Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Heart failure with preserved ejection fraction (HFpEF) represents a challenging cardiovascular condition characterized by normal systolic function but impaired diastolic performance. Despite its increasing prevalence, therapeutic options remain limited. This study investigated the metabolic effects of canagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on cardiac function and energy metabolism in HFpEF.

Methods

We established a rat model of HFpEF using Dahl salt-sensitive rats and evaluated three experimental groups: control (A), HFpEF (B), and canagliflozin-treated HFpEF (C). This study carried out comprehensive analyses of cardiac structure and function, metabolomic profiling, and detailed assessment of myocardial energy metabolism, including mitochondrial respiratory capacity and ATP synthesis. Additionally, we validated our findings using H9C2 cardiomyocytes under controlled conditions.

Results

Canagliflozin treatment significantly improved cardiac remodeling markers, including reduced myocardial volume and fibrosis area, while enhancing diastolic function (E/A ratio). Metabolomic analysis revealed normalization of hypermetabolic states, with significant reductions in key metabolites, including L-lysine, D-glucose, and uridine. The treatment restored balance in multiple metabolic pathways, particularly affecting β-alanine metabolism, pyrimidine metabolism, and the citrate cycle. Notably, canagliflozin enhanced mitochondrial respiratory function, increased ATP synthesis, and optimized fatty acid utilization, as evidenced by reduced free fatty acid content.

Conclusion

Our findings demonstrated that canagliflozin exerts cardioprotective effects through multiple metabolic pathways, suggesting its potential as a therapeutic option for HFpEF. The ability of the drug to optimize energy metabolism and improve mitochondrial function represents a novel mechanism for treating this challenging condition.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303373321250108174111
2025-01-17
2026-01-03
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303373321.html?itemId=/content/journals/emiddt/10.2174/0118715303373321250108174111&mimeType=html&fmt=ahah

References

  1. BozkurtB. CoatsA.J.S. TsutsuiH. AbdelhamidC.M. AdamopoulosS. AlbertN. AnkerS.D. AthertonJ. BöhmM. ButlerJ. DraznerM.H. Michael FelkerG. FilippatosG. FiuzatM. FonarowG.C. Gomez-MesaJ.E. HeidenreichP. ImamuraT. JankowskaE.A. JanuzziJ. KhazanieP. KinugawaK. LamC.S.P. MatsueY. MetraM. OhtaniT. Francesco PiepoliM. PonikowskiP. RosanoG.M.C. SakataY. SeferovićP. StarlingR.C. TeerlinkJ.R. VardenyO. YamamotoK. YancyC. ZhangJ. ZierothS. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the universal definition of heart failure.Eur. J. Heart Fail.202123335238010.1002/ejhf.211533605000
    [Google Scholar]
  2. HaoC. LuoJ. LiuB. XuW. LiZ. GongM. QinX. ShiB. WeiY. Prognostic significance of new-onset atrial fibrillation in heart failure with preserved, mid-range, and reduced ejection fraction following acute myocardial infarction: Data from the NOAFCAMI-SH registry.Clin. Interv. Aging20221747949310.2147/CIA.S35834935444413
    [Google Scholar]
  3. GlynnP.A. NingH. BavishiA. FreaneyP.M. ShahS. YancyC.W. Lloyd-JonesD.M. KhanS.S. Heart failure risk distribution and trends in the United States population, NHANES 1999-2016.Am. J. Med.20211343e153e16410.1016/j.amjmed.2020.07.02532827468
    [Google Scholar]
  4. HageC. LöfgrenL. MichopoulosF. nilssonR. DavidssonP. KumarC. EkströmM. ErikssonM.J. LyngåP. PerssonB. WallénH. GanL.M. PerssonH. LindeC. Metabolomic profile in HFpEF vs HFrEF patients.J. Card. Fail.202026121050105910.1016/j.cardfail.2020.07.01032750486
    [Google Scholar]
  5. WuC. ZhangZ. ZhangW. LiuX. Mitochondrial dysfunction and mitochondrial therapies in heart failure.Pharmacol. Res.202217510603810.1016/j.phrs.2021.10603834929300
    [Google Scholar]
  6. GuptaA. HoustonB. A comprehensive review of the bioenergetics of fatty acid and glucose metabolism in the healthy and failing heart in nondiabetic condition.Heart Fail. Rev.201722682584210.1007/s10741‑017‑9623‑628536966
    [Google Scholar]
  7. MengS. YuY. YuS. ZhuS. ShiM. XiangM. MaH. Advances in metabolic remodeling and intervention strategies in heart failure.J. Cardiovasc. Transl. Res.2024171365510.1007/s12265‑023‑10443‑037843752
    [Google Scholar]
  8. Da DaltL. CabodevillaA.G. GoldbergI.J. NorataG.D. Cardiac lipid metabolism, mitochondrial function, and heart failure.Cardiovasc. Res.2023119101905191410.1093/cvr/cvad10037392421
    [Google Scholar]
  9. LamC.S.P. ChandramouliC. AhoojaV. VermaS. SGLT-2 inhibitors in heart failure: Current management, unmet needs, and therapeutic prospects.J. Am. Heart Assoc.2019820e01338910.1161/JAHA.119.01338931607208
    [Google Scholar]
  10. AnkerS.D. ButlerJ. FilippatosG.S. JamalW. SalsaliA. SchneeJ. KimuraK. ZellerC. GeorgeJ. BrueckmannM. ZannadF. PackerM. Evaluation of the effects of sodium–glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: Rationale for and design of the EMPEROR-Preserved Trial.Eur. J. Heart Fail.201921101279128710.1002/ejhf.159631523904
    [Google Scholar]
  11. BodeD. SemmlerL. WakulaP. HegemannN. PrimessnigU. BeindorffN. PowellD. DahmenR. RuettenH. OeingC. AlognaA. MessroghliD. PieskeB.M. HeinzelF.R. HohendannerF. Dual SGLT-1 and SGLT-2 inhibition improves left atrial dysfunction in HFpEF.Cardiovasc. Diabetol.2021201710.1186/s12933‑020‑01208‑z33413413
    [Google Scholar]
  12. WiviottS.D. RazI. BonacaM.P. MosenzonO. KatoE.T. CahnA. SilvermanM.G. ZelnikerT.A. KuderJ.F. MurphyS.A. BhattD.L. LeiterL.A. McGuireD.K. WildingJ.P.H. RuffC.T. Gause-NilssonI.A.M. FredrikssonM. JohanssonP.A. LangkildeA.M. SabatineM.S. Dapagliflozin and cardiovascular outcomes in type 2 diabetes.N. Engl. J. Med.2019380434735710.1056/NEJMoa181238930415602
    [Google Scholar]
  13. ButlerJ. HamoC.E. FilippatosG. PocockS.J. BernsteinR.A. BrueckmannM. CheungA.K. GeorgeJ.T. GreenJ.B. JanuzziJ.L. KaulS. LamC.S.P. LipG.Y.H. MarxN. McCulloughP.A. MehtaC.R. PonikowskiP. RosenstockJ. SattarN. SalsaliA. SciricaB.M. ShahS.J. TsutsuiH. VermaS. WannerC. WoerleH.J. ZannadF. AnkerS.D. The potential role and rationale for treatment of heart failure with sodium–glucose co-transporter 2 inhibitors.Eur. J. Heart Fail.201719111390140010.1002/ejhf.93328836359
    [Google Scholar]
  14. LimV.G. BellR.M. ArjunS. Kolatsi-JoannouM. LongD.A. YellonD.M. SGLT2 inhibitor, canagliflozin, attenuates myocardial infarction in the diabetic and nondiabetic heart.JACC Basic Transl. Sci.201941152610.1016/j.jacbts.2018.10.00230847415
    [Google Scholar]
  15. WeirM.R. McCulloughP.A. BuseJ.B. AndersonJ. Renal and cardiovascular effects of sodium glucose Co-transporter 2 inhibitors in patients with type 2 diabetes and chronic kidney disease: Perspectives on the canagliflozin and renal events in diabetes with established nephropathy clinical evaluation trial results.Am. J. Nephrol.202051427628810.1159/00050653332172239
    [Google Scholar]
  16. NeuenB.L. HeerspinkH.J.L. VartP. ClaggettB.L. FletcherR.A. ArnottC. de Oliveira CostaJ. FalsterM.O. PearsonS.A. MahaffeyK.W. NealB. AgarwalR. BakrisG. PerkovicV. SolomonS.D. VaduganathanM. Estimated lifetime cardiovascular, kidney, and mortality benefits of combination treatment with SGLT2 inhibitors, GLP-1 receptor agonists, and nonsteroidal MRA compared with conventional care in patients with type 2 diabetes and albuminuria.Circulation2024149645046210.1161/CIRCULATIONAHA.123.06758437952217
    [Google Scholar]
  17. CaiY. LiuX. XuG. Combination therapy with SGLT2 inhibitors for diabetic kidney disease.Biomed. Pharmacother.202012711019210.1016/j.biopha.2020.11019232559844
    [Google Scholar]
  18. LiR. DaiG. GuanH. GaoW. RenL. WangX. QuH. Scientific evidence of sodium-glucose cotransporter-2 inhibitors for heart failure with preserved ejection fraction: An umbrella review of systematic reviews and meta-analyses.Front. Cardiovasc. Med.202310114365810.3389/fcvm.2023.114365837252111
    [Google Scholar]
  19. ShenS. DuanJ. HuJ. QiY. KangL. WangK. ChenJ. WuX. XuB. GuR. Colchicine alleviates inflammation and improves diastolic dysfunction in heart failure rats with preserved ejection fraction.Eur. J. Pharmacol.202292917512610.1016/j.ejphar.2022.17512635779623
    [Google Scholar]
  20. LeeS.G. LeeS.J. LeeJ.J. KimJ.S. LeeO.H. KimC.K. KimD. LeeY.H. OhJ. ParkS. JeonO.H. HongS.J. AhnC.M. KimB.K. KoY.G. ChoiD. HongM.K. JangY. Anti-inflammatory effect for atherosclerosis progression by sodium-glucose cotransporter 2 (SGLT-2) inhibitor in a normoglycemic rabbit model.Korean Circ. J.202050544345710.4070/kcj.2019.029632153145
    [Google Scholar]
  21. SayourA.A. Korkmaz-IcözS. LoganathanS. RuppertM. SayourV.N. OláhA. BenkeK. BruneM. BenkőR. HorváthE.M. KarckM. MerkelyB. RadovitsT. SzabóG. Acute canagliflozin treatment protects against in vivo myocardial ischemia–reperfusion injury in non-diabetic male rats and enhances endothelium-dependent vasorelaxation.J. Transl. Med.201917112710.1186/s12967‑019‑1881‑830992077
    [Google Scholar]
  22. Nasiri-AnsariΝ. DimitriadisG.K. AgrogiannisG. PerreaD. KostakisI.D. KaltsasG. PapavassiliouA.G. RandevaH.S. KassiE. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice.Cardiovasc. Diabetol.201817110610.1186/s12933‑018‑0749‑130049285
    [Google Scholar]
  23. AlthagafyHS AliFEM HassaneinEHM MohammedsalehZ.M. Kotb El-SayedM.I. AtwaA.M. SayedA.M. SoubhA.A. Canagliflozin ameliorates ulcerative colitis via regulation of TLR4/MAPK/NF-κB and Nrf2/PPAR-γ/SIRT1 signaling pathways. Eur J. Pharmacol.2023960176166
    [Google Scholar]
  24. XuC. WangW. ZhongJ. LeiF. XuN. ZhangY. XieW. Canagliflozin exerts anti-inflammatory effects by inhibiting intracellular glucose metabolism and promoting autophagy in immune cells.Biochem. Pharmacol.2018152455910.1016/j.bcp.2018.03.01329551587
    [Google Scholar]
  25. HasanR. LaskerS. HasanA. ZerinF. ZamilaM. ChowdhuryF.I. NayanS.I. RahmanM.M. KhanF. SubhanN. AlamM.A. Canagliflozin attenuates isoprenaline-induced cardiac oxidative stress by stimulating multiple antioxidant and anti-inflammatory signaling pathways.Sci. Rep.20201011445910.1038/s41598‑020‑71449‑132879422
    [Google Scholar]
  26. WeirM.R. Renal effects of sodium–glucose cotransporter-2 inhibitors in patients with type 2 diabetes and renal impairment.Postgrad. Med.2019131636737510.1080/00325481.2019.162458231132013
    [Google Scholar]
  27. EbrahimiS.M. BathaieS.Z. FaridiN. TaghikhaniM. NakhjavaniM. FaghihzadehS. L-lysine protects C2C12 myotubes and 3T3-L1 adipocytes against high glucose damages and stresses.PLoS One20191412e022591210.1371/journal.pone.022591231856203
    [Google Scholar]
  28. BrownD.A. PerryJ.B. AllenM.E. SabbahH.N. StaufferB.L. ShaikhS.R. ClelandJ.G.F. ColucciW.S. ButlerJ. VoorsA.A. AnkerS.D. PittB. PieskeB. FilippatosG. GreeneS.J. GheorghiadeM. Mitochondrial function as a therapeutic target in heart failure.Nat. Rev. Cardiol.201714423825010.1038/nrcardio.2016.20328004807
    [Google Scholar]
  29. VercellinoI. SazanovL.A. The assembly, regulation and function of the mitochondrial respiratory chain.Nat. Rev. Mol. Cell Biol.202223214116110.1038/s41580‑021‑00415‑034621061
    [Google Scholar]
  30. ForteM. SchironeL. AmeriP. BassoC. CatalucciD. ModicaJ. ChimentiC. CrottiL. FratiG. RubattuS. SchiattarellaG.G. TorellaD. PerrinoC. IndolfiC. SciarrettaS. The role of mitochondrial dynamics in cardiovascular diseases.Br. J. Pharmacol.2021178102060207610.1111/bph.1506832294237
    [Google Scholar]
  31. LopaschukG.D. KarwiQ.G. TianR. WendeA.R. AbelE.D. Cardiac energy metabolism in heart failure.Circ. Res.2021128101487151310.1161/CIRCRESAHA.121.31824133983836
    [Google Scholar]
  32. De JongK.A. LopaschukG.D. Complex energy metabolic changes in heart failure with preserved ejection fraction and heart failure with reduced ejection fraction.Can. J. Cardiol.201733786087110.1016/j.cjca.2017.03.00928579160
    [Google Scholar]
  33. UmbarawanY. KawakamiR. SyamsunarnoM.R.A.A. KoitabashiN. ObinataH. YamaguchiA. HanaokaH. HishikiT. HayakawaN. SunagaH. MatsuiH. KurabayashiM. IsoT. Reduced fatty acid uptake aggravates cardiac contractile dysfunction in streptozotocin-induced diabetic cardiomyopathy.Sci. Rep.20201012080910.1038/s41598‑020‑77895‑133257783
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303373321250108174111
Loading
/content/journals/emiddt/10.2174/0118715303373321250108174111
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Canagliflozin; energy metabolism; H9C2 cardiomyocytes; HFpEF; hypertension; metabonomics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test