Skip to content
2000
Volume 19, Issue 9
  • ISSN: 1872-2121
  • E-ISSN: 2212-4047

Abstract

Background

Electro-hydraulic position servo system is widely used, in order to cope with complex working conditions, the system is required to have high dynamic response and accurate position control ability, while the characteristics of the system and its control strategy need to be studied in depth.

Objective

To review the characteristics of electro-hydraulic position servo systems and typical control strategies under complex working conditions, and summarize their advantages and disadvantages to provide a basis for the design and optimization of electro-hydraulic position servo systems.

Methods

Literature and patents related to electrohydraulic position servo system characteristics and control strategies are collected, synthesized and summarized.

Results

The characteristics of electro-hydraulic position servo system under complex working conditions are summarized, especially the performance of the system and the application effect of the control strategy under the working conditions such as load disturbance and gap nonlinearity. In addition, the application of sliding mode control, adaptive control and neural network control in electrohydraulic servo systems is summarized.

Conclusion

In different complex working conditions, the selection of appropriate control strategies can improve the performance and stability of electro-hydraulic position servo systems. The study of the characteristics of electro-hydraulic position servo systems and typical control strategies is of great significance to the development of electro-hydraulic position servo systems.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/eng/10.2174/0118722121305645240907102940
2024-03-11
2025-11-29
Loading full text...

Full text loading...

/deliver/fulltext/eng/19/9/ENG-19-9-13.html?itemId=/content/journals/eng/10.2174/0118722121305645240907102940&mimeType=html&fmt=ahah

References

  1. LiN.N. Research on the effect of gap nonlinearity on electro-hydraulic position servo system and its compensation method.J. Lanzhou Uni Technol2014
    [Google Scholar]
  2. WeiL.J. LiN.N. FengZ.Q. Full compensation method of two-cylinder linkage for gap in electrohydraulic position servo system.J. Lanzhou Uni Technol201541014750
    [Google Scholar]
  3. LiD.W. Research on nonlinear compensation control and application of servo system.Beijing Uni Technol2018
    [Google Scholar]
  4. LiuW.L. Research on dynamic characteristics of electric load simulator.North Central Uni2019
    [Google Scholar]
  5. XueC. Research on nonlinear modeling and compensation method of electro-hydraulic load simulator.Beijing Jiaotong Uni2018
    [Google Scholar]
  6. LvL.H. Analysis and compensation of the effect of feedback channel containing gap nonlinearity on electrohydraulic position servo system.Lanzhou Uni Sci Technol2017
    [Google Scholar]
  7. WeiL.J. LuL.G. LiN.N. Research on the effect of feedback channel containing gap on the characteristics of electrohydraulic position servo system.Hydraulic Pneumatic and Sealing2016360614
    [Google Scholar]
  8. WangC. Research on mechanical parameter identification and oscillation suppression technology of servo drive system.Harbin Inst Technol2020
    [Google Scholar]
  9. MeiZ.Q. YangR-Q. LiangC. LiG-B. The study of backlash compensation and its application in the robot checking the filter.Int. J. Adv. Manuf. Technol.2005253-439640110.1007/s00170‑003‑1820‑x
    [Google Scholar]
  10. RascónR. AlvarezJ. AguilarL.T. Discontinuous H ∞ control of underactuated mechanical systems with friction and backlash.Int. J. Control. Autom. Syst.20161451213122210.1007/s12555‑014‑0498‑1
    [Google Scholar]
  11. ShenW. Research on friction and clearance model identification of valve-controlled cylinder system and its compensation method.Harbin Inst. Technol.2023
    [Google Scholar]
  12. ZhengW.L. Limit ring mechanism analysis of servo system containing gap nonlinearity and its suppression technique.Harbin Inst. Technol.2017
    [Google Scholar]
  13. LiangQ. LiuF. LiuH. L. Deadband compensation strategy and control characteristic simulation of electro-hydraulic servo valve with differential pressure feedback.Forg. Technol.2022472
    [Google Scholar]
  14. WangL.X. ZhaoD.X. LiuF.C. Self-immunity control of electrohydraulic position servo system based on dead zone compensation.Zhongguo Jixie Gongcheng2021321214321442
    [Google Scholar]
  15. GuW. YaoJ. YaoZ. ZhengJ. Robust Adaptive Control of Hydraulic System With Input Saturation and Valve Dead-Zone.IEEE Access20186535215353210.1109/ACCESS.2018.2871069
    [Google Scholar]
  16. PengX. HeY.G. Electrohydraulic proportional servo control based on iterative learning algorithm.Jixie Gongcheng Xuebao2018542027127810.3901/JME.2018.20.271
    [Google Scholar]
  17. JiaL.J. Research on inverse compensation strategy of typical nonlinearity in mechanical transmission system.Henan Uni. Sci. Technol.2020
    [Google Scholar]
  18. LiY. MaoZ.Z. WangF.L. Adaptive deadband compensation control of electrode conditioning system for electric arc furnace.Control and Decision2010251014741478
    [Google Scholar]
  19. XuZ.B. ZhaoC.E. XuZ.S. Linearization compensation method for neutral dead zone of electro-hydraulic proportional valve.J. Hunan Inst. Sci. Technol.201031081921
    [Google Scholar]
  20. ZhaoZ.H. Adaptive control of nonlinear time-lag system with input deadband.Hangzhou Uni. Electronic Sci. Technol.2021
    [Google Scholar]
  21. CuiS. ZhuG. ZhaoT. Linear Active Disturbance Rejection Control-Based Diagonal Recurrent Neural Network for Radar Position Servo Systems with Dead Zone and Friction.Appl. Sci. (Basel)202212241283910.3390/app122412839
    [Google Scholar]
  22. ZhangY. YanQ. CaiJ. WuX. Adaptive Iterative Learning Control for Tank Gun Servo Systems With Input Deadzone.IEEE Access20208634436345110.1109/ACCESS.2020.2983454
    [Google Scholar]
  23. HeY. WangJ. HaoR. Adaptive robust dead-zone compensation control of electro-hydraulic servo systems with load disturbance rejection.J. Syst. Sci. Complex.201528234135910.1007/s11424‑014‑2243‑5
    [Google Scholar]
  24. OmarZ. WangX. HussainK. YangM. Delay compensation based controller for rotary electrohydraulic servo system.Int. J. Dyn. Cont.2021941645165210.1007/s40435‑020‑00752‑6
    [Google Scholar]
  25. RuanJ. Discussion on the control strategy of electro-hydraulic position servo system under variable stiffness elastic load.Wuhan Uni. Sci. Technol.2020
    [Google Scholar]
  26. DongF.T. Research on electro-hydraulic servo system with multiple flexibility links and its neural network control strategy.Harbin Inst. Technol.2019
    [Google Scholar]
  27. WangY.Z. Characterization of flexible coupled electro-hydraulic position servo system based on CMAC control strategy.Harbin Inst. Technol.2021
    [Google Scholar]
  28. ZhouP.Y. Research on hydraulic position servo system with variable stiffness load.Yanshan Uni.2020
    [Google Scholar]
  29. ZhaoH. WuY.H. Fuzzy control of variable stiffness elastic load hydraulic system.Machine Tools and Hydraulics2008
    [Google Scholar]
  30. AiY.H. Analysis of the influence of hydraulic stiffness and other parameters on the characteristics of electro-hydraulic position servo system.Wuhan Uni. Sci. Technol.2015
    [Google Scholar]
  31. YuY. ShiB.Q. HouY.S. Analysis of the effect of structural stiffness on the stability of hydraulic servo system.J. Agric. Eng.201127S23235
    [Google Scholar]
  32. ZhengB.J. JinX.H. HuangH. Research on electrohydraulic position servo system with negative elastic stiffness load.Mechanical Design and Manufacturing201810113118
    [Google Scholar]
  33. LiuX. WangY. WangM. Speed Fluctuation Suppression Strategy of Servo System with Flexible Load Based on Pole Assignment Fuzzy Adaptive PID.Mathematics20221021396210.3390/math10213962
    [Google Scholar]
  34. TranD.T. BaD.X. AhnK.K. Adaptive Backstepping Sliding Mode Control for Equilibrium Position Tracking of an Electrohydraulic Elastic Manipulator.IEEE Trans. Ind. Electron.20206753860386910.1109/TIE.2019.2918475
    [Google Scholar]
  35. LiuX. HuangR.N. GaoY.J. Adaptive inverse sliding mode control of electrohydraulic position servo system.Hydraul. Pneumatics2019071419
    [Google Scholar]
  36. SiG.L. ShenY.Q. WangJ.L. Research on self-resistant control of electro-hydraulic position servo system.Hydraulics and Pneumatics2020121421
    [Google Scholar]
  37. YeY.T. Research on anti-interference control and parameter tuning of electro-hydraulic position servo system.Harbin Inst. Technol.2023
    [Google Scholar]
  38. ChenX.F. Research on high-precision position servo control of electro-hydraulic servo hydraulic actuator.Hydraul. Pneumatic Sealing202040074549
    [Google Scholar]
  39. JiangZ. M. LinT. Q. HuangX. X. Self-learning control of an electrohydraulic position servo system with unknown load disturbance based on CMAC.Cont. Decision Making2000
    [Google Scholar]
  40. GuoX.P. Research on sliding mode control method of pump-controlled electro-hydraulic position servo system.Taiyuan Uni. Technol.2021
    [Google Scholar]
  41. LiB. RuiG.C. FangL. Research on adaptive anti-disturbance control of electro-hydraulic servo system.Hydraulics and Pneumatics2019125762
    [Google Scholar]
  42. XuH.T. LiY.M. Sliding mode control analysis of valve-controlled electro-hydraulic servo system based on AMESim and backstepping controller.Hydraul. Pneumatics202102123128
    [Google Scholar]
  43. ZhaoS. Research on hydraulic servo flow control method based on LADRC.Changchun Uni. Sci. Technol.2023
    [Google Scholar]
  44. PanC. Z. HeG. LiZ. J. Time-varying output-constrained adaptive filtering control of uncertain electrohydraulic servo systems.J. Beijing Univ. Aeronaut. Astronaut.
    [Google Scholar]
  45. FengL. YanH. Nonlinear Adaptive Robust Control of the Electro-Hydraulic Servo System.Appl. Sci. (Basel)20201013449410.3390/app10134494
    [Google Scholar]
  46. TangJ. CaoJ. WuM. ZhaoL. ZhangF. Position control of electro-hydraulic servo system using active disturbance rejection control for upper-limb exoskeleton.J. Vibroeng.202325358159310.21595/jve.2022.22850
    [Google Scholar]
  47. WangS. LingZ. XuR. ZhouG. JinY. Adaptive back-stepping Control of Electro-hydraulic Servo system of Steam Turbine.J. Phys. Conf. Ser.20232558101204010.1088/1742‑6596/2558/1/012040
    [Google Scholar]
  48. LvY. MaJ. HeD.C. GaoX. Diagonal Recurrent Neural Network-Based Electro-Hydraulic Servo System Control.Appl. Mech. Mater.2013336-338336-33858158410.4028/www.scientific.net/AMM.336‑338.581
    [Google Scholar]
  49. AbbasM.J. ZadH.S. AwaisM. UlasyarA. Robust sliding mode position control of electro-hydraulic servo system.International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Swat, Pakistan, 2019, pp. 1-6.10.1109/ICECCE47252.2019.8940663
    [Google Scholar]
  50. WangY.F. JiJ.Y. CaoC. Position control of asymmetric cylinder electro-hydraulic system based on double disturbance observer.J. Cent. South Univ.2021521138643871
    [Google Scholar]
  51. ChangJ. L. ZhangG. F. CaoX. F. Design of electro-hydraulic servo system controller with interference suppression. J Tianjin Polytech Univ2021
    [Google Scholar]
  52. FanK. LiS.Z. LiuY.J. Adaptive robust control of active lift-sink compensation system based on extended disturbance observer.Hydraulics and Pneumatics2020072227
    [Google Scholar]
  53. NieS.C. QianL.F. ChenZ.Q. Adaptive sliding mode control of electro-hydraulic servo system for projectile coordinator based on disturbance observer.J. Mil. Eng.2020410917451751
    [Google Scholar]
  54. GuoC.B. YuC. ShenG. Adaptive sliding-mode controller-based control of launching wellbore switching cover process.Hydraulics and Pneumatics202001100106
    [Google Scholar]
  55. LiuL. LinM. H. LiX. G. Adaptive backstepping control of electrohydraulic servo position system based on fuzzy disturbance observer.Hydraul. Pneum.2020
    [Google Scholar]
  56. WangH. JiangS.L. Research on digital hydraulic cylinder control based on disturbance observer.Control Eng.2019260917761781
    [Google Scholar]
  57. ZhaoQ.T. YaoJ.Y. YaoZ.K. Robust integral tracking control based on finite-time disturbance observer.J. Zhejiang Uni.2019531018741882
    [Google Scholar]
  58. LiX. RuiG.C. YinS.C. Adaptive robust control of electrohydraulic position system under force disturbance.Hydraulics and Pneumatics2019023642
    [Google Scholar]
  59. LiuL. YaoJ.Y. HuaJ. Tracking control of electrohydraulic position servo system based on disturbance observer.J. Mil. Eng.2015361120532061
    [Google Scholar]
  60. RuiG.C. HouD.D. ShenG. Electrohydraulic position servo system with external uncertain disturbances based on nonlinear disturbance observer with backstepping control.Machine Tools and Hydraulics20174518136142
    [Google Scholar]
  61. NguyenM.H. DaoH.V. AhnK.K. Extended sliding mode observer‐based high‐accuracy motion control for uncertain electro‐hydraulic systems.Int. J. Robust Nonlinear Control20233321351137010.1002/rnc.6421
    [Google Scholar]
  62. FengX.G. XuS. ZhangT.Z. Sliding mode control of electrode filtering for electric arc furnace based on disturbance observer.J. Shaanxi Uni. Sci. Technol.202238061521
    [Google Scholar]
  63. HanS. Grey wolf and weighted whale algorithm optimized IT2 fuzzy sliding mode backstepping control with fractional-order command filter for a nonlinear dynamic system.Appl. Sci. (Basel)202111248910.3390/app11020489
    [Google Scholar]
  64. GanJ.J. GengX.H. WangQ. Adaptive sliding mode control of coordinator based on disturbance observer.Mil. Autom.202342071621
    [Google Scholar]
  65. MoJ. W. ZhangT. Y. GuoX. L. A continuous sliding mode control method for robotic arm based on disturbance observer.Cont. Eng.
    [Google Scholar]
  66. ChoiM. ChoiK. ChoM. LeeM. KimK-S. Chattering Reduction of Sliding Mode Control via Nonlinear Disturbance Observer for Anti-Lock Braking System and Verification with CarSim Simulation.Int. J. Automot. Technol.20232441141114910.1007/s12239‑023‑0093‑7
    [Google Scholar]
  67. ZhengB.C. Research on quantized feedback variable structure control for uncertain systems.Northeastern Uni2015
    [Google Scholar]
  68. XueY.M. YangJ. LiuX.M. Sliding Sector-Based Variable Structure Control of Continuous-Time Markov Jump Linear Systems Subject to Unknown Transition Rates.Math. Probl. Eng.201320131910.1155/2013/364726
    [Google Scholar]
  69. ZhongL. ZhengB.C. LiT. Variable structure control design for stochastic Markovian jump systems.Comput. Eng. Appl.20165224251255
    [Google Scholar]
  70. ZhangZ.W. MaoF.R. Application of sliding mode variable structure control method in electro-hydraulic servo system.Hydraulics and Pneumatics2005085052
    [Google Scholar]
  71. YanJ. WangM. ChengX.Y. Research on sliding mode control of four-joint manipulator based on computational moment method.Ind. Control Comput.2023360779
    [Google Scholar]
  72. LinP.C. AbbaszadehE. MobayenS. RouhaniS.H. SuC-L. Haddad-ZarifM. KhoobanM.H. Soft variable structure fractional sliding-mode control for frequency regulation in renewable shipboard microgrids.Ocean Eng.202429611706510.1016/j.oceaneng.2024.117065
    [Google Scholar]
  73. GuanC. ZhuS.A. Differential and integral sliding mode adaptive control of a class of nonlinear systems and its application to electrohydraulic servo systems.Chinese J. Electr. Eng.200504105110
    [Google Scholar]
  74. GuanC. PanS. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters.Control Eng. Pract.200816111275128410.1016/j.conengprac.2008.02.002
    [Google Scholar]
  75. DingS. G. HanJ. Y. Research on electro-hydraulic servo system based on fuzzy sliding mode control.Combined machine tools and automated machining technology2017110112
    [Google Scholar]
  76. JiX.H. WangC.W. ChenS. Sliding mode backstepping control method for valve-controlled electrohydraulic position servo system.J. Cent. South Univ.2020510615181525
    [Google Scholar]
  77. WangJ.M. DongX.M. WuY.J. RBF neural network sliding mode variable structure control for hypersonic vehicle.J. Electr. Mach. Control20162005103110
    [Google Scholar]
  78. LiZ.Y. GaoY. MiaoL. Research on sliding mold variable structure control robotic arm based on genetic algorithm.Henan Sci.2018361218821886
    [Google Scholar]
  79. WangB. LuoY.N. DongH.F. Application of sliding mode control algorithm combined with particle swarm optimization for pump-controlled electrohydraulic brakes.Mechanical Design and Research20223804145148
    [Google Scholar]
  80. SunG.F. ZhaoE.Q. ZhangG.J. Non-singular fast terminal sliding mode control of robotic arm based on disturbance observer compensation.Control Theory and Applications2022390815061515
    [Google Scholar]
  81. WangH.Y. Observer-based robust control of nonlinear high-order sliding mode electrohydraulic position.China J. Const. Mach.20191702134140
    [Google Scholar]
  82. AlihosseiniA. DehkordiN.M. SajjadiM. Designing a free chattering robust nonlinear sliding mode control for underactuated two wheels mobile robots with disturbances and uncertainties.J. Vib. Control2024303-468569610.1177/10775463221149769
    [Google Scholar]
  83. EltayebA. RahmatM.F. BasriM.A.M. EltoumM.A.M. El-FerikS. An improved design of an adaptive sliding mode controller for chattering attenuation and trajectory tracking of the quadcopter UAV.IEEE Access2020820596820597910.1109/ACCESS.2020.3037557
    [Google Scholar]
  84. ZhuQ.X. WangJ.Q. XieG.M. A review of research on composite adaptive control of servo systems.Aerosp. Manu. Technol.202164221427
    [Google Scholar]
  85. OuF. ChengH. Research on fuzzy control method of torque motor based on parameter self-correction.Jisuanji Fangzhen20193607282286
    [Google Scholar]
  86. ZhangS.Q. Design and research of fuzzy self-correcting serial PID cricket control system.Autom. Technol. Appl.2019380114
    [Google Scholar]
  87. LiuD. Research on adaptive control method of electro-hydraulic position servo system.Harbin Inst. Technol.2011
    [Google Scholar]
  88. CaiG.P. ZengC.X. ZhouX.Y. MRAC tracking control of electrohydraulic position servo system based on improved PSO algorithm.Hydraul. Pneumatics20214510177183
    [Google Scholar]
  89. LiuC. JiangY. ZhangZ. DengT. YuD. GaoJ. Research on Electro-hydraulic Servo System of Air Rudder on Model Reference Adaptive Control.J. Phys. Conf. Ser.20201650202200110.1088/1742‑6596/1650/2/022001
    [Google Scholar]
  90. YuY. WuF. WangW. Adaptive neural network control of position servo system for permanent magnet synchronous motor.J. Eng. Math.20223904559570
    [Google Scholar]
  91. SantosJ.D.B. BessaW.M. Intelligent control for accurate position tracking of electrohydraulic actuators.Electron. Lett.2019552788010.1049/el.2018.7218
    [Google Scholar]
  92. LiY.P. Research on control and application of electro-hydraulic servo system containing unmodeled dynamics.Kunming Uni. Sci. Technol.2019
    [Google Scholar]
  93. HienB.L. ThuH.T.H. VinhV.Q. Dynamic surface control associates adapting external torque algorithm for electro-hydraulic velocity servo system.Int. Organi. Sci. Res.202010517
    [Google Scholar]
  94. KeD. L. Adaptive observer-based feed-forward differential-free predictive control of permanent magnet synchronous motors.Microtome2023
    [Google Scholar]
  95. JingC. XuH. SongX. LuB. Adaptive extended state observer-based flatness nonlinear output control for torque tracking of electrohydraulic loading system.Trans. Inst. Meas. Contr.201840102999300910.1177/0142331217713835
    [Google Scholar]
  96. SunH. B. ZhangX. Y. LiuX. B. Adaptive robust control of permanent magnet synchronous motor based on expanded state observer.Cont Eng
    [Google Scholar]
  97. ChenX.G. PanD.F. Research on electro-hydraulic servo system based on fuzzy adaptive control.Enterp. Technol. Dev.201635133941
    [Google Scholar]
  98. ShenY.Q. CaoT.Q. SiG.L. Research on fuzzy adaptive composite control of electro-hydraulic servo system.Mach. Tools Hydraul.202149193842
    [Google Scholar]
  99. WangY. WuP. LiuC. Adaptive fuzzy PID control of hydraulic servo control system for large axial flow compressor.IOP Conf. Series Mater. Sci. Eng.2017231101208610.1088/1757‑899X/231/1/012086
    [Google Scholar]
  100. LiuQ.L. HanJ. YangS.Y. Adaptive terminal sliding mode control for uncertain electrohydraulic position servo systems.Appl. Math. Mech.20214207675685
    [Google Scholar]
  101. LiuS. LiS. ZhaoD.X. Adaptive sliding mode control of electro-hydraulic servo system for active hydrocarbon suspension.Journal of Yanshan University20194306477484
    [Google Scholar]
  102. NieS.C. QianL.F. TianL.F. ZouQ. Adaptive sliding mode control for electro-hydraulic position servo system of the elevation-balancing machine of artillery platformIEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC),Chongqing, China, 2018, pp. 731-735.10.1109/ITOEC.2018.8740773
    [Google Scholar]
  103. YangS.Y. HanJ. ZhangK.B. Robust adaptive control of electrohydraulic position servo system.Appl. Math. Mech.20173806676684
    [Google Scholar]
  104. SunW. LiuY. GaoH. Constrained Sampled-Data ARC for a Class of Cascaded Nonlinear Systems With Applications to Motor-Servo Systems.IEEE Trans. Industr. Inform.201915276677610.1109/TII.2018.2821677
    [Google Scholar]
  105. ZhangJ.F. Nonlinear friction-compensated adaptive control of mechanical servo system.Xi'an Uni. Electron. Sci. Technol.2022
    [Google Scholar]
  106. NguyenM.H. DaoH.V. AhnK.K. Adaptive Robust Position Control of Electro-Hydraulic Servo Systems with Large Uncertainties and Disturbances.Appl. Sci. (Basel)202212279410.3390/app12020794
    [Google Scholar]
  107. ZhangY.H. YangD.D. ShiW.W. Research on the control system of electro-hydraulic position servo fatigue testing machine based on neural network.Machine Tools and Hydraulics201442115658
    [Google Scholar]
  108. ZhaoZ. X. SuD. H. Electrohydraulic position servo system of automatic assembly platform based on neural network PID control.Mechan. Eng.2021
    [Google Scholar]
  109. JiangS.X. Research on control strategy of electro-hydraulic servo system based on data fusion and neural network.Beijing Jiaotong Uni2023
    [Google Scholar]
  110. WeiY.J. Research on neural network self-tuning PID control strategy for electro-hydraulic servo system.Yanshan Uni2010
    [Google Scholar]
  111. WuX.M. MaL.T. ZhengX. Improved RBF neural network PID algorithm in electrohydraulic servo system.Mach. Tools Hydraul.201543116366
    [Google Scholar]
  112. ZhangJ.F. Research on genetic neural network PID control strategy for electrohydraulic position servo system.Hebei. Uni. Sci. Technol.2014
    [Google Scholar]
  113. DangX.J. YuanY.Q. JiangH. Adaptive sliding mode control of electrohydraulic position servo system based on neural network.Mach. Tools Hydraul.20184601126129
    [Google Scholar]
  114. LiuK. GaoS.P. Electrohydraulic position servo system control based on fuzzy neural network.J. Harbin Inst. Technol.201116016974
    [Google Scholar]
  115. MaS.K. MaiY.F. Electrohydraulic position servo system based on genetic neural network PID rectification.Agric. Equip. Veh. Eng.201856096770
    [Google Scholar]
  116. ChenG. CaiY. DingB.C. Multi-sliding mode neural network control of electrohydraulic position servo system.Control Decis. Making20092402221225
    [Google Scholar]
  117. WanZ. YueL. FuY. Neural Network Based Adaptive Backstepping Control for Electro-Hydraulic Servo System Position Tracking.Int. J. Aerosp. Eng.2022202211610.1155/2022/3069092
    [Google Scholar]
  118. TruongH.V.A. NamS. KimS. KimY. ChungW.K. Backstepping-Sliding-Mode-Based Neural Network Control for Electro-Hydraulic Actuator Subject to Completely Unknown System Dynamics.IEEE Trans. Autom. Sci. Eng.2023
    [Google Scholar]
  119. ShenY. Q. LiK. WangY. X. A high-gain self-immunity control method and control structure for electro-hydraulic position servo system.CN116125812A,
    [Google Scholar]
  120. YaoJ. Y. LiuL. HuJ. Continuous sliding mode control method of electrohydraulic position servo system based on disturbance compensation.CN105068426B,
    [Google Scholar]
  121. YaoJ. Y. ZhengJ. Z. XuJ. H. Robust adaptive control method for electrohydraulic position servo system containing unmodeled friction dynamics.CN108181818B,
    [Google Scholar]
  122. LiuW. J. LingZ. W. XiongN. Fast and accurate control system application method for large load electro-hydraulic position servo systemCN116400584B,
    [Google Scholar]
  123. JinK. S. SongJ. L. LiY. T. A linear self-immunity control method and device for electrohydraulic position servo control system.CN108873702B,
    [Google Scholar]
  124. JiangC. J. TangC. L. PengZ. K. A control method of electro-hydraulic servo universal testing machine based on fuzzy PID sliding mode control.CN116339126A,
    [Google Scholar]
  125. LiuS. C. YangZ. ZhangZ. Multi-model adaptive reconfiguration control method and device for electrohydraulic position servo system.CN114296347A,
    [Google Scholar]
  126. LiuS. C. YangZ. ZhangZ. Reconfiguration control method and device for electro-hydraulic position servo system based on fuzzy self-immunity control.CN114296346A,
    [Google Scholar]
  127. LiX. D. ChenX. An electrohydraulic position servo system control method based on disturbance compensation.CN108107728B,
    [Google Scholar]
  128. GaoB. W. ZhangW. ShenW. A multi-parameter identification method for electro-hydraulic position servo system.CN115185184A,
    [Google Scholar]
  129. GuanG. F. XuX. Z. XiongW. A random waveform reproduction control method for valve-controlled cylinder electrohydraulic position servo system.CN109782607B,
    [Google Scholar]
  130. WangC. W. LiuH. GuoX. P. An energy-efficient control method of inlet and outlet independently adjustable electro-hydraulic position servo system based on proportional relief valve.CN110725817B,
    [Google Scholar]
  131. ShenY. Q. SiG. L. WangJ. L. A reduced-order self-immunity controller design method and control device.CN116048005A,
    [Google Scholar]
  132. YaoJ. Y. ChengX. H. WuH. A multi-model robust adaptive control method for electrohydraulic position servo system.CN108303895B,
    [Google Scholar]
  133. ZhuZ. L. YangG. C. LeG. G. Implementation method of adaptive position controller for electro-hydraulic servo system based on nonlinear robustness.CN106483844A,
    [Google Scholar]
/content/journals/eng/10.2174/0118722121305645240907102940
Loading
/content/journals/eng/10.2174/0118722121305645240907102940
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test