Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction

An increase in the intraorbital adipose tissue is the main pathological feature of thyroid-associated ophthalmopathy (TAO). IGF-1R activates PI3K/AKT signaling and accelerates adipogenesis. Pingmu decoction has been demonstrated to promote orbital adipocyte apoptosis; however, less is reported regarding the action mechanism of Danshenol A (DA), a single active ingredient of (Danshen). Accordingly, this study aimed to investigate the role and association of DA and IGF-1R in the proliferation and lipid accumulation of orbital adipocytes.

Methods

Primary human orbital preadipocytes were chosen and authenticated using immunofluorescence. Cells were treated with the IGF-1R agonist ginsenoside Rg5, IGF-1R overexpression plasmid, dexamethasone (Dex), and/or DA, after which cell proliferation and differentiation were assessed by cell counting kit-8 (CCK-8), oil red O staining, real-time quantitative polymerase chain reaction, and Western blot assays.

Results

Orbital preadipocytes showed positive expression of Pref-1. Treatment with IGF-1R agonist, as well as Dex, promoted orbital adipocyte viability and lipid accumulation, and increased the expression of adiponectin and leptin. It was observed that the overexpression of IGF-1R boosted PI3K/AKT activation and elevated PPARγ and C/EBPα expressions. Importantly, DA reversed the effects of IGF-1R on cell viability, lipid accumulation, and the PI3K/AKT signaling pathway.

Discussion

This study, for the first time, revealed the molecular mechanism by which DA regulates orbital fat metabolism through targeted inhibition of the IGF-1R/PI3K/AKT signaling axis. Notably, IGF-1R overexpression partially counteracted the inhibitory effect of DA, suggesting that this component has multi-target regulatory characteristics.

Conclusion

This study not only reveals a new mechanism by which DA treats TAO but also provides theoretical support for the treatment of adipose metabolism.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303382831250712200617
2025-07-24
2026-01-02
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303382831.html?itemId=/content/journals/emiddt/10.2174/0118715303382831250712200617&mimeType=html&fmt=ahah

References

  1. ZhangH. LiuY. ZhangZ. JiangM. TaoX. LeeX.N. FangZ. SongX. SilkissR.Z. FanX. ZhouH. Neuroimaging in thyroid eye disease: A systematic review.Autoimmun. Rev.2024231210366710.1016/j.autrev.2024.10366739396626
    [Google Scholar]
  2. ZhangH. ZhouY. YuB. DengY. WangY. FangS. SongX. FanX. ZhouH. Multi-omics approaches to discover biomarkers of thyroid eye disease: A systematic review.Int. J. Biol. Sci.202420156038605510.7150/ijbs.10397739664569
    [Google Scholar]
  3. StasiakM. Zawadzka-StarczewskaK. TymoniukB. StasiakB. LewińskiA. Significance of HLA in the development of Graves’ orbitopathy.Genes Immun.2023241323810.1038/s41435‑023‑00193‑z36639701
    [Google Scholar]
  4. LiZ. Novel perspectives on the pharmacological treatment of thyroid-associated ophthalmopathy.Front. Endocrinol.202515146926810.3389/fendo.2024.146926839872310
    [Google Scholar]
  5. MeyerP. DasT. GhadiriN. MurthyR. TheodoropoulouS. Clinical pathophysiology of thyroid eye disease: The cone model.Eye (Lond.)201933224425310.1038/s41433‑018‑0302‑130659242
    [Google Scholar]
  6. MaL. HuiS. LiY. HouZ. LiuZ. ChangQ. ZhangH. LiD. Different characteristics of orbital soft tissue expansion in graves orbitopathy: Extraocular muscle expansion is correlated to disease activity while fat tissue volume with duration.J. Craniofac. Surg.20223382354235910.1097/SCS.000000000000875135882057
    [Google Scholar]
  7. HaiY.P. LeeA.C.H. ChenK. KahalyG.J. Traditional Chinese medicine in thyroid-associated orbitopathy.Invest. Ophthalmol. Vis. Sci.20234661103111336781592
    [Google Scholar]
  8. WangY. WangY. Analysis of the development course of traditional chinese medicine standardization and recommendations on future work.Guidel. Stand. Chin. Med.2023111810.1097/gscm.0000000000000009
    [Google Scholar]
  9. LiH. WangY. XuR. Pingmu decoction enhances apoptosis of orbital adipocytes derived from patients with Graves’ ophthalmophathy.Mol. Med. Rep.2012661361136610.3892/mmr.2012.108022972028
    [Google Scholar]
  10. ZhangY. LiH. GaoL. ZhangX. XieR. Pingmu decoction induces orbital preadipocytes apoptosis in vitro.Evid. Based Complement. Alternat. Med.201720171210924910.1155/2017/210924928484500
    [Google Scholar]
  11. TezukaY. KasimuR. BasnetP. NambaT. KadotaS. Aldose reductase inhibitory constituents of the root of Salvia miltiorhiza Bunge.Chem. Pharm. Bull.19974581306131110.1248/cpb.45.13069377780
    [Google Scholar]
  12. ChenK. GuanY. MaY. QuanD. ZhangJ. WuS. LiuX. LvL. ZhangG. Danshenol a alleviates hypertension-induced cardiac remodeling by ameliorating mitochondrial dysfunction and suppressing reactive oxygen species production.Oxid. Med. Cell. Longev.2019201911810.1155/2019/258040931612073
    [Google Scholar]
  13. KimS.E. KimJ. LeeJ.Y. LeeS.B. PaikJ.S. YangS.W. Octreotide inhibits secretion of IGF-1 from orbital fibroblasts in patients with thyroid-associated ophthalmopathy via inhibition of the NF-κB pathway.PLoS One2021164024998810.1371/journal.pone.024998833886620
    [Google Scholar]
  14. SmithT.J. JanssenJ.A.M.J.L. Insulin-like growth factor-i receptor and thyroid-associated ophthalmopathy.Endocr. Rev.201940123626710.1210/er.2018‑0006630215690
    [Google Scholar]
  15. EliaG. FallahiP. RagusaF. PaparoS.R. MazziV. BenvengaS. AntonelliA. FerrariS.M. Precision medicine in graves’ disease and ophthalmopathy.Front. Pharmacol.20211275438610.3389/fphar.2021.75438634776972
    [Google Scholar]
  16. WangF. LiH. LouY. XieJ. CaoD. HuangX. Insulin-like growth factor I promotes adipogenesis in hemangioma stem cells from infantile hemangiomas.Mol. Med. Rep.20191942825283010.3892/mmr.2019.989530720075
    [Google Scholar]
  17. ZhaoZ. GongF. DuanL. LvX. WuH. TangY. ZhuH. ChenX. Somatostatin receptor ligands suppressed proliferation and lipogenesis in 3T3-L1 preadipocytes.Basic Clin. Pharmacol. Toxicol.2022131317418810.1111/bcpt.1376235688794
    [Google Scholar]
  18. UgradarS. MalkhasyanE. DouglasR.S. Teprotumumab for the treatment of thyroid eye disease.Endocr. Rev.202445684385710.1210/endrev/bnae01838838219
    [Google Scholar]
  19. NeagE.J. SmithT.J. 2021 update on thyroid-associated ophthalmopathy.J. Endocrinol. Invest.202245223525910.1007/s40618‑021‑01663‑934417736
    [Google Scholar]
  20. ZhangP. ZhuH. Cytokines in thyroid-associated ophthalmopathy.J. Immunol. Res.2022202211210.1155/2022/252804636419958
    [Google Scholar]
  21. LahootiH. ParmarK.R. WallJ.R. Pathogenesis of thyroid-associated ophthalmopathy: Does autoimmunity against calsequestrin and collagen XIII play a role?Clin. Ophthalmol.2010441742520505833
    [Google Scholar]
  22. MohyiM. SmithT.J. 40 YEARS OF IGF1: IGF1 receptor and thyroid-associated ophthalmopathy.J. Mol. Endocrinol.2018611T29T4310.1530/JME‑17‑027629273685
    [Google Scholar]
  23. ChenH. MesterT. RaychaudhuriN. KauhC.Y. GuptaS. SmithT.J. DouglasR.S. Teprotumumab, an IGF-1R blocking monoclonal antibody inhibits TSH and IGF-1 action in fibrocytes.J. Clin. Endocrinol. Metab.2014999E1635E164010.1210/jc.2014‑158024878056
    [Google Scholar]
  24. ChoY.L. HurS.M. KimJ.Y. KimJ.H. LeeD.K. ChoeJ. WonM.H. HaK.S. JeoungD. HanS. RyooS. LeeH. MinJ.K. KwonY.G. KimD.H. KimY.M. Specific activation of insulin-like growth factor-1 receptor by ginsenoside Rg5 promotes angiogenesis and vasorelaxation.J. Biol. Chem.2015290146747710.1074/jbc.M114.60314225391655
    [Google Scholar]
  25. LiuM.Y. LiuF. GaoY.L. YinJ.N. YanW.Q. LiuJ.G. LiH.J. Pharmacological activities of ginsenoside Rg5 (Review).Exp. Ther. Med.202122284010.3892/etm.2021.1027234149886
    [Google Scholar]
  26. TangW. LvQ. HuangX. LiY. ZouJ. ZhengJ. SunL. BaoY. ChenH. LiT. ZhangB. XueS. SongY. ZhangX. ChenX. CaiJ. ShiY. MiR-143 targets IGF-1R to suppress autoimmunity in thyroid-associated ophthalmopathy.J. Inflamm. Res.2022151543155410.2147/JIR.S33948335256853
    [Google Scholar]
  27. LiK. LiH. XuW. LiuW. DuY. HeJ.F. MaC. Research on the potential mechanism of gypenosides on treating thyroid-associated ophthalmopathy based on network pharmacology.Med. Sci. Monit.2019254923493210.12659/MSM.91729931268042
    [Google Scholar]
  28. HeQ. DongH. GongM. GuoY. XiaQ. GongJ. LuF. New therapeutic horizon of graves’ hyperthyroidism: Treatment regimens based on immunology and ingredients from traditional chinese medicine.Front. Pharmacol.20221386283110.3389/fphar.2022.86283135462920
    [Google Scholar]
  29. DiaoJ. ChenX. MouP. MaX. WeiR. Potential therapeutic activity of berberine in thyroid-associated ophthalmopathy: Inhibitory effects on tissue remodeling in orbital fibroblasts.Invest. Ophthalmol. Vis. Sci.20226310610.1167/iovs.63.10.636094643
    [Google Scholar]
  30. ZhaoW. FengH. GuoS. HanY. ChenX. Danshenol A inhibits TNF-α-induced expression of intercellular adhesion molecule-1 (ICAM-1) mediated by NOX4 in endothelial cells.Sci. Rep.2017711295310.1038/s41598‑017‑13072‑129021525
    [Google Scholar]
  31. MaS. ZhangD. LouH. SunL. JiJ. Evaluation of the anti-inflammatory activities of tanshinones isolated from Salvia miltiorrhiza var. alba roots in THP-1 macrophages.J. Ethnopharmacol.201618819319910.1016/j.jep.2016.05.01827178632
    [Google Scholar]
  32. HouY. WangG. HanS. LiuH. JiaX. Network pharmacology and molecular docking to explore the pharmacological mechanism of Yifei Tongluo granules in treating idiopathic pulmonary fibrosis: A review.Medicine2023102223372910.1097/MD.000000000003372937266620
    [Google Scholar]
  33. VermaR. ChoiD. ChenA.J. HarringtonC.A. WilsonD.J. GrossniklausH.E. DaileyR.A. NgJ. SteeleE.A. PlanckS.R. KornB.S. KikkawaD. CzyzC.N. FosterJ.A. KazimM. HarrisG.J. EdwardD.P. Al-HussainH. MaktabiA.M.Y. AlabiadC. GarciaA. RosenbaumJ.T. Enrichment of IGF-1R and PPARγ signalling pathways in orbital inflammatory diseases: Steps toward understanding pathogenesis.Br. J. Ophthalmol.202210671012101710.1136/bjophthalmol‑2020‑31833033637620
    [Google Scholar]
  34. KimD.W. TanejaK. HoangT. SantiagoC.P. McCulleyT.J. MerbsS.L. MahoneyN.R. BlackshawS. RajaiiF. Transcriptomic profiling of control and thyroid-associated orbitopathy (TAO) orbital fat and tao orbital fibroblasts undergoing adipogenesis.Invest. Ophthalmol. Vis. Sci.20216292410.1167/iovs.62.9.2434269815
    [Google Scholar]
  35. WangX. YangS. YeH. ChenJ. ShiL. FengL. WangX. ZhangT. ChenR. XiaoW. YangH. Disulfiram exerts antiadipogenic, anti-inflammatory, and antifibrotic therapeutic effects in an in vitro model of graves’ orbitopathy.Thyroid202232329430510.1089/thy.2021.024634605662
    [Google Scholar]
  36. GalgocziE. KatkoM. PappF.R. CsikiR. CsihaS. ErdeiA. BodorM. UjhelyiB. SteiberZ. GyoryF. NagyE.V. Glucocorticoids directly affect hyaluronan production of orbital fibroblasts; a potential pleiotropic effect in graves’ orbitopathy.Molecules20222811510.3390/molecules2801001536615214
    [Google Scholar]
  37. WuH. LiZ.X. FangK. ZhaoZ.Y. SunM.C. FengA.Q. LengZ.Y. ZhangZ.H. ChuY. ZhangL. ChenT. XuM.D. IGF-1-mediated FOXC1 overexpression induces stem-like properties through upregulating CBX7 and IGF-1R in esophageal squamous cell carcinoma.Cell Death Discov.202410110210.1038/s41420‑024‑01864‑038413558
    [Google Scholar]
  38. LeeJ.Y. LeeS.B. YangS.W. PaikJ.S. Linsitinib inhibits IGF-1-induced cell proliferation and hyaluronic acid secretion by suppressing PI3K/Akt and ERK pathway in orbital fibroblasts from patients with thyroid-associated ophthalmopathy.PLoS One20241912031109310.1371/journal.pone.031109339693285
    [Google Scholar]
  39. KulbayM. TanyaS.M. TuliN. DahoudJ. DahoudA. AlsalehF. ArthursB. El-HadadC. A comprehensive review of thyroid eye disease pathogenesis: From immune dysregulations to novel diagnostic and therapeutic approaches.Int. J. Mol. Sci.202425211162810.3390/ijms25211162839519180
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303382831250712200617
Loading
/content/journals/emiddt/10.2174/0118715303382831250712200617
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test