCOS59338.2024.10527475
    [Google Scholar]
  35. Qiu S. Joshi P.S. Miller M.I. Xue C. Zhou X. Karjadi C. Chang G.H. Joshi A.S. Dwyer B. Zhu S. Kaku M. Zhou Y. Alderazi Y.J. Swaminathan A. Kedar S. Saint-Hilaire M.H. Auerbach S.H. Yuan J. Sartor E.A. Au R. Kolachalama V.B. Development and validation of an interpretable deep learning framework for alzheimer’s disease classification. Brain 2020 143 6 1920 1933 10.1093/brain/awaa137 32357201
    [Google Scholar]
  36. Al Fahoum A. Zyout A. Wavelet transform, reconstructed phase space, and Deep Learning neural networks for EEG-based Schizophrenia detection. Int. J. Neural Syst. 2024 34 9 2450046 10.1142/S0129065724500461 39010724
    [Google Scholar]
  37. Goenka N. Tiwari S. Deep learning for alzheimer prediction using brain biomarkers. Artif. Intell. Rev. 2021 54 7 4827 4871 10.1007/s10462‑021‑10016‑0
    [Google Scholar]
  38. Rajesh Khanna M. Multi-level classification of alzheimer disease using DCNN and ensemble deep learning techniques. Signal Image Video Process. 2023 17 7 3603 3611 10.1007/s11760‑023‑02586‑z
    [Google Scholar]
  39. Sharma R. Goel T. Tanveer M. Lin C.T. Murugan R. Deep learning based diagnosis and prognosis of alzheimer’s disease: A comprehensive review. IEEE Trans. Cogn. Dev. Syst. 2023 15 3 1123 1138 10.1109/TCDS.2023.3254209
    [Google Scholar]
  40. Rahim N. El-Sappagh S. Ali S. Muhammad K. Del Ser J. Abuhmed T. Prediction of alzheimer’s progression based on multimodal Deep-Learning-based fusion and visual Explainability of time-series data. Inf. Fusion 2023 92 363 388 10.1016/j.inffus.2022.11.028
    [Google Scholar]
  41. Kamini and Rani Machine Learning models for diagnosing alzheimer’s disorders. Data Analysis for Neurodegenerative Disorders Springer Singapore 2023 183 194
    [Google Scholar]
  42. Chen Y. Wang H. Zhang D. Zhang L. Tao L. Multi-feature fusion learning for alzheimer’s disease prediction using EEG signals in resting state. Front. Neurosci. 2023 17 1272834 10.3389/fnins.2023.1272834 37822349
    [Google Scholar]
  43. Tanveer M. Goel T. Sharma R. Malik A.K. Beheshti I. Del Ser J. Suganthan P.N. Lin C.T. Ensemble deep learning for alzheimer’s disease characterization and estimation. Nat. Ment. Health 2024 2 6 655 667 10.1038/s44220‑024‑00237‑x
    [Google Scholar]
  44. Illakiya T. Karthik R. Automatic detection of alzheimer’s disease using deep learning models and neuro-imaging: Current trends and future perspectives. Neuroinformatics 2023 21 2 339 364 10.1007/s12021‑023‑09625‑7 36884142
    [Google Scholar]
  45. Mustaq M. Ahmed N. Mahbub S. Li C. Miyaoka Y. Predicting alzheimer's trajectory: A multi-PRS Machine Learning approach for early diagnosis and progression forecasting. 2023 medRxiv 2023 11
    [Google Scholar]
/content/journals/eng/10.2174/0118722121342036241125093028
Loading
/content/journals/eng/10.2174/0118722121342036241125093028
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: clinical prediction ; machine learning ; AD ; neural networks ; support vector machine ; DBS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test