Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Metabolic dysfunction-related fatty liver disease (MAFLD) has emerged as the predominant chronic liver disorder among children and adolescents. Like in adults, pediatric MAFLD encompasses a disease spectrum progressing from isolated steatosis to inflammatory changes, fibrotic development, and ultimately, cirrhosis. Despite increasing recognition of MAFLD as a major pediatric health issue, current literature lacks a systematic quantitative evaluation of research trends, leading to knowledge gaps in this field. To address this limitation, a comprehensive bibliometric analysis was performed to assess global research output on pediatric MAFLD by focusing specifically on the 2014-2023 period. This analysis avoids the confounding effects of the heterogeneity of earlier data while achieving sufficient temporal resolution to reveal emerging trends that might be obscured in long-term studies. This study synthesizes existing evidence, enhances understanding of this disciplinary field, and informs future research directions in pediatric MAFLD.

Methods

Articles concerning children with MAFLD published from 2014-2023 were identified from the Science Citation Index-Expanded of the Web of Science Core Collection. CiteSpace software, VOSviewer, and the Online Analysis Platform of Literature Metrology were used to analyze the current publication trends and hotspots.

Results

The analysis identified 1,609 English-language articles on pediatric MAFLD published from 2014 to 2023. The United States emerged as the most active participant in international collaborations. The University of California San Diego (UCSD) demonstrated the highest research output among the analyzed institutions. Additionally, UCSD exhibited the most extensive collaborative network, engaging in frequent and substantive research partnerships with a diverse range of academic and scientific organizations. Valerio Nobili was found to be the most prolific author, with 67 articles. Keyword burst analysis revealed that cardiovascular risk factors were the most intense research hotspot.

Conclusion

Current research on pediatric MAFLD warrants greater attention, particularly regarding cardiovascular risk factors. This study provides valuable references for researchers, offering insights to guide future research directions and potential collaborations.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303404437250611123553
2025-07-07
2026-01-02
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303404437.html?itemId=/content/journals/emiddt/10.2174/0118715303404437250611123553&mimeType=html&fmt=ahah

References

  1. MoranJ.R. GhishanF.K. HalterS.A. GreeneH.L. Steatohepatitis in obese children: a cause of chronic liver dysfunction.Am. J. Gastroenterol.19837863743776859017
    [Google Scholar]
  2. MagerD.R. RobertsE.A. Nonalcoholic fatty liver disease in children.Clin. Liver Dis.200610110913110.1016/j.cld.2005.10.00716376797
    [Google Scholar]
  3. SchwimmerJ.B. DunnW. NormanG.J. PardeeP.E. MiddletonM.S. KerkarN. SirlinC.B. SAFETY study: alanine aminotransferase cutoff values are set too high for reliable detection of pediatric chronic liver disease.Gastroenterology201013841357136410.1053/j.gastro.2009.12.05220064512
    [Google Scholar]
  4. Della CorteC. AlisiA. SaccariA. De VitoR. VaniaA. NobiliV. Nonalcoholic fatty liver in children and adolescents: an overview.J. Adolesc. Health201251430531210.1016/j.jadohealth.2012.01.01022999829
    [Google Scholar]
  5. VosM.B. AbramsS.H. BarlowS.E. CaprioS. DanielsS.R. KohliR. MouzakiM. SathyaP. SchwimmerJ.B. SundaramS.S. XanthakosS.A. NASPGHAN clinical practice guideline for the diagnosis and treatment of nonalcoholic fatty liver disease in children.J. Pediatr. Gastroenterol. Nutr.201764231933410.1097/MPG.000000000000148228107283
    [Google Scholar]
  6. EslamM. NewsomeP.N. SarinS.K. AnsteeQ.M. TargherG. Romero-GomezM. Zelber-SagiS. Wai-Sun WongV. DufourJ.F. SchattenbergJ.M. KawaguchiT. ArreseM. ValentiL. ShihaG. TiribelliC. Yki-JärvinenH. FanJ.G. GrønbækH. YilmazY. Cortez-PintoH. OliveiraC.P. BedossaP. AdamsL.A. ZhengM.H. FouadY. ChanW.K. Mendez-SanchezN. AhnS.H. CasteraL. BugianesiE. RatziuV. GeorgeJ. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement.J. Hepatol.202073120220910.1016/j.jhep.2020.03.03932278004
    [Google Scholar]
  7. EslamM. El-SeragH.B. FrancqueS. SarinS.K. WeiL. BugianesiE. GeorgeJ. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight.Nat. Rev. Gastroenterol. Hepatol.2022191063865110.1038/s41575‑022‑00635‑535710982
    [Google Scholar]
  8. de GrootJ. SantosS. GeurtsenM.L. FelixJ.F. JaddoeV.W.V. Risk factors and cardio-metabolic outcomes associated with metabolic-associated fatty liver disease in childhood.EClinicalMedicine20236510224810.1016/j.eclinm.2023.10224837855025
    [Google Scholar]
  9. VimalesvaranS. VajroP. DhawanA. Pediatric metabolic (dysfunction)-associated fatty liver disease: current insights and future perspectives.Hepatol. Int.202418Suppl. 287388310.1007/s12072‑024‑10691‑538879851
    [Google Scholar]
  10. AndersonE.L. HoweL.D. JonesH.E. HigginsJ.P.T. LawlorD.A. FraserA. The prevalence of non-alcoholic fatty liver disease in children and adolescents: A systematic review and meta-analysis.PLoS One20151010e014090810.1371/journal.pone.014090826512983
    [Google Scholar]
  11. LiuB. ZhengH. LiuG. LiZ. Adiponectin is inversely associated with insulin resistance in adolescents with nonalcoholic fatty liver disease.Endocr. Metab. Immune Disord. Drug Targets202222663163910.2174/187153032166621092715383134579641
    [Google Scholar]
  12. NikparastA. RazaviM. MirzaeiP. DehghanP. Amani FaraniM. AsghariG. Dietary and lifestyle indices for hyperinsulinemia and odds of MAFLD in overweight and obese children and adolescents.Sci. Rep.2025151446510.1038/s41598‑025‑88969‑339915576
    [Google Scholar]
  13. JohansenM.J. Vonsild LundM.A. ÄngquistL. FonvigC.E. HolmL.A. ChabanovaE. ThomsenH.S. HansenT. HolmJ.C. Possible prediction of obesity-related liver disease in children and adolescents using indices of body composition.Pediatr. Obes.20221710e1294710.1111/ijpo.1294735726748
    [Google Scholar]
  14. RiekkiH. AitokariL. KiveläL. LahtiS. HiltunenP. VuorelaN. HuhtalaH. LakkaT.A. KurppaK. Prevalence and associated factors of metabolic-associated fatty liver disease in overweight Finnish children and adolescents.Front. Endocrinol.202314109034410.3389/fendo.2023.109034437409224
    [Google Scholar]
  15. NikparastA. SohouliM.H. ForouzanK. FaraniM.A. DehghanP. RohaniP. AsghariG. The association between total, animal, and plant protein intake and metabolic dysfunction-associated fatty liver disease in overweight and obese children and adolescents.Nutr. J.20252417510.1186/s12937‑025‑01142‑440349058
    [Google Scholar]
  16. AlbertiG. FauneM. SantosJ.L. De BarbieriF. GarcíaC. PereiraA. BecerraF. GanaJ.C. Relation between body composition trajectories from childhood to adolescence and nonalcoholic fatty liver disease risk.Nutrients202416678510.3390/nu1606078538542696
    [Google Scholar]
  17. YiM. PengW. FengX. TengF. TangY. KongQ. ChenZ. Extrahepatic morbidities and mortality of NAFLD: an umbrella review of meta-analyses.Aliment. Pharmacol. Ther.20225671119113010.1111/apt.1716535989292
    [Google Scholar]
  18. ParkM.H. FalconerC. VinerR.M. KinraS. The impact of childhood obesity on morbidity and mortality in adulthood: a systematic review.Obes. Rev.20121311985100010.1111/j.1467‑789X.2012.01015.x22731928
    [Google Scholar]
  19. World health organization. Obesity and overweight.2023Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  20. ZhangX. WuM. LiuZ. YuanH. WuX. ShiT. ChenX. ZhangT. Increasing prevalence of NAFLD/NASH among children, adolescents and young adults from 1990 to 2017: a population-based observational study.BMJ Open2021115e04284310.1136/bmjopen‑2020‑04284333947727
    [Google Scholar]
  21. SarinS.K. KumarM. EslamM. GeorgeJ. Al MahtabM. AkbarS.M.F. JiaJ. TianQ. AggarwalR. MuljonoD.H. OmataM. OokaY. HanK.H. LeeH.W. JafriW. ButtA.S. ChongC.H. LimS.G. PwuR.F. ChenD.S. Liver diseases in the Asia-Pacific region: a Lancet Gastroenterology & Hepatology Commission.Lancet Gastroenterol. Hepatol.20205216722810.1016/S2468‑1253(19)30342‑531852635
    [Google Scholar]
  22. BruntE.M. KleinerD.E. WilsonL.A. UnalpA. BehlingC.E. LavineJ.E. Neuschwander-TetriB.A. NASH Clinical Research NetworkA list of members of the Nonalcoholic Steatohepatitis Clinical Research Network can be found in the Appendix Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD).Hepatology200949380982010.1002/hep.2272419142989
    [Google Scholar]
  23. GoyalN.P. SchwimmerJ.B. The progression and natural history of pediatric nonalcoholic fatty liver disease.Clin. Liver Dis.201620232533810.1016/j.cld.2015.10.00327063272
    [Google Scholar]
  24. BerentzenT.L. GamborgM. HolstC. SørensenT.I.A. BakerJ.L. Body mass index in childhood and adult risk of primary liver cancer.J. Hepatol.201460232533010.1016/j.jhep.2013.09.01524076363
    [Google Scholar]
  25. GoldnerD. LavineJ.E. Nonalcoholic fatty liver disease in children: Unique considerations and challenges.Gastroenterology2020158719671983.e110.1053/j.gastro.2020.01.04832201176
    [Google Scholar]
  26. ByrneC.D. TargherG. NAFLD: A multisystem disease.J. Hepatol2015621S47S64 .(Suppl.)10.1016/j.jhep.2014.12.01225920090
    [Google Scholar]
  27. LuoK. ChenY. FangS. WangS. WuZ. LiH. Study on inflammation and fibrogenesis in MAFLD from 2000 to 2022: a bibliometric analysis.Front. Endocrinol.202314123152010.3389/fendo.2023.123152037720529
    [Google Scholar]
  28. LiaoY. WangL. LiuF. ZhouY. LinX. ZhaoZ. XuS. TangD. JiaoY. YangL. YuW. GaoP. Emerging trends and hotspots in metabolic dysfunction-associated fatty liver disease (MAFLD) research from 2012 to 2021: A bibliometric analysis.Front. Endocrinol.202314107814910.3389/fendo.2023.107814936761200
    [Google Scholar]
  29. HuL. DuH. ZhouQ. LiuC. ZhangT. YuanM. Web of science-based visualization of metabolic dysfunction-associated fatty liver disease in pediatric and adolescent populations: A bibliometric study.Health Sci. Rep.202582e7040910.1002/hsr2.7040939897463
    [Google Scholar]
  30. SongY. ChenB. JiangL. ZhaoF. FengX. Global trends of treatment for NAFLD from 2012 to 2021: A bibliometric and mapping analysis.Endocr. Metab. Immune Disord. Drug Targets202424557358410.2174/011871530323041823092506031237855283
    [Google Scholar]
  31. ChenC. SongI.Y. YuanX. ZhangJ. The thematic and citation landscape of Data and Knowledge Engineering (1985–2007).Data Knowl. Eng.200867223425910.1016/j.datak.2008.05.004
    [Google Scholar]
  32. ZengJ. JinQ. YangJ. YangR.X. ZhangR.N. ZhaoJ. FanJ.G. Prevalence and incidence of MAFLD and associated anthropometric parameters among prepubertal children of the Shanghai Birth Cohort.Hepatol. Int.20231761416142810.1007/s12072‑023‑10574‑137728728
    [Google Scholar]
  33. NobiliV. AlisiA. ValentiL. MieleL. FeldsteinA.E. AlkhouriN. NAFLD in children: new genes, new diagnostic modalities and new drugs.Nat. Rev. Gastroenterol. Hepatol.201916951753010.1038/s41575‑019‑0169‑z31278377
    [Google Scholar]
  34. PacificoL. PerlaF.M. TrombaL. CarbottaG. LavoratoM. PierimarchiP. ChiesaC. Carotid extra-media thickness in children: Relationships with cardiometabolic risk factors and endothelial function.Front. Endocrinol.20201157421610.3389/fendo.2020.57421633071981
    [Google Scholar]
  35. EckelR.H. DanielsS.R. JacobsA.K. RobertsonR.M. America’s Children.Circulation2005111151866186810.1161/01.CIR.0000163655.15190.FB15837936
    [Google Scholar]
  36. OrmazabalV. NairS. ElfekyO. AguayoC. SalomonC. ZuñigaF.A. Association between insulin resistance and the development of cardiovascular disease.Cardiovasc. Diabetol.201817112210.1186/s12933‑018‑0762‑430170598
    [Google Scholar]
  37. KoliakiC. LiatisS. KokkinosA. Obesity and cardiovascular disease: revisiting an old relationship.Metabolism2019929810710.1016/j.metabol.2018.10.01130399375
    [Google Scholar]
  38. WangX. HeB. Endothelial dysfunction: molecular mechanisms and clinical implications.MedComm202458e65110.1002/mco2.65139040847
    [Google Scholar]
  39. TorunE. AydinS. GökçeS. ÖzgenI.T. DonmezT. CesurY. Carotid intima-media thickness and flow-mediated dilation in obese children with non-alcoholic fatty liver disease.Turk. J. Gastroenterol.2015251Suppl. 1929810.5152/tjg.2014.555225910377
    [Google Scholar]
  40. SertA. PirgonO. AyparE. YilmazH. OdabasD. Relationship between left ventricular mass and carotid intima media thickness in obese adolescents with non-alcoholic fatty liver disease.J. Pediatr. Endocrinol. Metab.2012259-1092793410.1515/jpem‑2012‑018723426822
    [Google Scholar]
  41. TragomalouA. PaltoglouG. ManouM. KostopoulosI.V. LoukopoulouS. BinouM. TsitsilonisO.E. BacopoulouF. KassariP. PapadopoulouM. MastorakosG. CharmandariE. Non-traditional cardiovascular risk factors in adolescents with obesity and metabolic syndrome may predict future cardiovascular disease.Nutrients20231520434210.3390/nu1520434237892418
    [Google Scholar]
  42. TargherG. ByrneC.D. TilgH. NAFLD and increased risk of cardiovascular disease: clinical associations, pathophysiological mechanisms and pharmacological implications.Gut20206991691170510.1136/gutjnl‑2020‑32062232321858
    [Google Scholar]
  43. PaikJ.M. HenryL. De AvilaL. YounossiE. RacilaA. YounossiZ.M. Mortality related to nonalcoholic fatty liver disease is increasing in the United States.Hepatol. Commun.20193111459147110.1002/hep4.141931701070
    [Google Scholar]
  44. LeeH. LeeY. KimS.U. KimH.C. Metabolic dysfunction-associated fatty liver disease and incident cardiovascular disease risk: A nationwide cohort study.Clin. Gastroenterol. Hepatol.2021191021382147.e1010.1016/j.cgh.2020.12.02233348045
    [Google Scholar]
  45. LiaoY.L. ZhuG.Y. ChangC. Non-alcoholic fatty liver disease increases the risk of cardiovascular disease in young adults and children: a systematic review and meta-analysis of cohort studies.Front. Cardiovasc. Med.202410129143810.3389/fcvm.2023.129143838268853
    [Google Scholar]
  46. ZhouB.G. JuS.Y. MeiY.Z. JiangX. WangM. ZhengA.J. DingY.B. A systematic review and meta-analysis of cohort studies on the potential association between NAFLD/MAFLD and risk of incident atrial fibrillation.Front. Endocrinol.202314116053210.3389/fendo.2023.116053237476492
    [Google Scholar]
  47. WangM. ZhouB.G. ZhangY. RenX.F. LiL. LiB. AiY.W. Association between non-alcoholic fatty liver disease and risk of stroke: A systematic review and meta-analysis.Front. Cardiovasc. Med.2022981203010.3389/fcvm.2022.81203035345491
    [Google Scholar]
  48. CiardulloS. CarboneM. InvernizziP. PerseghinG. Impact of the new definition of metabolic dysfunction–associated fatty liver disease on detection of significant liver fibrosis in US adolescents.Hepatol. Commun.2022682070207810.1002/hep4.196935470984
    [Google Scholar]
  49. CiardulloS. CarboneM. InvernizziP. PerseghinG. Exploring the landscape of steatotic liver disease in the general US population.Liver Int.202343112425243310.1111/liv.1569537592856
    [Google Scholar]
  50. WenW. LiH. WangC. ChenC. TangJ. ZhouM. HongX. ChengY. WuQ. ZhangX. FengZ. WangM. Metabolic dysfunction-associated fatty liver disease and cardiovascular disease: A meta-analysis.Front. Endocrinol.20221393422510.3389/fendo.2022.93422536187109
    [Google Scholar]
  51. SonaglioniA. CeriniF. FagianiV. NicolosiG.L. RumiM.G. LombardoM. MutiP. Effect of metabolic dysfunction-associated steatotic liver disease (MASLD) on left ventricular mechanics in patients without overt cardiac disease: A systematic review and meta-analysis.J. Clin. Med.2025148269010.3390/jcm1408269040283520
    [Google Scholar]
  52. SimonT.G. RoelstraeteB. HartjesK. ShahU. KhaliliH. ArnellH. LudvigssonJ.F. Non-alcoholic fatty liver disease in children and young adults is associated with increased long-term mortality.J. Hepatol.20217551034104110.1016/j.jhep.2021.06.03434224779
    [Google Scholar]
  53. JarasvaraparnC. Vilar-GomezE. YatesK.P. WilsonL.A. Neuschwander-TetriB. LoombaR. CummingsO. VosM. XanthakosS. SchwimmerJ. MollestonJ.P. SanyalA. TonasciaJ. ChalasaniN. Age, BMI, and Type 2 diabetes modify the relationship between PNPLA3 and advanced fibrosis in children and adults With NAFLD.Clin. Gastroenterol. Hepatol.202422510241036.e210.1016/j.cgh.2023.12.00938145725
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303404437250611123553
Loading
/content/journals/emiddt/10.2174/0118715303404437250611123553
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): bibliometric analysis; children; CVD; MAFLD; NAFLD; VOSviewer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test