Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Type 2 Diabetes Mellitus (T2DM) is an etiologically diverse metabolic dysfunction that, if untreated, leads to chronic hyperglycemia. Understanding the etiology of T2DM is critical, as it represents one of the most formidable medical challenges of the twenty-first century. Traditionally, insulin resistance has been recognized as the primary risk factor and a well-known consequence of type 2 diabetes. Emerging evidence suggests that branched-chain amino acids (BCAAs), adipokines, and deficiencies in water-soluble vitamins, such as thiamine and pyridoxine, play significant roles in the development of insulin resistance, a key feature of T2DM. These factors are interconnected through the AMP-activated protein kinase (AMPK) pathway, which regulates various metabolic processes, including glucose transport, lipid synthesis, and inflammatory responses. Dysregulation of AMPK is linked to insulin resistance and metabolic syndrome-related illnesses. Understanding the interplay between BCAAs, adipokines, vitamins, and AMPK may offer new therapeutic targets for the prevention and treatment of diabetes mellitus.

Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303305579241014112730
2025-01-08
2025-08-16
The full text of this item is not currently available.

References

  1. Classification of diabetes mellitus. World Health Organization Website. https://apps.who.int/iris/rest/bitstreams/1233344/retrieve 2019.
  2. The top 10 causes of death. World Health Organization. http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death 2020.
  3. DingC. EgliL. BoscoN. SunL. GohH.J. YeoK.K. YapJ.J.L. Actis-GorettaL. LeowM.K.S. MagkosF. Plasma branched-chain amino acids are associated with greater fasting and postprandial insulin secretion in non-diabetic Chinese adults.Front. Nutr.2021866493910.3389/fnut.2021.66493933996878
    [Google Scholar]
  4. YaoH. LiK. WeiJ. LinY. LiuY. The contradictory role of branched-chain amino acids in lifespan and insulin resistance.Front. Nutr.202310118998210.3389/fnut.2023.118998237408986
    [Google Scholar]
  5. TanaseD.M. GosavE.M. BotocT. FloriaM. TarniceriuC.C. MaranducaM.A. HaisanA. CucuA.I. RezusC. CosteaC.F. Depiction of branched-chain amino acids (bcaas) in diabetes with a focus on diabetic microvascular complications.J. Clin. Med.20231218605310.3390/jcm1218605337762992
    [Google Scholar]
  6. HernandezN. LokhnyginaY. RamakerM.E. IlkayevaO. MuehlbauerM.J. CrawfordM.L. GrantR.P. HsiaD.S. JainN. BainJ.R. ArmstrongS. NewgardC.B. FreemarkM. Gumus BalikciogluP. Sex differences in branched-chain amino acid and tryptophan metabolism and pathogenesis of youth-onset type 2 diabetes.J. Clin. Endocrinol. Metab.20241094e1345e135810.1210/clinem/dgad70838066593
    [Google Scholar]
  7. CuomoP. CapparelliR. IannelliA. IannelliD. Role of branched-chain amino acid metabolism in type 2 diabetes, obesity, cardiovascular disease and non-alcoholic fatty liver disease.Int. J. Mol. Sci.2022238432510.3390/ijms2308432535457142
    [Google Scholar]
  8. ZieglerD. ReinersK. StromA. ObeidR. Association between diabetes and thiamine status - A systematic review and meta-analysis.Metabolism202314415556510.1016/j.metabol.2023.15556537094704
    [Google Scholar]
  9. MuleyA. FernandezR. GreenH. MuleyP. Effect of thiamine supplementation on glycaemic outcomes in adults with type 2 diabetes: A systematic review and meta-analysis.BMJ Open2022128e05983410.1136/bmjopen‑2021‑05983436008064
    [Google Scholar]
  10. RadM.G. SharifiM. MeamarR. SoltaniN. The role of pancreas to improve hyperglycemia in STZ-induced diabetic rats by thiamine disulfide.Nutr. Diabetes20221213210.1038/s41387‑022‑00211‑535725834
    [Google Scholar]
  11. FranciscoV. PinoJ. Gonzalez-GayM.A. MeraA. LagoF. GómezR. MobasheriA. GualilloO. Adipokines and inflammation: is it a question of weight?Br. J. Pharmacol.2018175101569157910.1111/bph.1418129486050
    [Google Scholar]
  12. KangY.E. KimJ.M. JoungK.H. LeeJ.H. YouB.R. ChoiM.J. RyuM.J. KoY.B. LeeM.A. LeeJ. KuB.J. ShongM. LeeK.H. KimH.J. The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance in modest obesity and early metabolic dysfunction.PLoS One2016114e015400310.1371/journal.pone.015400327101398
    [Google Scholar]
  13. JaganathanR. RavindranR. DhanasekaranS. Emerging role of adipocytokines in type 2 diabetes as mediators of insulin resistance and cardiovascular disease.Can. J. Diabetes2018424446456.e110.1016/j.jcjd.2017.10.04029229313
    [Google Scholar]
  14. MelnikB.C. Leucine signaling in the pathogenesis of type 2 diabetes and obesity.World J. Diabetes201233385310.4239/wjd.v3.i3.3822442749
    [Google Scholar]
  15. LaymanD.K. The role of leucine in weight loss diets and glucose homeostasis.J. Nutr.20031331261S267S10.1093/jn/133.1.261S12514305
    [Google Scholar]
  16. WildS. RoglicG. GreenA. SicreeR. KingH. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030.Diabetes Care20042751047105310.2337/diacare.27.5.104715111519
    [Google Scholar]
  17. WangT.J. LarsonM.G. VasanR.S. ChengS. RheeE.P. McCabeE. LewisG.D. FoxC.S. JacquesP.F. FernandezC. O’DonnellC.J. CarrS.A. MoothaV.K. FlorezJ.C. SouzaA. MelanderO. ClishC.B. GersztenR.E. Metabolite profiles and the risk of developing diabetes.Nat. Med.201117444845310.1038/nm.230721423183
    [Google Scholar]
  18. FloegelA. StefanN. YuZ. MühlenbruchK. DroganD. JoostH.G. FritscheA. HäringH.U. Hrabě de AngelisM. PetersA. RodenM. PrehnC. Wang-SattlerR. IlligT. SchulzeM.B. AdamskiJ. BoeingH. PischonT. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach.Diabetes201362263964810.2337/db12‑049523043162
    [Google Scholar]
  19. ZhaoX. HanQ. LiuY. SunC. GangX. WangG. The relationship between branched-chain amino acid related metabolomic signature and insulin resistance: A systematic review.J. Diabetes Res.2016201611210.1155/2016/279459127642608
    [Google Scholar]
  20. ChenT. NiY. MaX. BaoY. LiuJ. HuangF. HuC. XieG. ZhaoA. JiaW. JiaW. Branched-chain and aromatic amino acid profiles and diabetes risk in Chinese populations.Sci. Rep.2016612059410.1038/srep2059426846565
    [Google Scholar]
  21. WürtzP. MäkinenV.P. SoininenP. KangasA.J. TukiainenT. KettunenJ. SavolainenM.J. TammelinT. ViikariJ.S. RönnemaaT. KähönenM. LehtimäkiT. RipattiS. RaitakariO.T. JärvelinM.R. Ala-KorpelaM. Metabolic signatures of insulin resistance in 7,098 young adults.Diabetes20126161372138010.2337/db11‑135522511205
    [Google Scholar]
  22. LeeC.C. WatkinsS.M. LorenzoC. WagenknechtL.E. Il’yasovaD. ChenY.D.I. HaffnerS.M. HanleyA.J. Branched-chain amino acids and insulin metabolism: The insulin resistance atherosclerosis study (IRAS).Diabetes Care201639458258810.2337/dc15‑228426895884
    [Google Scholar]
  23. YamadaC. KondoM. KishimotoN. ShibataT. NagaiY. ImanishiT. OroguchiT. IshiiN. NishizakiY. Association between insulin resistance and plasma amino acid profile in non-diabetic J apanese subjects.J. Diabetes Investig.20156440841510.1111/jdi.1232326221519
    [Google Scholar]
  24. TillinT. HughesA.D. WangQ. WürtzP. Ala-KorpelaM. SattarN. ForouhiN.G. GodslandI.F. EastwoodS.V. McKeigueP.M. ChaturvediN. Diabetes risk and amino acid profiles: Cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE (Southall And Brent REvisited) Study.Diabetologia201558596897910.1007/s00125‑015‑3517‑825693751
    [Google Scholar]
  25. TaiE.S. TanM.L.S. StevensR.D. LowY.L. MuehlbauerM.J. GohD.L.M. IlkayevaO.R. WennerB.R. BainJ.R. LeeJ.J.M. LimS.C. KhooC.M. ShahS.H. NewgardC.B. Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men.Diabetologia201053475776710.1007/s00125‑009‑1637‑820076942
    [Google Scholar]
  26. FeligP. MarlissE. CahillG.F.Jr Plasma amino acid levels and insulin secretion in obesity.N. Engl. J. Med.19692811581181610.1056/NEJM1969100928115035809519
    [Google Scholar]
  27. NewgardC.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance.Cell Metab.201215560661410.1016/j.cmet.2012.01.02422560213
    [Google Scholar]
  28. LynchC.J. AdamsS.H. Branched-chain amino acids in metabolic signalling and insulin resistance.Nat. Rev. Endocrinol.2014101272373610.1038/nrendo.2014.17125287287
    [Google Scholar]
  29. SaltielA.R. KahnC.R. Insulin signalling and the regulation of glucose and lipid metabolism.Nature2001414686579980610.1038/414799a11742412
    [Google Scholar]
  30. RobersonP.A. JeffersonL.S. KimballS.R. Convergence of signaling pathways in mediating actions of leucine and IGF-1 on mTORC1 in L6 myoblasts.Am. J. Physiol. Cell Physiol.20223233C804C81210.1152/ajpcell.00183.202235912992
    [Google Scholar]
  31. LiuH. LiuR. XiongY. LiX. WangX. MaY. GuoH. HaoL. YaoP. LiuL. WangD. YangX. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: Involving mTORC1 and mTORC2.Amino Acids20144681971197910.1007/s00726‑014‑1752‑924806638
    [Google Scholar]
  32. LiX. WangX. LiuR. MaY. GuoH. HaoL. YaoP. LiuL. SunX. HeK. CaoW. YangX. Chronic leucine supplementation increases body weight and insulin sensitivity in rats on high-fat diet likely by promoting insulin signaling in insulin-target tissues.Mol. Nutr. Food Res.20135761067107910.1002/mnfr.20120031123404947
    [Google Scholar]
  33. BalageM. DupontJ. Mothe-SatneyI. TesseraudS. MosoniL. DardevetD. Leucine supplementation in rats induced a delay in muscle IR/PI3K signaling pathway associated with overall impaired glucose tolerance.J. Nutr. Biochem.201122321922610.1016/j.jnutbio.2010.02.00120558053
    [Google Scholar]
  34. ZhangY. GuoK. LeBlancR.E. LohD. SchwartzG.J. YuY.H. Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms.Diabetes20075661647165410.2337/db07‑012317360978
    [Google Scholar]
  35. BernardJ.R. LiaoY.H. HaraD. DingZ. ChenC.Y. NelsonJ.L. IvyJ.L. An amino acid mixture improves glucose tolerance and insulin signaling in Sprague-Dawley rats.Am. J. Physiol. Endocrinol. Metab.20113004E752E76010.1152/ajpendo.00643.201021304065
    [Google Scholar]
  36. SahaA.K. XuX.J. LawsonE. DeoliveiraR. BrandonA.E. KraegenE.W. RudermanN.B. Downregulation of AMPK accompanies leucine- and glucose-induced increases in protein synthesis and insulin resistance in rat skeletal muscle.Diabetes201059102426243410.2337/db09‑187020682696
    [Google Scholar]
  37. XiaoF. HuangZ. LiH. YuJ. WangC. ChenS. MengQ. ChengY. GaoX. LiJ. LiuY. GuoF. Leucine deprivation increases hepatic insulin sensitivity via GCN2/mTOR/S6K1 and AMPK pathways.Diabetes201160374675610.2337/db10‑124621282364
    [Google Scholar]
  38. NeinastM. MurashigeD. AranyZ. Branched chain amino acids.Annu. Rev. Physiol.201981113916410.1146/annurev‑physiol‑020518‑11445530485760
    [Google Scholar]
  39. KumarM.A. BitlaA.R. RajuK.V. ManoharS.M. KumarV.S. NarasimhaS.R. Branched chain amino acid profile in early chronic kidney disease.Saudi J. Kidney Dis. Transpl.20122361202120710.4103/1319‑2442.10356023168849
    [Google Scholar]
  40. WileyK.D. GuptaM. Vitamin B1 (Thiamine) deficiency.StatPearlsTreasure Island (FL): StatPearls Publishing2024
    [Google Scholar]
  41. BeltramoE. BerroneE. TaralloS. PortaM. Effects of thiamine and benfotiamine on intracellular glucose metabolism and relevance in the prevention of diabetic complications.Acta Diabetol.200845313114110.1007/s00592‑008‑0042‑y18581039
    [Google Scholar]
  42. BeltramoE. MazzeoA. PortaM. Thiamine and diabetes: Back to the future?Acta Diabetol.202158111433143910.1007/s00592‑021‑01752‑434091762
    [Google Scholar]
  43. AnwarA. Ahmed AzmiM. SiddiquiJ.A. PanhwarG. ShaikhF. AriffM. Thiamine level in type I and type II diabetes mellitus patients: A comparative study focusing on hematological and biochemical evaluations.Cureus2020125e802710.7759/cureus.802732528766
    [Google Scholar]
  44. KarachaliasN. Babaei-JadidiR. KupichC. AhmedN. ThornalleyP.J. High-dose thiamine therapy counters dyslipidemia and advanced glycation of plasma protein in streptozotocin-induced diabetic rats.Ann. N. Y. Acad. Sci.20051043177778310.1196/annals.1333.09016037305
    [Google Scholar]
  45. WaheedP. NaveedA.K. AhmedT. Thiamine deficiency and its correlation with dyslipidaemia in diabetics with microalbuminuria.J. Pak. Med. Assoc.201363334034523914634
    [Google Scholar]
  46. Al-AttasO.S. Al-DaghriN.M. AlfaddaA.A. Abd-AlrahmanS.H. SabicoS. Blood thiamine and its phosphate esters as measured by high-performance liquid chromatography: Levels and associations in diabetes mellitus patients with varying degrees of microalbuminuria.J. Endocrinol. Invest.2012351195195610.3275/812622107884
    [Google Scholar]
  47. KaimotoT. ShibuyaM. NishikawaK. MaedaH. High incidence of lipid deposition in the liver of rats fed a diet supplemented with branched-chain amino acids under vitamin B6 deficiency.J. Nutr. Sci. Vitaminol. (Tokyo)2013591737810.3177/jnsv.59.7323535543
    [Google Scholar]
  48. LiuZ. LiP. ZhaoZ.H. ZhangY. MaZ.M. WangS.X. Vitamin B6 prevents endothelial dysfunction, insulin resistance, and hepatic lipid accumulation in Apoe−/− mice fed with high-fat diet.J. Diabetes Res.201620161810.1155/2016/174806526881239
    [Google Scholar]
  49. Unoki-KubotaH. YamagishiS. TakeuchiM. BujoH. SaitoY. Pyridoxamine, an inhibitor of advanced glycation end product (AGE) formation ameliorates insulin resistance in obese, type 2 diabetic mice.Protein Pept. Lett.20101791177118110.2174/09298661079176042320441560
    [Google Scholar]
  50. ZemelM.B. BruckbauerA. Effects of a leucine and pyridoxine- containing nutraceutical on fat oxidation, and oxidative and inflammatory stress in overweight and obese subjects.Nutrients20124652954110.3390/nu406052922822451
    [Google Scholar]
  51. AbrahamP.M. KuruvillaK.P. MathewJ. MalatA. JoyS. PauloseC.S. Alterations in hippocampal serotonergic and INSR function in streptozotocin induced diabetic rats exposed to stress: Neuroprotective role of pyridoxine and Aegle marmelose.J. Biomed. Sci.20101717810.1186/1423‑0127‑17‑7820868513
    [Google Scholar]
  52. CaselliC. Role of adiponectin system in insulin resistance.Mol. Genet. Metab.2014113315516010.1016/j.ymgme.2014.09.00325242063
    [Google Scholar]
  53. Andrade-OliveiraV. CâmaraN.O.S. Moraes-VieiraP.M. Adipokines as drug targets in diabetes and underlying disturbances.J. Diabetes Res.2015201511110.1155/2015/68161225918733
    [Google Scholar]
  54. BeltowskiJ. Leptin and atherosclerosis.Atherosclerosis20061891476010.1016/j.atherosclerosis.2006.03.00316580676
    [Google Scholar]
  55. Dallinga-ThieG.M. DullaartR.P.F. Do genome-wide association scans provide additional information on the variation of plasma adiponectin concentrations?Atherosclerosis2010208232832910.1016/j.atherosclerosis.2009.12.01420053404
    [Google Scholar]
  56. BlüherM. MantzorosC.S. From leptin to other adipokines in health and disease: Facts and expectations at the beginning of the 21st century.Metabolism201564113114510.1016/j.metabol.2014.10.01625497344
    [Google Scholar]
  57. FinucaneF.M. LuanJ. WarehamN.J. SharpS.J. O’RahillyS. BalkauB. FlyvbjergA. WalkerM. HøjlundK. NolanJ.J. SavageD.B. Correlation of the leptin:adiponectin ratio with measures of insulin resistance in non-diabetic individuals.Diabetologia200952112345234910.1007/s00125‑009‑1508‑319756488
    [Google Scholar]
  58. DullaartR.P.F. GruppenE.G. ConnellyM.A. OtvosJ.D. LefrandtJ.D. GlycA, a biomarker of inflammatory glycoproteins, is more closely related to the leptin/adiponectin ratio than to glucose tolerance status.Clin. Biochem.2015481281181410.1016/j.clinbiochem.2015.05.00125977069
    [Google Scholar]
  59. ThomasS. SureshS. SudheeshM. VijayakumarT. Association of insulin resistance with adipocytokine levels in patients with metabolic syndrome.Indian J. Clin. Biochem.201530215516010.1007/s12291‑014‑0423‑725883422
    [Google Scholar]
  60. GrisouardJ. DembinskiK. MayerD. KellerU. MüllerB. Christ-CrainM. Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation.Diabetol. Metab. Syndr.2011311610.1186/1758‑5996‑3‑1621774820
    [Google Scholar]
  61. RudermanN.B. CarlingD. PrentkiM. CacicedoJ.M. AMPK, insulin resistance, and the metabolic syndrome.J. Clin. Invest.201312372764277210.1172/JCI6722723863634
    [Google Scholar]
  62. DrummondM.J. RasmussenB.B. Leucine-enriched nutrients and the regulation of mammalian target of rapamycin signalling and human skeletal muscle protein synthesis.Curr. Opin. Clin. Nutr. Metab. Care200811322222610.1097/MCO.0b013e3282fa17fb18403916
    [Google Scholar]
  63. CoughlanK.A. ValentineR.J. RudermanN.B. SahaA.K. Nutrient excess in AMPK downregulation and insulin resistance.J. Endocrinol. Diabetes Obes.2013111008
    [Google Scholar]
  64. KwonH. PessinJ.E. Adipokines mediate inflammation and insulin resistance.Front. Endocrinol. (Lausanne)201347110.3389/fendo.2013.0007123781214
    [Google Scholar]
  65. YamauchiT. KamonJ. MinokoshiY. ItoY. WakiH. UchidaS. YamashitaS. NodaM. KitaS. UekiK. EtoK. AkanumaY. FroguelP. FoufelleF. FerreP. CarlingD. KimuraS. NagaiR. KahnB.B. KadowakiT. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase.Nat. Med.20028111288129510.1038/nm78812368907
    [Google Scholar]
  66. LiuY. TurdiS. ParkT. MorrisN.J. DeshaiesY. XuA. SweeneyG. Adiponectin corrects high-fat diet-induced disturbances in muscle metabolomic profile and whole-body glucose homeostasis.Diabetes201362374375210.2337/db12‑068723238294
    [Google Scholar]
  67. LianK. DuC. LiuY. ZhuD. YanW. ZhangH. HongZ. LiuP. ZhangL. PeiH. ZhangJ. GaoC. XinC. ChengH. XiongL. TaoL. Impaired adiponectin signaling contributes to disturbed catabolism of branched-chain amino acids in diabetic mice.Diabetes2015641495910.2337/db14‑031225071024
    [Google Scholar]
  68. KatagiriR. GotoA. BudhathokiS. YamajiT. YamamotoH. KatoY. IwasakiM. TsuganeS. Association between plasma concentrations of branched-chain amino acids and adipokines in Japanese adults without diabetes.Sci. Rep.201881104310.1038/s41598‑018‑19388‑w29348480
    [Google Scholar]
  69. OuchiN. ParkerJ.L. LugusJ.J. WalshK. Adipokines in inflammation and metabolic disease.Nat. Rev. Immunol.2011112859710.1038/nri292121252989
    [Google Scholar]
  70. RabeK. LehrkeM. ParhoferK.G. BroedlU.C. Adipokines and insulin resistance.Mol. Med.20081411-1274175110.2119/2008‑00058.Rabe19009016
    [Google Scholar]
  71. YamauchiT. KamonJ. WakiH. TerauchiY. KubotaN. HaraK. MoriY. IdeT. MurakamiK. Tsuboyama-KasaokaN. EzakiO. AkanumaY. GavrilovaO. VinsonC. ReitmanM.L. KagechikaH. ShudoK. YodaM. NakanoY. TobeK. NagaiR. KimuraS. TomitaM. FroguelP. KadowakiT. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.Nat. Med.20017894194610.1038/9098411479627
    [Google Scholar]
  72. WeyerC. FunahashiT. TanakaS. HottaK. MatsuzawaY. PratleyR.E. TataranniP.A. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia.J. Clin. Endocrinol. Metab.20018651930193510.1210/jcem.86.5.746311344187
    [Google Scholar]
  73. HaraK. HorikoshiM. YamauchiT. YagoH. MiyazakiO. EbinumaH. ImaiY. NagaiR. KadowakiT. Measurement of the high-molecular weight form of adiponectin in plasma is useful for the prediction of insulin resistance and metabolic syndrome.Diabetes Care20062961357136210.2337/dc05‑180116732021
    [Google Scholar]
  74. YoonM.S. The emerging role of branched-chain amino acids in insulin resistance and metabolism.Nutrients20168740510.3390/nu807040527376324
    [Google Scholar]
  75. HolečekM. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements.Nutr. Metab. (Lond.)20181513310.1186/s12986‑018‑0271‑129755574
    [Google Scholar]
  76. Pallares-MéndezR. Aguilar-SalinasC.A. Cruz-BautistaI. del Bosque-PlataL. Metabolomics in diabetes, a review.Ann. Med.2016481-28910210.3109/07853890.2015.113763026883715
    [Google Scholar]
  77. BouletM.M. ChevrierG. Grenier-LaroucheT. PelletierM. NadeauM. ScarpaJ. PrehnC. MaretteA. AdamskiJ. TchernofA. Alterations of plasma metabolite profiles related to adipose tissue distribution and cardiometabolic risk.Am. J. Physiol. Endocrinol. Metab.20153098E736E74610.1152/ajpendo.00231.201526306599
    [Google Scholar]
  78. ViolletB. ForetzM. Animal models to study AMPK.EXS201610744146910.1007/978‑3‑319‑43589‑3_1827812991
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303305579241014112730
Loading
/content/journals/emiddt/10.2174/0118715303305579241014112730
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test