Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Bladder cancer is one of the major health threats worldwide, and aberrant regulation of nitrogen metabolism is closely related to its development. Understanding the role of nitrogen metabolism-related genes in BC is pivotal for the development of new therapeutic strategies and prognostic assessment.

Aims and Objectives

This study aimed to explore the prognostic factors associated with nitrogen metabolism in bladder cancer (BC) and to construct a prognostic model.

Methods

Differential expression gene analysis was performed to identify genes associated with nitrogen metabolism by analyzing mRNA expression data from BC patients. The prognostic relationship between these genes and BC patients was analyzed using univariate Cox regression. One hundred one combinatorial machine learning methods were applied for feature selection, and key prognostic genes were identified based on the method with the highest combined score. Immunocyte infiltration analysis was carried out to assess the tumor microenvironmental characteristics of patients in different risk groups.

Results

Twenty-five genes significantly associated with prognosis were identified from nitrogen metabolism-related genes. Twenty-three most prognostically predictive signature genes were screened under feature screening with multiple machine-learning models. Immune cell infiltration analysis showed that patients in the high-risk group had significantly different immune cell infiltration, suggesting that these genes may influence BC progression by regulating immune escape mechanisms. These results provide new biomarkers and potential therapeutic targets for precision treatment and prognostic assessment of BC.

Discussion

The findings suggest that nitrogen metabolism-related genes play a key role in the prognosis of bladder cancer and may be involved in regulating the tumor immune microenvironment. Different immune environments were demonstrated in high and low Riskscore groups, implying that these genes may contribute to immune evasion and thus promote tumor progression. These observations are consistent with emerging evidence that emphasizes the interplay between metabolism and immunity during cancer development. By combining nitrogen metabolism with immune analysis, this study provides a new perspective for stratifying BC patients and identifying therapeutic targets.

Conclusion

The expression patterns of nitrogen metabolism-related genes identified can be used as effective biomarkers for bladder cancer prognosis, providing a scientific basis for personalized treatment. Future studies can further explore the specific biological functions and mechanisms of action of these genes to promote more effective clinical applications.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303371907250514054016
2025-05-16
2026-01-02
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303371907.html?itemId=/content/journals/emiddt/10.2174/0118715303371907250514054016&mimeType=html&fmt=ahah

References

  1. Lopez-BeltranA. CooksonM.S. GuercioB.J. ChengL. Advances in diagnosis and treatment of bladder cancer.BMJ2024384e07674310.1136/bmj‑2023‑07674338346808
    [Google Scholar]
  2. BalarA.V. KamatA.M. KulkarniG.S. UchioE.M. BoormansJ.L. RoumiguiéM. KriegerL.E.M. SingerE.A. BajorinD.F. GrivasP. SeoH.K. NishiyamaH. KonetyB.R. LiH. NamK. KapadiaE. FrenklT. de WitR. Pembrolizumab monotherapy for the treatment of high-risk non-muscle-invasive bladder cancer unresponsive to BCG (KEYNOTE-057): An open-label, single-arm, multicentre, phase 2 study.Lancet Oncol.202122791993010.1016/S1470‑2045(21)00147‑934051177
    [Google Scholar]
  3. PowlesT. ParkS.H. CasertaC. ValderramaB.P. GurneyH. UllénA. LoriotY. SridharS.S. SternbergC.N. BellmuntJ. Aragon-ChingJ.B. WangJ. HuangB. LaliberteR.J. di PietroA. GrivasP. Avelumab first-line maintenance for advanced urothelial carcinoma: Results from the JAVELIN bladder 100 trial after ≥2 years of follow-Up.J. Clin. Oncol.202341193486349210.1200/JCO.22.0179237071838
    [Google Scholar]
  4. HannaK.S. LarsonS. NguyenJ. BoudreauJ. BulinJ. RolfM. The role of enfortumab vedotin and sacituzumab govitecan in treatment of advanced bladder cancer.Am. J. Health Syst. Pharm.202279862963510.1093/ajhp/zxab46434864835
    [Google Scholar]
  5. CompératE. Latest developments and current problems in bladder cancer.World J. Urol.202139114009401010.1007/s00345‑021‑03857‑534643773
    [Google Scholar]
  6. BoorjianS.A. AlemozaffarM. KonetyB.R. ShoreN.D. GomellaL.G. KamatA.M. BivalacquaT.J. MontgomeryJ.S. LernerS.P. BusbyJ.E. PochM. CrispenP.L. SteinbergG.D. SchuckmanA.K. DownsT.M. SvatekR.S. MashniJ.Jr LaneB.R. GuzzoT.J. BratslavskyG. KarshL.I. WoodsM.E. BrownG. CanterD. LucheyA. LotanY. KrupskiT. InmanB.A. WilliamsM.B. CooksonM.S. KeeganK.A. AndrioleG.L.Jr SankinA.I. BoydA. O’DonnellM.A. SawutzD. PhilipsonR. CollR. NarayanV.M. TreasureF.P. Yla-HerttualaS. ParkerN.R. DinneyC.P.N. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: A single-arm, open-label, repeat-dose clinical trial.Lancet Oncol.202122110711710.1016/S1470‑2045(20)30540‑433253641
    [Google Scholar]
  7. LenisA.T. LecP.M. ChamieK. MshsM. Bladder cancer: A review.JAMA2020324191980199110.1001/jama.2020.1759833201207
    [Google Scholar]
  8. ZhangL. LiY. ZhouL. ZhouH. YeL. OuT. HongH. ZhengS. ZhouZ. WuK. YanZ. ThieryJ.P. CuiJ. WuS. The m6A reader YTHDF2 promotes bladder cancer progression by suppressing RIG-I–mediated immune response.Cancer Res.202383111834185010.1158/0008‑5472.CAN‑22‑248536939388
    [Google Scholar]
  9. YueS.W. LiuH.L. SuH.F. LuoC. LiangH.F. ZhangB.X. ZhangW. m6A-regulated tumor glycolysis: New advances in epigenetics and metabolism.Mol. Cancer202322113710.1186/s12943‑023‑01841‑837582735
    [Google Scholar]
  10. SendincE. ShiY. RNA m6A methylation across the transcriptome.Mol. Cell202383342844110.1016/j.molcel.2023.01.00636736310
    [Google Scholar]
  11. WangW. RongZ. WangG. HouY. YangF. QiuM. Cancer metabolites: Promising biomarkers for cancer liquid biopsy.Biomark. Res.20231116610.1186/s40364‑023‑00507‑337391812
    [Google Scholar]
  12. RobinsonM.D. McCarthyD.J. SmythG.K. edgeR : A Bioconductor package for differential expression analysis of digital gene expression data.Bioinformatics201026113914010.1093/bioinformatics/btp61619910308
    [Google Scholar]
  13. LexA. GehlenborgN. StrobeltH. VuillemotR. PfisterH. UpSet: Visualization of intersecting sets.IEEE Trans. Vis. Comput. Graph.201420121983199210.1109/TVCG.2014.234624826356912
    [Google Scholar]
  14. TherneauT.M. LumleyT. Package ‘survival’.R Top Doc2015128102833
    [Google Scholar]
  15. IshwaranH. KogalurU.B. Package ‘randomForestSRC’.2022Available from: https://cran.r-project.org/web/packages/randomForestSRC/randomForestSRC.pdf
  16. SimonN. FriedmanJ. HastieT. TibshiraniR. Regularization paths for cox’s proportional hazards model via coordinate descent.J. Stat. Softw.201139511310.18637/jss.v039.i0527065756
    [Google Scholar]
  17. BertrandF. Package ‘plsRcox’.2022Available from: https://cran.r-project.org/web/packages/plsRcox/index.html
  18. BairE. TibshiraniR. Package ‘superpc’.2015Available from: https://cran.r-project.org/web/packages/superpc/index.html
  19. AyyadevaraV.K. AyyadevaraV.K. Gradient boosting machine.Pro Machine Learning AlgorithmsApressBerkeley, CA201811713410.1007/978‑1‑4842‑3564‑5_6
    [Google Scholar]
  20. FouodoC.J.K. KönigI.R. WeihsC. ZieglerA. WrightM.N. Support vector machines for survival analysis with R.The R Journal.201810141210.32614/RJ‑2018‑005
    [Google Scholar]
  21. ChipmanH.A. GeorgeE.I. McCullochR.E. BART: Bayesian additive regression trees.Ann. Appl. Stat.20104126629810.1214/09‑AOAS285
    [Google Scholar]
  22. KassambaraA. Package ‘survminer’.2017Available from: https://cran.r-project.org/web/packages/survminer/survminer.pdf
  23. KassambaraA. MundtF. Package ‘factoextra’. Extract and visualize the results of multivariate data analyses.2017Available from: https://rpkgs.datanovia.com/factoextra/
  24. BlancheP. DartiguesJ.F. Jacqmin-GaddaH. Estimating and comparing time-dependent areas under receiver operating characteristic curves for censored event times with competing risks.Stat. Med.201332305381539710.1002/sim.595824027076
    [Google Scholar]
  25. KamounA. de ReynièsA. AlloryY. SjödahlG. RobertsonA.G. SeilerR. HoadleyK.A. GroeneveldC.S. Al-AhmadieH. ChoiW. CastroM.A.A. FontugneJ. ErikssonP. MoQ. KardosJ. ZlottaA. HartmannA. DinneyC.P. BellmuntJ. PowlesT. MalatsN. ChanK.S. KimW.Y. McConkeyD.J. BlackP.C. DyrskjøtL. HöglundM. LernerS.P. RealF.X. RadvanyiF. AineM. Al-AhmadieH. AlloryY. BellmuntJ. Bernard-PierrotI. BlackP.C. CastroM.A.A. ChanK.S. ChoiW. CzerniakB. DinneyC.P. DyrskjøtL. ErikssonP. FontugneJ. GibbE.A. GroeneveldC.S. HartmannA. HoadleyK.A. HöglundM. KamounA. KardosJ. KimJ. KimW.Y. KwiatkowskiD.J. LebretT. LernerS.P. LiedbergF. MalatsN. McConkeyD.J. MoQ. PowlesT. RadvanyiF. RealF.X. de ReynièsA. RobertsonA.G. Siefker-RadtkeA. SirabN. SeilerR. SjödahlG. TaberA. WeinsteinJ. ZlottaA. A consensus molecular classification of muscle-invasive bladder cancer.Eur. Urol.202077442043310.1016/j.eururo.2019.09.00631563503
    [Google Scholar]
  26. YoshiharaK. ShahmoradgoliM. MartínezE. VegesnaR. KimH. Torres-GarciaW. TreviñoV. ShenH. LairdP.W. LevineD.A. CarterS.L. GetzG. Stemke-HaleK. MillsG.B. VerhaakR.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data.Nat. Commun.201341261210.1038/ncomms361224113773
    [Google Scholar]
  27. JinY. WangZ. HeD. ZhuY. ChenX. CaoK. Identification of novel subtypes based on ssGSEA in immune-related prognostic signature for tongue squamous cell carcinoma.Cancer Med.202110238693870710.1002/cam4.434134668665
    [Google Scholar]
  28. MayakondaA. LinD.C. AssenovY. PlassC. KoefflerH.P. Maftools: Efficient and comprehensive analysis of somatic variants in cancer.Genome Res.201828111747175610.1101/gr.239244.11830341162
    [Google Scholar]
  29. MaeserD. GruenerR.F. HuangR.S. oncoPredict: An R package for predicting in vivo or cancer patient drug response and biomarkers from cell line screening data.Brief. Bioinform.2021226bbab26010.1093/bib/bbab26034260682
    [Google Scholar]
  30. KassambaraA. ggpubr: ‘ggplot2’ based publication ready plots.2018Available from: https://rpkgs.datanovia.com/ggpubr/
  31. HarrellF.E.Jr HarrellM.F.E.Jr HmiscD. Package ‘rms’.2017Available from: https://cran.r-project.org/web/packages/rms/rms.pdf
  32. PereiraF. DominguesM.R. VitorinoR. GuerraI.M.S. SantosL.L. FerreiraJ.A. FerreiraR. Unmasking the metabolite signature of bladder cancer: A systematic review.Int. J. Mol. Sci.2024256334710.3390/ijms2506334738542319
    [Google Scholar]
  33. Vieira de SousaT. Guedes de PinhoP. PintoJ. Metabolomic signatures of treatment response in bladder cancer.Int. J. Mol. Sci.202324241754310.3390/ijms24241754338139377
    [Google Scholar]
  34. HoJ.R. ChapeaublancE. KirkwoodL. NicolleR. BenhamouS. LebretT. AlloryY. SouthgateJ. RadvanyiF. GoudB. Deregulation of Rab and Rab effector genes in bladder cancer.PLoS One201276e3946910.1371/journal.pone.003946922724020
    [Google Scholar]
  35. LiuJ. TianT. LiuX. CuiZ. BCHE as a prognostic biomarker in endometrial cancer and its correlation with immunity.J. Immunol. Res.2022202212010.1155/2022/605109235915658
    [Google Scholar]
  36. XuS. DongK. GaoR. YangY. ZhouY. LuoC. ChenW. LiuS.M. Cuproptosis-related signature for clinical prognosis and immunotherapy sensitivity in hepatocellular carcinoma.J. Cancer Res. Clin. Oncol.202314913122491226310.1007/s00432‑023‑05099‑x37434092
    [Google Scholar]
  37. LienE.C. WestermarkA.M. ZhangY. YuanC. LiZ. LauA.N. SappK.M. WolpinB.M. Vander HeidenM.G. Low glycaemic diets alter lipid metabolism to influence tumour growth.Nature2021599788430230710.1038/s41586‑021‑04049‑234671163
    [Google Scholar]
  38. XuanY. WangH. YungM.M.H. ChenF. ChanW.S. ChanY.S. TsuiS.K.W. NganH.Y.S. ChanK.K.L. ChanD.W. SCD1/FADS2 fatty acid desaturases equipoise lipid metabolic activity and redox-driven ferroptosis in ascites-derived ovarian cancer cells.Theranostics20221273534355210.7150/thno.7019435547771
    [Google Scholar]
  39. TranK.A. KondrashovaO. BradleyA. WilliamsE.D. PearsonJ.V. WaddellN. Deep learning in cancer diagnosis, prognosis and treatment selection.Genome Med.202113115210.1186/s13073‑021‑00968‑x34579788
    [Google Scholar]
  40. JonesO.T. MatinR.N. van der SchaarM. Prathivadi BhayankaramK. RanmuthuC.K.I. IslamM.S. BehiyatD. BoscottR. CalanzaniN. EmeryJ. WilliamsH.C. WalterF.M. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: A systematic review.Lancet Digit. Health202246e466e47610.1016/S2589‑7500(22)00023‑135623799
    [Google Scholar]
  41. XieT. PengS. LiuS. ZhengM. DiaoW. DingM. FuY. GuoH. ZhaoW. ZhuangJ. Multi-cohort validation of Ascore: An anoikis-based prognostic signature for predicting disease progression and immunotherapy response in bladder cancer.Mol. Cancer20242313010.1186/s12943‑024‑01945‑938341586
    [Google Scholar]
  42. ZhuK. XiaoqiangL. DengW. WangG. FuB. Development and validation of a novel lipid metabolism-related gene prognostic signature and candidate drugs for patients with bladder cancer.Lipids Health Dis.202120114610.1186/s12944‑021‑01554‑134706720
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303371907250514054016
Loading
/content/journals/emiddt/10.2174/0118715303371907250514054016
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test