Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Diabetes Mellitus (DM) is a complex metabolic disorder characterized by chronic hyperglycemia and poses significant global health challenges. Conventional treatments, such as insulin therapy and lifestyle modifications, have shown limited efficacy in addressing the multifactorial nature of DM. Emerging evidence suggests that gut microbiota, a diverse community of microorganisms critical for metabolism and immune function, plays a pivotal role in metabolic health. Dysbiosis, an imbalance in gut microbiota composition, has been linked to insulin resistance, obesity, and DM. Gut microbiota influences glucose metabolism through mechanisms, including short-chain fatty acid production, gut permeability regulation, and immune system interactions, indicating a bidirectional relationship between microbial health and metabolism. Clinical and experimental studies demonstrate that modulating gut microbiota through dietary interventions (prebiotics, probiotics, synbiotics) improves glycemic control and insulin sensitivity in DM patients. Fecal Microbiota Transplantation (FMT) has also shown promise in restoring healthy gut microbiota and alleviating DM-related metabolic disturbances. However, challenges remain, including the need for personalized treatments due to individual microbiota variability and the unknown long-term effects of these interventions. Future research should focus on elucidating the mechanisms by which gut microbiota influences metabolism and refining personalized approaches to enhance DM management.

Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303342579241119155225
2025-01-08
2025-08-13
The full text of this item is not currently available.

References

  1. PrabhawathiV. SivakumarP.M. PrabhakarP.K. CetinelS. RN. Molecular insights on the therapeutic effect of selected flavonoids on diabetic neuropathy.Mini Rev. Med. Chem.202222141828184610.2174/138955752266622030914085535264089
    [Google Scholar]
  2. BanerjeeM. KhursheedR. YadavA.K. SinghS.K. GulatiM. PandeyD.K. PrabhakarP.K. KumarR. PorwalO. AwasthiA. KumariY. KaurG. AyinkamiyeC. PrasharR. MankotiaD. PandeyN.K. A systematic review on synthetic drugs and phytopharmaceuticals used to manage diabetes.Curr. Diabetes Rev.202016434035610.2174/157339981566619082216514131438829
    [Google Scholar]
  3. PrabhakarP.K. MishraY. A targeted therapeutic approach based on medicinal plants in the management of diabetes mellitus, Management of Diabetes Mellitus Based on Natural Products.Nova Science Publishers, Inc.2023271286
    [Google Scholar]
  4. ColeJ.B. FlorezJ.C. Genetics of diabetes mellitus and diabetes complications.Nat. Rev. Nephrol.202016737739010.1038/s41581‑020‑0278‑532398868
    [Google Scholar]
  5. KhursheedR. SinghS.K. WadhwaS. KapoorB. GulatiM. KumarR. RamanunnyA.K. AwasthiA. DuaK. Treatment strategies against diabetes: Success so far and challenges ahead.Eur. J. Pharmacol.201986217262510.1016/j.ejphar.2019.17262531449807
    [Google Scholar]
  6. LebovitzH.E. Type 2 diabetes mellitus—current therapies and the emergence of surgical options.Nat. Rev. Endocrinol.20117740841910.1038/nrendo.2011.1021301486
    [Google Scholar]
  7. EichelbaumM. Ingelman-SundbergM. EvansW.E. Pharmacogenomics and individualized drug therapy.Annu. Rev. Med.200657111913710.1146/annurev.med.56.082103.10472416409140
    [Google Scholar]
  8. LiuL. ZhangJ. ChengY. ZhuM. XiaoZ. RuanG. WeiY. Gut microbiota: A new target for T2DM prevention and treatment.Front. Endocrinol. (Lausanne)20221395821810.3389/fendo.2022.95821836034447
    [Google Scholar]
  9. JandhyalaS.M. TalukdarR. SubramanyamC. VuyyuruH. SasikalaM. Nageshwar ReddyD. Role of the normal gut microbiota.World J. Gastroenterol.201521298787880310.3748/wjg.v21.i29.878726269668
    [Google Scholar]
  10. CardingS. VerbekeK. VipondD.T. CorfeB.M. OwenL.J. Dysbiosis of the gut microbiota in disease.Microb. Ecol. Health Dis.2015262619125651997
    [Google Scholar]
  11. McCallumG. TropiniC. The gut microbiota and its biogeography.Nat. Rev. Microbiol.202322211410.1038/s41579‑023‑00969‑037740073
    [Google Scholar]
  12. RodríguezJ.M. MurphyK. StantonC. RossR.P. KoberO.I. JugeN. AvershinaE. RudiK. NarbadA. JenmalmM.C. MarchesiJ.R. ColladoM.C. The composition of the gut microbiota throughout life, with an emphasis on early life.Microb. Ecol. Health Dis.2015262605025651996
    [Google Scholar]
  13. BenameurT. PorroC. TwfiegM.E. BenameurN. PanaroM.A. FilanninoF.M. HasanA. Emerging paradigms in inflammatory disease management: Exploring bioactive compounds and the gut microbiota.Brain Sci.2023138122610.3390/brainsci1308122637626582
    [Google Scholar]
  14. Bach KnudsenK.E. Microbial degradation of whole-grain complex carbohydrates and impact on short-chain fatty acids and health.Adv. Nutr.20156220621310.3945/an.114.00745025770259
    [Google Scholar]
  15. PortincasaP. BonfrateL. VaccaM. De AngelisM. FarellaI. LanzaE. KhalilM. WangD.Q.H. SperandioM. Di CiaulaA. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis.Int. J. Mol. Sci.2022233110510.3390/ijms2303110535163038
    [Google Scholar]
  16. ChristiansenC.B. GabeM.B.N. SvendsenB. DragstedL.O. RosenkildeM.M. HolstJ.J. The impact of short-chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon.Am. J. Physiol. Gastrointest. Liver Physiol.20183151G53G6510.1152/ajpgi.00346.201729494208
    [Google Scholar]
  17. GustafssonJ.K. JohanssonM.E.V. The role of goblet cells and mucus in intestinal homeostasis.Nat. Rev. Gastroenterol. Hepatol.2022191278580310.1038/s41575‑022‑00675‑x36097076
    [Google Scholar]
  18. Di VincenzoF. Del GaudioA. PetitoV. LopetusoL.R. ScaldaferriF. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review.Intern. Emerg. Med.202419227529310.1007/s11739‑023‑03374‑w37505311
    [Google Scholar]
  19. TakiishiT. FeneroC.I.M. CâmaraN.O.S. Intestinal barrier and gut microbiota: Shaping our immune responses throughout life.Tissue Barriers201754e137320810.1080/21688370.2017.137320828956703
    [Google Scholar]
  20. LeeN. KimW.U. Microbiota in T-cell homeostasis and inflammatory diseases.Exp. Mol. Med.2017495e340e34010.1038/emm.2017.3628546563
    [Google Scholar]
  21. Hernández-GonzálezJ.C. Martínez-TapiaA. Lazcano-HernándezG. García-PérezB.E. Castrejón-JiménezN.S. Bacteriocins from lactic acid bacteria. A powerful alternative as antimicrobials, probiotics, and immunomodulators in veterinary medicine.Animals (Basel)202111497910.3390/ani1104097933915717
    [Google Scholar]
  22. MoloneyR.D. JohnsonA.C. O’MahonyS.M. DinanT.G. Greenwood-Van MeerveldB. CryanJ.F. Stress and the microbiota–gut–brain axis in visceral pain: Relevance to irritable bowel syndrome.CNS Neurosci. Ther.201622210211710.1111/cns.1249026662472
    [Google Scholar]
  23. PrabhakarP.K. KumarA. DobleM. Combination therapy: A new strategy to manage diabetes and its complications.Phytomedicine201421212313010.1016/j.phymed.2013.08.02024074610
    [Google Scholar]
  24. SwerN.M. VenkideshB.S. MuraliT.S. MumbrekarK.D. Gut microbiota-derived metabolites and their importance in neurological disorders.Mol. Biol. Rep.20235021663167510.1007/s11033‑022‑08038‑036399245
    [Google Scholar]
  25. ArulmozhiD.K. PorthaB. GLP-1 based therapy for type 2 diabetes.Eur. J. Pharm. Sci.2006281-29610810.1016/j.ejps.2006.01.00316488579
    [Google Scholar]
  26. DengX. TavallaieM.S. SunR. WangJ. CaiQ. ShenJ. LeiS. FuL. JiangF. Drug discovery approaches targeting the incretin pathway.Bioorg. Chem.20209910381010.1016/j.bioorg.2020.10381032325333
    [Google Scholar]
  27. CantiniG. MannucciE. LuconiM. Perspectives in GLP-1 research: New targets, new receptors.Trends Endocrinol. Metab.201627642743810.1016/j.tem.2016.03.01727091492
    [Google Scholar]
  28. HudaM.N. KimM. BennettB.J. Modulating the microbiota as a therapeutic intervention for type 2 diabetes.Front. Endocrinol. (Lausanne)20211263233510.3389/fendo.2021.63233533897618
    [Google Scholar]
  29. BaarsA. OostingA. KnolJ. GarssenJ. Van BergenhenegouwenJ. The gut microbiota as a therapeutic target in IBD and metabolic disease: A role for the bile acid receptors FXR and TGR5.Microorganisms20153464166610.3390/microorganisms304064127682110
    [Google Scholar]
  30. DaoM.C. EverardA. Aron-WisnewskyJ. SokolovskaN. PriftiE. VergerE.O. KayserB.D. LevenezF. ChillouxJ. HoylesL. DumasM.E. RizkallaS.W. DoréJ. CaniP.D. ClémentK. MICRO-Obes Consortium Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology.Gut201665342643610.1136/gutjnl‑2014‑30877826100928
    [Google Scholar]
  31. CoutryN. GasmiI. HerbertF. JayP. Mechanisms of intestinal dysbiosis: New insights into tuft cell functions.Gut Microbes2024161237962410.1080/19490976.2024.237962439042424
    [Google Scholar]
  32. RodriguesV.F. Elias-OliveiraJ. PereiraÍ.S. PereiraJ.A. BarbosaS.C. MachadoM.S.G. CarlosD. Akkermansia muciniphila and gut immune system: A good friendship that attenuates inflammatory bowel disease, obesity, and diabetes.Front. Immunol.20221393469510.3389/fimmu.2022.93469535874661
    [Google Scholar]
  33. AlhabeebH. AlFaizA. KutbiE. AlShahraniD. AlsuhailA. AlRajhiS. AlotaibiN. AlotaibiK. AlAmriS. AlghamdiS. AlJohaniN. Gut hormones in health and obesity: The upcoming role of short chain fatty acids.Nutrients202113248110.3390/nu1302048133572661
    [Google Scholar]
  34. SteinertR.E. Feinle-BissetC. AsarianL. HorowitzM. BeglingerC. GearyN. GhrelinC.C.K. GLP-1, and PYY (3–36): Secretory controls and physiological roles in eating and glycemia in health, obesity, and after RYGB.Physiol. Rev.201797141146310.1152/physrev.00031.201428003328
    [Google Scholar]
  35. MandaliyaD.K. SeshadriS. Short chain fatty acids, pancreatic dysfunction and type 2 diabetes.Pancreatology201919228028410.1016/j.pan.2019.01.02130713129
    [Google Scholar]
  36. AlmeidaJ.I. TenreiroM.F. Martinez-SantamariaL. Guerrero-AspizuaS. GisbertJ.P. AlvesP.M. SerraM. BaptistaP.M. Hallmarks of the human intestinal microbiome on liver maturation and function.J. Hepatol.202276369472510.1016/j.jhep.2021.10.01534715263
    [Google Scholar]
  37. ZhouS. TangX. ChenH.Z. Sirtuins and insulin resistance.Front. Endocrinol. (Lausanne)2018974810.3389/fendo.2018.0074830574122
    [Google Scholar]
  38. ZhouZ. SunB. YuD. ZhuC. Gut microbiota: An important player in type 2 diabetes mellitus.Front. Cell. Infect. Microbiol.20221283448510.3389/fcimb.2022.83448535242721
    [Google Scholar]
  39. AroraT. VansletteA.M. HjorthS.A. BäckhedF. Microbial regulation of enteroendocrine cells.Med (N. Y.)20212555357010.1016/j.medj.2021.03.01835590233
    [Google Scholar]
  40. MolièreS. JaulinA. TomasettoC.L. Dali-YoucefN. Roles of Matrix Metalloproteinases and their natural inhibitors in metabolism: Insights into health and disease.Int. J. Mol. Sci.202324131064910.3390/ijms24131064937445827
    [Google Scholar]
  41. DioneN. LacroixS. TaschlerU. DeschênesT. AbolghasemiA. LeblancN. Di MarzoV. SilvestriC. Mgll knockout mouse resistance to diet-induced dysmetabolism is associated with altered gut microbiota.Cells2020912270510.3390/cells912270533348740
    [Google Scholar]
  42. TangR. LiL. Modulation of short-chain fatty acids as potential therapy method for type 2 diabetes mellitus.Can. J. Infect. Dis. Med. Microbiol.20212021663226633488888
    [Google Scholar]
  43. CroninP. JoyceS.A. O’TooleP.W. O’ConnorE.M. Dietary fibre modulates the gut microbiota.Nutrients2021135165510.3390/nu1305165534068353
    [Google Scholar]
  44. Lupien-MeilleurJ. AndrichD.E. QuinnS. Micaelli-BaretC. St-AmandR. RoyD. St-PierreD.H. Interplay between gut microbiota and gastrointestinal peptides: Potential outcomes on the regulation of glucose control.Can. J. Diabetes202044435936710.1016/j.jcjd.2019.10.00632057671
    [Google Scholar]
  45. PrabhakarP.K. MishraY. Natural products in the treatment of diabetes: An insight into the mechanism of action, management of diabetes Mellitus based on natural products.Nova Science Publishers, Inc.2023259270
    [Google Scholar]
  46. YoonH.S. ChoC.H. YunM.S. JangS.J. YouH.J. KimJ. HanD. ChaK.H. MoonS.H. LeeK. KimY.J. LeeS.J. NamT.W. KoG. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice.Nat. Microbiol.20216556357310.1038/s41564‑021‑00880‑533820962
    [Google Scholar]
  47. AbdalqadirN. AdeliK. GLP-1 and GLP-2 orchestrate intestine integrity, gut microbiota, and immune system crosstalk.Microorganisms20221010206110.3390/microorganisms1010206136296337
    [Google Scholar]
  48. ZengY. WuY. ZhangQ. XiaoX. Crosstalk between glucagon-like peptide 1 and gut microbiota in metabolic diseases.MBio2024151e02032-2310.1128/mbio.02032‑2338055342
    [Google Scholar]
  49. PantaziA.C. KassimM.A.K. NoriW. TutaL.A. MihaiC.M. ChisnoiuT. BalasaA.L. MihaiL. LupuA. FrecusC.E. LupuV.V. ChirilaS.I. BadescuA.G. HanganL.T. CambreaS.C. Clinical perspectives of gut microbiota in patients with chronic kidney disease and end-stage kidney disease: Where do we stand?Biomedicines2023119248010.3390/biomedicines1109248037760920
    [Google Scholar]
  50. ChenY.Y. ChenD.Q. ChenL. LiuJ.R. VaziriN.D. GuoY. ZhaoY.Y. Microbiome–metabolome reveals the contribution of gut–kidney axis on kidney disease.J. Transl. Med.2019171510.1186/s12967‑018‑1756‑430602367
    [Google Scholar]
  51. Abdul-GhaniM.A. NortonL. DeFronzoR.A. Renal sodium-glucose cotransporter inhibition in the management of type 2 diabetes mellitus.Am. J. Physiol. Renal Physiol.201530911F889F90010.1152/ajprenal.00267.201526354881
    [Google Scholar]
  52. ZengY. GuoM. FangX. TengF. TanX. LiX. WangM. LongY. XuY. Gut microbiota-derived trimethylamine N-oxide and kidney function: A systematic review and meta-analysis.Adv. Nutr.20211241286130410.1093/advances/nmab01033751019
    [Google Scholar]
  53. NiY. ZhengL. NanS. KeL. FuZ. JinJ. Enterorenal crosstalks in diabetic nephropathy and novel therapeutics targeting the gut microbiota.Acta Biochim. Biophys. Sin. (Shanghai)202254101406142010.3724/abbs.202214036239349
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303342579241119155225
Loading
/content/journals/emiddt/10.2174/0118715303342579241119155225
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): dysbiosis; glycemic control; Gut microbiota; prebiotics; probiotics; symbiotic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test