Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Multiple Sclerosis (MS), a debilitating inflammatory disorder of the central nervous system characterized by demyelination, is significantly influenced by polygenic variations. Although the precise cause of MS remains unclear, it is believed to arise from a complex interplay of genetic and environmental factors. Recent investigations have focused on the polygenic nature of genetic alterations linked to MS risk. This review highlights the critical role of these genetic variants in shaping disease susceptibility and progression. Specific Human Leukocyte Antigen (HLA) alleles, such as HLA-DRB1*15:01, HLA-DRB50*101, HLA-DR2+, HLA-DQ6, DQA 0102, and DQB1 0602, are implicated in immune modulation, significantly increasing the risk of developing MS. Additionally, Genome-wide Association Studies (GWAS) have identified non-HLA genetic variants that contribute to MS susceptibility, including IL-2RA (rs2104286), IL-7R (rs6897932), CD40 (rs1883832 T), CD58 (rs2300747), and others, each playing a role in immune regulation and disease progression. Dysfunctions in genes regulating myelin integrity, such as MOG (Myelin Oligodendrocyte Glycoprotein), MAG (Myelin-associated Glycoprotein), and PLP1 (Proteolipid Protein 1), further drive MS pathogenesis. Moreover, viral infections, notably Epstein-Barr Virus (EBV), Human Herpesvirus 6 (HHV-6), and measles virus, may exacerbate the development of MS by triggering immune responses. Understanding the contribution of these genetic and viral factors may shed light on the complex etiology of MS. Polygenic Risk Scores (PRS) provide a valuable tool for estimating MS susceptibility based on the cumulative effect of genetic variants. However, translating these genetic insights into clinical practice requires further validation, including environmental considerations. Investigating MS polygenicity could lead to personalized therapies, enhancing diagnosis, prognosis, and treatment, ultimately improving outcomes for MS patients.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303325979241206115417
2025-06-01
2025-09-05
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/7/EMIDDT-25-7-02.html?itemId=/content/journals/emiddt/10.2174/0118715303325979241206115417&mimeType=html&fmt=ahah

References

  1. KhanZ. GuptaG.D. MehanS. Cellular and molecular evidence of multiple sclerosis diagnosis and treatment challenges.J. Clin. Med.20231213427410.3390/jcm1213427437445309
    [Google Scholar]
  2. PrajapatiA. MehanS. KhanZ. The role of Smo-Shh/Gli signaling activation in the prevention of neurological and ageing disorders.Biogerontology202324449353110.1007/s10522‑023‑10034‑137097427
    [Google Scholar]
  3. SinghA. UpadhayayS. MehanS. Inhibition of c-JNK/p38MAPK signaling pathway by Apigenin prevents neurobehavioral and neurochemical defects in ethidium bromide-induced experimental model of multiple sclerosis in rats: Evidence from CSF, blood plasma and brain samples.Phytomed. Plus20211410013910.1016/j.phyplu.2021.100139
    [Google Scholar]
  4. KhanZ. MehanS. GuptaG.D. NarulaA.S. Immune system dysregulation in the progression of multiple sclerosis: Molecular insights and therapeutic implications.Neuroscience202454892610.1016/j.neuroscience.2024.04.00438692349
    [Google Scholar]
  5. ThompsonA.J. BanwellB.L. BarkhofF. CarrollW.M. CoetzeeT. ComiG. CorrealeJ. FazekasF. FilippiM. FreedmanM.S. FujiharaK. GalettaS.L. HartungH.P. KapposL. LublinF.D. MarrieR.A. MillerA.E. MillerD.H. MontalbanX. MowryE.M. SorensenP.S. TintoréM. TraboulseeA.L. TrojanoM. UitdehaagB.M.J. VukusicS. WaubantE. WeinshenkerB.G. ReingoldS.C. CohenJ.A. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria.Lancet Neurol.201817216217310.1016/S1474‑4422(17)30470‑229275977
    [Google Scholar]
  6. GhasemiN. RazaviS. NikzadE. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy.Cell J.201719111028367411
    [Google Scholar]
  7. UherR. ZwickerA. Etiology in psychiatry: embracing the reality of poly-gene-environmental causation of mental illness.World Psychiatry201716212112910.1002/wps.2043628498595
    [Google Scholar]
  8. YamoutB. Al-JumahM. SahraianM.A. AlmalikY. KhaburiJ.A. ShalabyN. AljarallahS. BohlegaS. DahdalehM. AlmahdawiA. KhouryS.J. KoussaS. SlassiE. DaoudiS. ArefH. MrabetS. ZeineddineM. ZakariaM. InshasiJ. GouiderR. AlroughaniR. Consensus recommendations for diagnosis and treatment of Multiple Sclerosis: 2023 revision of the MENACTRIMS guidelines.Mult. Scler. Relat. Disord.20248310543510.1016/j.msard.2024.10543538245998
    [Google Scholar]
  9. DimitrovL.G. TurnerB. What’s new in multiple sclerosis?Br. J. Gen. Pract.20146462961261310.3399/bjgp14X68260925452512
    [Google Scholar]
  10. LvovsD. FavorovaO.O. FavorovA.V. A polygenic approach to the study of polygenic diseases.Acta Nat. (Engl. Ed.)201243597110.32607/20758251‑2012‑4‑3‑59‑7123150804
    [Google Scholar]
  11. PatsopoulosN.A. Genetics of multiple sclerosis: An overview and new directions.Cold Spring Harb. Perspect. Med.201887a02895110.1101/cshperspect.a02895129440325
    [Google Scholar]
  12. JakimovskiD. BittnerS. ZivadinovR. MorrowS.A. BenedictR.H.B. ZippF. Weinstock-GuttmanB. Multiple sclerosis.Lancet20244031042218320210.1016/S0140‑6736(23)01473‑337949093
    [Google Scholar]
  13. UpadhayayS. MehanS. PrajapatiA. SethiP. SuriM. ZawawiA. AlmashjaryM.N. TabrezS. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis.Genes (Basel)2022138132410.3390/genes1308132435893061
    [Google Scholar]
  14. SinghA. UpadhayayS. MehanS. Understanding abnormal c-JNK/p38MAPK signaling overactivation involved in the progression of multiple sclerosis: Possible therapeutic targets and impact on neurodegenerative diseases.Neurotox. Res.20213951630165010.1007/s12640‑021‑00401‑634432262
    [Google Scholar]
  15. UffelmannE. Genome-wide association studies.Nat. Rev. Methods Primers202115910.1038/s43586‑021‑00056‑9
    [Google Scholar]
  16. PodbielskaM. BanikN. KurowskaE. HoganE. Myelin recovery in multiple sclerosis: The challenge of remyelination.Brain Sci.2013331282132410.3390/brainsci303128224961530
    [Google Scholar]
  17. KumarN. SharmaN. KheraR. GuptaR. MehanS. Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain.Metab. Brain Dis.202136591192510.1007/s11011‑021‑00691‑x33635478
    [Google Scholar]
  18. SongJ. WesterlindH. McKayK.A. AlmqvistC. StridhP. KockumI. HillertJ. ManouchehriniaA. Familial risk of early- and late-onset multiple sclerosis: A Swedish nationwide study.J. Neurol.2019266248148610.1007/s00415‑018‑9163‑630578428
    [Google Scholar]
  19. SharmaN. ShandilyaA. KumarN. MehanS. Dysregulation of SIRT-1 signaling in multiple sclerosis and neuroimmune disorders: A systematic review of SIRTUIN activators as potential immunomodulators and their influences on other dysfunctions.Endocr. Metab. Immune Disord. Drug Targets202121101845186810.2174/187153032166621030911223433687904
    [Google Scholar]
  20. SawcerS. FranklinR.J.M. BanM. Multiple sclerosis genetics.Lancet Neurol.201413770070910.1016/S1474‑4422(14)70041‑924852507
    [Google Scholar]
  21. LeeE. KimJ.H. ChoiH. KangH. LimH. KimJ. ChoS.J. NamE. ParkH. KimN. KwonM. Comparison of the concordance of allergic diseases between monozygotic and dizygotic twins: A cross-sectional study using KoGES HTS data.J. Pers. Med.202313572110.3390/jpm1305072137240891
    [Google Scholar]
  22. SharmaN. UpadhayayS. ShandilyaA. SahuR. SinghA. RajkhowaB. MehanS. Neuroprotection by solanesol against ethidium bromide-induced multiple sclerosis-like neurobehavioral, molecular, and neurochemical alterations in experimental rats.Phytomed. Plus20211410005110.1016/j.phyplu.2021.100051
    [Google Scholar]
  23. GorisA. VandeberghM. McCauleyJ.L. SaarelaJ. CotsapasC. Genetics of multiple sclerosis: lessons from polygenicity.Lancet Neurol.202221983084210.1016/S1474‑4422(22)00255‑135963264
    [Google Scholar]
  24. LinX. DengF.Y. LuX. LeiS.F. Susceptibility genes for multiple sclerosis identified in a gene-based genome-wide association study.J. Clin. Neurol.201511431131810.3988/jcn.2015.11.4.31126320842
    [Google Scholar]
  25. HollenbachJ.A. OksenbergJ.R. The immunogenetics of multiple sclerosis: A comprehensive review.J. Autoimmun.2015641132510.1016/j.jaut.2015.06.01026142251
    [Google Scholar]
  26. MajdinasabN. Hosseini BehbahaniM. GalehdariH. MohagheghM. Association of interleukin 7 receptor gene polymorphism rs6897932 with multiple sclerosis patients in Khuzestan.Iran. J. Neurol.201413316817125422737
    [Google Scholar]
  27. CruxN.B. ElahiS. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections?Front. Immunol.2017883210.3389/fimmu.2017.0083228769934
    [Google Scholar]
  28. KaushanskyN. AltmannD.M. DavidC.S. LassmannH. Ben-NunA. DQB1*0602 rather than DRB1*1501 confers susceptibility to multiple sclerosis-like disease induced by proteolipid protein (PLP).J. Neuroinflammation2012912910.1186/1742‑2094‑9‑2922316121
    [Google Scholar]
  29. MaghbooliZ. SahraianM.A. Multiple sclerosis and human leukocyte antigen genotypes: Focus on the Middle East and North Africa region.Mult Scler J Exp Transl Clin.2020612055217319881775
    [Google Scholar]
  30. HarroudA. StridhP. McCauleyJ.L. SaarelaJ. van den BoschA.M.R. EngelenburgH.J. BeechamA.H. AlfredssonL. AlikhaniK. AmezcuaL. AndlauerT.F.M. BanM. BarcellosL.F. BarizzoneN. BergeT. BertheleA. BittnerS. BosS.D. BriggsF.B.S. CaillierS.J. CalabresiP.A. CaputoD. Carmona-BurgosD.X. CavallaP. CeliusE.G. CeronoG. ChineaA.R. ChitnisT. ClarelliF. ComabellaM. ComiG. CotsapasC. CreeB.C.A. D’AlfonsoS. DardiotisE. De JagerP.L. DelgadoS.R. DuboisB. EngelS. EspositoF. Fabis-PedriniM.J. FilippiM. FitzgeraldK.C. GasperiC. GomezL. GomezR. HadjigeorgiouG. HamannJ. HeldF. HenryR.G. HillertJ. HuangJ. HuitingaI. IslamT. IsobeN. JagodicM. KermodeA.G. KhalilM. KilpatrickT.J. KonidariI. KreftK.L. Lechner-ScottJ. LeoneM. LuessiF. MalhotraS. ManouchehriniaA. ManriqueC.P. Martinelli-BoneschiF. MartinezA.C. Martinez-MaldonadoV. MasciaE. MetzL.M. MidagliaL. MontalbanX. OksenbergJ.R. OlssonT. OturaiA. PääkkönenK. ParnellG.P. PatsopoulosN.A. Pericak-VanceM.A. PiehlF. RubioJ.P. SantanielloA. SantoroS. SchaeferC. SellebjergF. ShamsH. ShchetynskyK. SilvaC. SiokasV. SøndergaardH.B. SorosinaM. TaylorB. VandeberghM. VasileiouE.S. VecchioD. VoortmanM.M. WeinerH.L. WeverD. YongV.W. HaflerD.A. StewartG.J. CompstonA. ZippF. HarboH.F. HemmerB. GorisA. SmoldersJ. HauserS.L. KockumI. SawcerS.J. BaranziniS.E. HarroudA. JónsdóttirI. BlancoY. LlufriuS. MadireddyL. SaizA. VillosladaP. StefánssonK. Locus for severity implicates CNS resilience in progression of multiple sclerosis.Nature2023619796932333110.1038/s41586‑023‑06250‑x37380766
    [Google Scholar]
  31. AmezcuaL. McCauleyJ.L. Race and ethnicity on MS presentation and disease course.Mult. Scler.202026556156710.1177/135245851988732831965878
    [Google Scholar]
  32. VinoyN. SheejaN. KumarS. BiswasL. Class II HLA (DRB1, & DQB1) alleles and IL7R (rs6897932) variants and the risk for Multiple Sclerosis in Kerala, India.Mult. Scler. Relat. Disord.20215010284810.1016/j.msard.2021.10284833657520
    [Google Scholar]
  33. AlfredssonL. OlssonT. Lifestyle and environmental factors in multiple sclerosis.Cold Spring Harb. Perspect. Med.201994a02894410.1101/cshperspect.a02894429735578
    [Google Scholar]
  34. SintzelM.B. RamettaM. RederA.T. Vitamin D and multiple sclerosis: A comprehensive review.Neurol. Ther.201871598510.1007/s40120‑017‑0086‑429243029
    [Google Scholar]
  35. BreuerJ. LoserK. MykickiN. WiendlH. SchwabN. Does the environment influence multiple sclerosis pathogenesis via UVB light and/or induction of vitamin D?J. Neuroimmunol.20193291810.1016/j.jneuroim.2018.05.00629793727
    [Google Scholar]
  36. Oskari VirtanenJ. JacobsonS. Viruses and multiple sclerosis.CNS Neurol. Disord. Drug Targets201211552854410.2174/18715271280166122022583435
    [Google Scholar]
  37. KapoorT. MehanS. Neuroprotective methodologies in the treatment of multiple sclerosis current status of clinical and pre-clinical findings.Curr. Drug Discov. Technol.2021181314610.2174/157016381766620020710090332031075
    [Google Scholar]
  38. UllahN. HasnainS.Z.U. BalochR. AminA. NasibovaA. SelakovicD. RosicG.L. IslamovS. NaraliyevaN. JaradatN. MammadovaA.O. Exploring essential oil-based bio-composites: molecular docking and in vitro analysis for oral bacterial biofilm inhibition.Front Chem.202412138362010.3389/fchem.2024.138362039086984
    [Google Scholar]
  39. ZiaratiP. TajikS. SawickaB. Cruz-RodriguezL. VambolV. VambolS. Detoxification of lead and cadmium in pharmaceutical effluent by home-made food wastes.Adv. Biol. & Earth Sci.202382
    [Google Scholar]
  40. MehanS. Editorial: Therapeutic modulators inhibiting neuromuscular and motor neuron degeneration.Front. Neurosci.2023174118894510.3389/fnins.2023.118894537090793
    [Google Scholar]
  41. GianfrancescoM. BarcellosL. Obesity and multiple sclerosis susceptibility: A review.J. Neurol. Neuromedicine2016171510.29245/2572.942X/2016/7.106427990499
    [Google Scholar]
  42. YsrraelitM.C. CorrealeJ. Impact of sex hormones on immune function and multiple sclerosis development.Immunology2019156192210.1111/imm.1300430222193
    [Google Scholar]
  43. SarihiS. Toxic heavy metal concentrations in multiple sclerosis patients: A systematic review and meta-analysis.EXCLI J.2021201571158410.17179/excli2021‑3484
    [Google Scholar]
  44. MazdehM. Ghafouri-FardS. NorooziR. SayadA. KhaniM. TaheriM. Davood O.M. Ecotropic Viral Integration Site 5 (EVI5) variants are associated with multiple sclerosis in Iranian population.Mult. Scler. Relat. Disord.201718151910.1016/j.msard.2017.09.01129141798
    [Google Scholar]
  45. JohnsonB.A. WangJ. TaylorE.M. CaillierS.J. HerbertJ. KhanO.A. CrossA.H. De JagerP.L. GourraudP-A.F. CreeB.C.A. HauserS.L. OksenbergJ.R. Multiple sclerosis susceptibility alleles in African Americans.Genes Immun.201011434335010.1038/gene.2009.8119865102
    [Google Scholar]
  46. MishraS. MauryaS.K. SrivastavaK. ShuklaS. MishraR. Pax6 influences expression patterns of genes involved in neurodegeneration.Ann. Neurosci.201522422623110.5214/ans.0972.7531.22040726525840
    [Google Scholar]
  47. MartinR. SospedraM. EiermannT. OlssonT. Multiple sclerosis: doubling down on MHC.Trends Genet.202137978479710.1016/j.tig.2021.04.01234006391
    [Google Scholar]
  48. Al NaqbiH. MawartA. AlshamsiJ. Al SafarH. TayG.K. Major histocompatibility complex (MHC) associations with diseases in ethnic groups of the Arabian Peninsula.Immunogenetics202173213115210.1007/s00251‑021‑01204‑x33528690
    [Google Scholar]
  49. HauserS.L. Silencing immune dialogue in multiple sclerosis.N. Engl. J. Med.2024390766266310.1056/NEJMe231443438354146
    [Google Scholar]
  50. ScholzE.M. MarcillaM. DauraX. Arribas-LaytonD. JamesE.A. AlvarezI. Human leukocyte antigen (HLA)-DRB1*15:01 and HLA-DRB5*01:01 present complementary peptide repertoires.Front. Immunol.20178198410.3389/fimmu.2017.0098428871256
    [Google Scholar]
  51. CoutureA. GarnierA. DocagneF. BoyerO. VivienD. Le-MauffB. LatoucheJ.B. ToutiraisO. HLA-class II artificial antigen presenting cells in CD4+ T cell-based immunotherapy.Front. Immunol.201910108110.3389/fimmu.2019.0108131156634
    [Google Scholar]
  52. LincolnM.R. RamagopalanS.V. ChaoM.J. HerreraB.M. DeLucaG.C. OrtonS.M. DymentD.A. SadovnickA.D. EbersG.C. Epistasis among HLA-DRB1, HLA-DQA1, and HLA-DQB1 loci determines multiple sclerosis susceptibility.Proc. Natl. Acad. Sci. USA2009106187542754710.1073/pnas.081266410619380721
    [Google Scholar]
  53. DelfanN. GalehdariH. Ghanbari MardasiF. ZabihiR. Latifi PakdehiT. SeifiT. MajdinasabN. Association of HLA- DR2-Related Haplotype (HLA-DRB5*01-DRB1*1501-DQB1*0602) in Patients with Multiple Sclerosis in Khuzestan Province.Iran. J. Child. Neurol.2021153354610.22037/ijcn.v14i4.1879534282361
    [Google Scholar]
  54. BarrieW. YangY. Irving-PeaseE.K. AttfieldK.E. ScorranoG. JensenL.T. ArmenA.P. DimopoulosE.A. SternA. Refoyo-MartinezA. PearsonA. RamsøeA. GaunitzC. DemeterF. JørkovM.L.S. MøllerS.B. SpringborgB. KlassenL. HyldgårdI.M. WickmannN. VinnerL. KorneliussenT.S. AllentoftM.E. SikoraM. KristiansenK. RodriguezS. NielsenR. IversenA.K.N. LawsonD.J. FuggerL. WillerslevE. Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations.Nature2024625799432132810.1038/s41586‑023‑06618‑z38200296
    [Google Scholar]
  55. EnzL.S. ZeisT. SchmidD. GeierF. van der MeerF. SteinerG. CertaU. BinderT.M.C. StadelmannC. MartinR. Schaeren-WiemersN. Increased HLA-DR expression and cortical demyelination in MS links with HLA-DR15.Neurol. Neuroimmunol. Neuroinflamm.202072e65610.1212/NXI.000000000000065631882398
    [Google Scholar]
  56. GontikaM. SkarlisC. ArtemiadisA. PonsR. MastroyianniS. VartzelisG. TheodorouV. KilindireasK. StefanisL. DalakasM. ChrousosG. AnagnostouliM. HLA-DRB1 allele impact on pediatric multiple sclerosis in a Hellenic cohort.Mult. Scler. J. Exp. Transl. Clin.202061205521732090804610.1177/205521732090804632133149
    [Google Scholar]
  57. MoscaL. ManteroV. PencoS. La MantiaL. De BenedettiS. MarazziM.R. SpreaficoC. ErminioC. GrassiL. LandoG. ZagariaM. AgostoniE. ProttiA. HLA-DRB1*15 association with multiple sclerosis is confirmed in a multigenerational Italian family.Funct. Neurol.2017322838810.11138/FNeur/2017.32.2.08328676141
    [Google Scholar]
  58. MamedovA. VorobyevaN. FilimonovaI. ZakharovaM. KiselevI. BashinskayaV. BaulinaN. BoykoA. FavorovA. KulakovaO. ZiganshinR. SmirnovI. PoroshinaA. ShilovskiyI. KhaitovM. SykulevY. FavorovaO. VlassovV. GabibovA. BelogurovA.Jr. Protective allele for multiple sclerosis HLA-DRB1*01:01 provides kinetic discrimination of myelin and exogenous antigenic peptides.Front. Immunol.202010308810.3389/fimmu.2019.0308832010139
    [Google Scholar]
  59. IsobeN. KeshavanA. GourraudP.A. ZhuA.H. DattaE. SchlaegerR. CaillierS.J. SantanielloA. LizéeA. HimmelsteinD.S. BaranziniS.E. HollenbachJ. CreeB.A.C. HauserS.L. OksenbergJ.R. HenryR.G. Association of HLA genetic risk burden with disease phenotypes in multiple sclerosis.JAMA Neurol.201673779580210.1001/jamaneurol.2016.098027244296
    [Google Scholar]
  60. WaubantE. LucasR. MowryE. GravesJ. OlssonT. AlfredssonL. Langer-GouldA. Environmental and genetic risk factors for MS: an integrated review.Ann. Clin. Transl. Neurol.2019691905192210.1002/acn3.5086231392849
    [Google Scholar]
  61. HakiM. AL-BiatiH.A. Al-TameemiZ.S. AliI.S. Al-hussaniyH.A. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment.Medicine (Baltimore)20241038e3729710.1097/MD.000000000003729738394496
    [Google Scholar]
  62. MirzaA. ForbesJ.D. ZhuF. BernsteinC.N. Van DomselaarG. GrahamM. WaubantE. TremlettH. The multiple sclerosis gut microbiota: A systematic review.Mult. Scler. Relat. Disord.20203710142710.1016/j.msard.2019.10142732172998
    [Google Scholar]
  63. NotoD. MiyakeS. Gut dysbiosis and multiple sclerosis.Clin. Immunol.202223510838010.1016/j.clim.2020.10838032169440
    [Google Scholar]
  64. RiiseT. MohrD.C. MungerK.L. Rich-EdwardsJ.W. KawachiI. AscherioA. Stress and the risk of multiple sclerosis.Neurology201176221866187110.1212/WNL.0b013e31821d74c521624985
    [Google Scholar]
  65. JiangX. OlssonT. HillertJ. KockumI. AlfredssonL. Stressful life events are associated with the risk of multiple sclerosis.Eur. J. Neurol.202027122539254810.1111/ene.1445832741033
    [Google Scholar]
  66. SparacoM. MieleG. LavorgnaL. AbbadessaG. BonavitaS. Association between relapses, stress, and depression in people with multiple sclerosis during the COVID-19 pandemic.Neurol. Sci.20224352935294210.1007/s10072‑022‑05917‑z35092543
    [Google Scholar]
  67. LiuG. HuY. JinS. JiangQ. Genetic variant rs763361 regulates multiple sclerosis CD226 gene expression.Proc. Natl. Acad. Sci. USA20171146E906E90710.1073/pnas.161852011428137889
    [Google Scholar]
  68. PeerlingsD. MimpenM. DamoiseauxJ. The IL-2 – IL-2 receptor pathway: Key to understanding multiple sclerosis.J. Transl. Autoimmun.20214610012310.1016/j.jtauto.2021.10012335005590
    [Google Scholar]
  69. RossS.H. CantrellD.A. Signaling and Function of Interleukin-2 in T Lymphocytes.Annu. Rev. Immunol.201836141143310.1146/annurev‑immunol‑042617‑05335229677473
    [Google Scholar]
  70. BuheltS. SøndergaardH.B. OturaiA. UllumH. von EssenM.R. SellebjergF. Relationship between multiple sclerosis-associated IL2RA risk allele variants and circulating T cell phenotypes in healthy genotype-selected controls.Cells20198663410.3390/cells806063431242590
    [Google Scholar]
  71. BuheltS. LaigaardH.M. von EssenM.R. UllumH. OturaiA. SellebjergF. SøndergaardH.B. IL2RA methylation and gene expression in relation to the multiple sclerosis-associated gene variant rs2104286 and soluble IL-2Rα in CD8+ T cells.Front. Immunol.202112567614110.3389/fimmu.2021.67614134386002
    [Google Scholar]
  72. LindnerE. WegerM. ArdjomandN. RennerW. El-ShabrawiY. Associations of independent IL2RA gene variants with intermediate uveitis.PLoS One2015107e013073710.1371/journal.pone.013073726133380
    [Google Scholar]
  73. KumarN. SahooN.K. MehanS. vermaB. The importance of gut-brain axis and use of probiotics as a treatment strategy for multiple sclerosis.Mult. Scler. Relat. Disord.202371410454710.1016/j.msard.2023.10454736805171
    [Google Scholar]
  74. ChenD. TangT.X. DengH. YangX.P. TangZ.H. Interleukin-7 biology and its effects on immune cells: Mediator of generation, differentiation, survival, and homeostasis.Front. Immunol.20211274732410.3389/fimmu.2021.74732434925323
    [Google Scholar]
  75. Galarza-MuñozG. BriggsF.B.S. EvsyukovaI. Schott-LernerG. KennedyE.M. NyanheteT. WangL. BergamaschiL. WidenS.G. TomarasG.D. KoD.C. BradrickS.S. BarcellosL.F. GregoryS.G. Garcia-BlancoM.A. Human epistatic interaction controls IL7R splicing and increases multiple Sclerosis Risk.Cell201716917284.e1310.1016/j.cell.2017.03.00728340352
    [Google Scholar]
  76. WangC. KongL. KimS. LeeS. OhS. JoS. JangI. KimT.D. The role of IL-7 and IL-7R in cancer pathophysiology and immunotherapy.Int. J. Mol. Sci.202223181041210.3390/ijms23181041236142322
    [Google Scholar]
  77. LiuH. DengZ. HanF. XiaY. LiuQ.H. SatoM. Time-frequency analysis of air-coupled GPR data for identification of delamination between pavement layers.Constr. Build. Mater.20171541207121510.1016/j.conbuildmat.2017.06.132
    [Google Scholar]
  78. KoutsourakiE. TheodorosK. EleniG. MariannaK. AretiN. AriadniK. DimitriosM. Autonomic nervous system disorders in multiple sclerosis.J. Neurol.202327083703371310.1007/s00415‑023‑11725‑y37084150
    [Google Scholar]
  79. MarrieR.A. FiskJ.D. FitzgeraldK. KowalecK. MaxwellC. RotsteinD. SalterA. TremlettH. Etiology, effects and management of comorbidities in multiple sclerosis: Recent advances.Front. Immunol.202314119719510.3389/fimmu.2023.119719537325663
    [Google Scholar]
  80. van LangelaarJ. RijversL. SmoldersJ. van LuijnM.M. B and T cells driving multiple sclerosis: Identity, mechanisms and potential triggers.Front. Immunol.20201176010.3389/fimmu.2020.0076032457742
    [Google Scholar]
  81. ZhaoZ. XueJ. ZhuoZ. ZhongW. LiuH. The association of IL7R rs6897932 with risk of multiple sclerosis in Southern Chinese.Neuropsychiatr. Dis. Treat.2022181855185910.2147/NDT.S37606636052273
    [Google Scholar]
  82. KallioS.P. JakkulaE. PurcellS. SuvelaM. KoivistoK. TienariP.J. ElovaaraI. PirttiläT. ReunanenM. BronnikovD. VianderM. MeriS. HillertJ. LundmarkF. HarboH.F. LorentzenÅ.R. De JagerP.L. DalyM.J. HaflerD.A. PalotieA. PeltonenL. SaarelaJ. Use of a genetic isolate to identify rare disease variants: C7 on 5p associated with MS.Hum. Mol. Genet.20091891670168310.1093/hmg/ddp07319221116
    [Google Scholar]
  83. Sahami-FardM.H. MozhdehM. IzadpanahF. KashaniH.H. NezhadiA. Interleukin 7 receptor T244I polymorphism and the multiple sclerosis susceptibility: A meta-analysis.J. Neuroimmunol.202034157716610.1016/j.jneuroim.2020.57716632062178
    [Google Scholar]
  84. SchottG. Galarza-MuñozG. TrevinoN. ChenX. WeirauchM.T. GregoryS.G. BradrickS.S. Garcia-BlancoM.A. U2AF2 binds IL7R exon 6 ectopically and represses its inclusion.RNA2021275571583Epub ahead of print10.1261/rna.078279.12033568552
    [Google Scholar]
  85. LiuH. HuangJ. DouM. LiuY. XiaoB. LiuX. HuangZ. Variants in the IL7RA gene confer susceptibility to multiple sclerosis in Caucasians: Evidence based on 9734 cases and 10436 controls.Sci. Rep.201771120710.1038/s41598‑017‑01345‑828446795
    [Google Scholar]
  86. ZhaoJ.H. StaceyD. ErikssonN. Macdonald-DunlopE. HedmanÅ.K. KalnapenkisA. EnrothS. CozzettoD. Digby-BellJ. MartenJ. FolkersenL. HerderC. JonssonL. BergenS.E. GiegerC. NeedhamE.J. SurendranP. MetspaluA. MilaniL. MägiR. NelisM. HudjašovG. PaulD.S. PolasekO. ThorandB. GrallertH. RodenM. VõsaU. EskoT. HaywardC. JohanssonÅ. GyllenstenU. PowellN. HanssonO. Mattsson-CarlgrenN. JoshiP.K. DaneshJ. PadyukovL. KlareskogL. LandénM. WilsonJ.F. SiegbahnA. WallentinL. MälarstigA. ButterworthA.S. PetersJ.E. Genetics of circulating inflammatory proteins identifies drivers of immune-mediated disease risk and therapeutic targets.Nat. Immunol.20232491540155110.1038/s41590‑023‑01588‑w37563310
    [Google Scholar]
  87. DeuitchN. CudriciC. OmbrelloA. AksentijevichI. TNF receptor-associated periodic fever syndrome.GeneReviews® 2022
    [Google Scholar]
  88. CudriciC. DeuitchN. AksentijevichI. Revisiting TNF Receptor-Associated Periodic Syndrome (TRAPS): Current perspectives.Int. J. Mol. Sci.2020219326310.3390/ijms2109326332380704
    [Google Scholar]
  89. Gomez-PinedoU. Variant rs4149584 (R92Q) of the TNFRSF1A gene in patients with familial multiple sclerosis.Neurologia2025401102110.1016/j.nrleng.2022.07.002
    [Google Scholar]
  90. JavorJ. ShawkatováI. ĎurmanováV. PárnickáZ. ČiernyD. MichalikJ. Čopíková-CudrákováD. SmahováB. GmitterováK. PeterajováĽ. BucováM. TNFRSF1A polymorphisms and their role in multiple sclerosis susceptibility and severity in the Slovak population.Int. J. Immunogenet.201845525726510.1111/iji.1238830009568
    [Google Scholar]
  91. ZegarskaJ. Wiesik-SzewczykE. HryniewieckaE. Wolska-KusnierzB. SoldackiD. KacprzakM. Sobczynska-TomaszewskaA. CzerskaK. SiedleckiP. Jahnz-RozykK. BernatowskaE. ZagozdzonR. PaczekL. Tumor necrosis factor Receptor-Associated Periodic Syndrome (TRAPS) with a new pathogenic variant in TNFRSF1A Gene in a family of the adult male with renal AA amyloidosis—Diagnostic and therapeutic challenge for clinicians.J. Clin. Med.202110346510.3390/jcm1003046533530412
    [Google Scholar]
  92. ProbertL. TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects.Neuroscience201530222210.1016/j.neuroscience.2015.06.03826117714
    [Google Scholar]
  93. De JagerP. de BakkerP. WangJ. OttoboniL. HauserS. OksenbergJ. HaflerD. F.27. meta-analysis of genome scans and replication identify CD6, ICSBP1, and TNFRSF1A as novel multiple sclerosis susceptibility loci.Clin. Immunol.2009131S10110.1016/j.clim.2009.03.294
    [Google Scholar]
  94. EliseevaD.D. ZakharovaM.N. Myelin oligodendrocyte glycoprotein as an autoantigen in inflammatory demyelinating diseases of the central nervous system.Biochemistry202388455156310.1134/S0006297923040107
    [Google Scholar]
  95. PeschlP. BradlM. HöftbergerR. BergerT. ReindlM. Myelin oligodendrocyte glycoprotein: Deciphering a target in inflammatory demyelinating diseases.Front. Immunol.2017852910.3389/fimmu.2017.0052928533781
    [Google Scholar]
  96. DidonnaA. OksenbergJ.R. Genetic determinants of risk and progression in multiple sclerosis.Clin. Chim. Acta2015449162210.1016/j.cca.2015.01.03425661088
    [Google Scholar]
  97. ZaiG. ArnoldP.D. RichterM.A. HannaG.L. RosenbergD. KennedyJ.L. An association of Myelin Oligodendrocyte Glycoprotein (MOG) gene variants with white matter volume in pediatric obsessive-compulsive disorder.Psychiatry Res. Neuroimaging202130711123110.1016/j.pscychresns.2020.11123133302097
    [Google Scholar]
  98. YangW. ZhouW. ZhangB.K. KongL.S. ZhuX.X. WangR.X. YangY. ChenY.F. ChenL.R. Association between CD24 Ala/Val polymorphism and multiple sclerosis risk.Medicine (Baltimore)20209915e1953010.1097/MD.000000000001953032282702
    [Google Scholar]
  99. AtmacaM. OnalanE. YildirimH. YuceH. KocM. KorkmazS. The association of myelin oligodendrocyte glycoprotein gene and white matter volume in obsessive–compulsive disorder.J. Affect. Disord.2010124330931310.1016/j.jad.2010.03.02720452030
    [Google Scholar]
  100. MartinsenV. KursulaP. Multiple sclerosis and myelin basic protein: insights into protein disorder and disease.Amino Acids20225419910910.1007/s00726‑021‑03111‑734889995
    [Google Scholar]
  101. FranklinR.J.M. SimonsM. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities.Neuron2022110213549356510.1016/j.neuron.2022.09.02336228613
    [Google Scholar]
  102. López-MuguruzaE. MatuteC. Alterations of oligodendrocyte and myelin energy metabolism in multiple sclerosis.Int. J. Mol. Sci.202324161291210.3390/ijms24161291237629092
    [Google Scholar]
  103. WootlaB. EriguchiM. RodriguezM. Is multiple sclerosis an autoimmune disease?Autoimmune Dis.2012201211210.1155/2012/96965722666554
    [Google Scholar]
  104. AmbrosiusW. MichalakS. KozubskiW. KalinowskaA. Myelin oligodendrocyte glycoprotein antibody-associated disease: Current insights into the disease pathophysiology, diagnosis and management.Int. J. Mol. Sci.202022110010.3390/ijms2201010033374173
    [Google Scholar]
  105. StassartR.M. MöbiusW. NaveK.A. EdgarJ.M. The axon-myelin unit in development and degenerative disease.Front. Neurosci.20181246710.3389/fnins.2018.0046730050403
    [Google Scholar]
  106. AlizadehA. DyckS.M. Karimi-AbdolrezaeeS. Myelin damage and repair in pathologic CNS: Challenges and prospects.Front. Mol. Neurosci.201583510.3389/fnmol.2015.0003526283909
    [Google Scholar]
  107. NevinZ.S. FactorD.C. KarlR.T. DouvarasP. LaukkaJ. WindremM.S. GoldmanS.A. FossatiV. HobsonG.M. TesarP.J. Modeling the mutational and phenotypic landscapes of pelizaeus-merzbacher disease with human iPSC-derived oligodendrocytes.Am. J. Hum. Genet.2017100461763410.1016/j.ajhg.2017.03.00528366443
    [Google Scholar]
  108. CloakeN.C. YanJ. AminianA. PenderM.P. GreerJ.M. PLP1 Mutations in Patients with Multiple Sclerosis: Identification of a New Mutation and Potential Pathogenicity of the Mutations.J. Clin. Med.201871034210.3390/jcm710034230314286
    [Google Scholar]
  109. RuizM. BégouM. LaunayN. Ranea-RoblesP. BianchiP. López-ErauskinJ. MoratóL. GuileraC. PetitB. Vaurs-BarriereC. Guéret-GonthierC. Bonnet-DupeyronM.N. FourcadeS. AuwerxJ. Boespflug-TanguyO. PujolA. Oxidative stress and mitochondrial dynamics malfunction are linked in P elizaeus- M erzbacher disease.Brain Pathol.201828561163010.1111/bpa.1257129027761
    [Google Scholar]
  110. OsórioM.J. GoldmanS.A. Neurogenetics of Pelizaeus-Merzbacher disease.Handb Clin. Neurol.201814870172210.1016/B978‑0‑444‑64076‑5.00045‑4
    [Google Scholar]
  111. NobutaH. YangN. NgY.H. MarroS.G. SabeurK. ChavaliM. StockleyJ.H. KillileaD.W. WalterP.B. ZhaoC. HuieP.Jr GoldmanS.A. KriegsteinA.R. FranklinR.J.M. RowitchD.H. WernigM. Oligodendrocyte death in pelizaeus-merzbacher disease is rescued by iron chelation.Cell Stem Cell2019254531541.e610.1016/j.stem.2019.09.00331585094
    [Google Scholar]
  112. ChapmanW.D. HerinkM.C. CameronM.H. BourdetteD. Polypharmacy in multiple sclerosis: Prevalence, risks, and mitigation strategies.Curr. Neurol. Neurosci. Rep.202323952152910.1007/s11910‑023‑01289‑937523105
    [Google Scholar]
  113. SethiP. MehanS. KhanZ. ChhabraS. Acetyl-11-keto-beta boswellic acid(AKBA) modulates CSTC-pathway by activating SIRT-1/Nrf2-HO-1 signalling in experimental rat model of obsessive-compulsive disorder: Evidenced by CSF, blood plasma and histopathological alterations.Neurotoxicology202398618510.1016/j.neuro.2023.08.00137549874
    [Google Scholar]
  114. Numasawa-KuroiwaY. OkadaY. ShibataS. KishiN. AkamatsuW. ShojiM. NakanishiA. OyamaM. OsakaH. InoueK. TakahashiK. YamanakaS. KosakiK. TakahashiT. OkanoH. Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes.Stem Cell Reports20142564866110.1016/j.stemcr.2014.03.00724936452
    [Google Scholar]
  115. ReadA. SchröderM. The unfolded protein response: An overview.Biology (Basel)202110538410.3390/biology1005038433946669
    [Google Scholar]
  116. HetzC. ZhangK. KaufmanR.J. Mechanisms, regulation and functions of the unfolded protein response.Nat. Rev. Mol. Cell Biol.202021842143810.1038/s41580‑020‑0250‑z32457508
    [Google Scholar]
  117. CotsapasC. MitrovicM. Genome-wide association studies of multiple sclerosis.Clin. Transl. Immunology201876e101810.1002/cti2.101829881546
    [Google Scholar]
  118. ElguetaR. BensonM.J. De VriesV.C. WasiukA. GuoY. NoelleR.J. Molecular mechanism and function of CD40/CD40L engagement in the immune system.Immunol. Rev.2009229115217210.1111/j.1600‑065X.2009.00782.x19426221
    [Google Scholar]
  119. KowalecK. FitzgeraldK.C. SalterA. DolovichC. HarderA. BernsteinC.N. BoltonJ. CutterG.R. GraffL.A. HäggS. HitchonC.A. LuY. LublinF. McKayK.A. PattenS.B. PatkiA. TiwariH.K. WolinskyJ.S. MarrieR.A. Polygenicity of comorbid depression in multiple sclerosis.Neurology20231015e522e53210.1212/WNL.000000000020745737290970
    [Google Scholar]
  120. FieldJ. ShahijanianF. SchibeciS. JohnsonL. GresleM. LaverickL. ParnellG. StewartG. McKayF. KilpatrickT. ButzkuevenH. BoothD. The MS risk allele of CD40 Is associated with reduced cell-membrane bound expression in antigen presenting cells: Implications for gene function.PLoS One2015106e012708010.1371/journal.pone.012708026068105
    [Google Scholar]
  121. AartsS.A.B.M. SeijkensT.T.P. van DorstK.J.F. DijkstraC.D. KooijG. LutgensE. The CD40–CD40L dyad in experimental autoimmune encephalomyelitis and multiple sclerosis.Front. Immunol.201781179110.3389/fimmu.2017.0179129312317
    [Google Scholar]
  122. ComiG. Bar-OrA. LassmannH. UccelliA. HartungH.P. MontalbanX. SørensenP.S. HohlfeldR. HauserS.L. Role of B cells in multiple sclerosis and related disorders.Ann. Neurol.2021891132310.1002/ana.2592733091175
    [Google Scholar]
  123. PetersA.L. StunzL.L. BishopG.A. CD40 and autoimmunity: The dark side of a great activator.Semin. Immunol.200921529330010.1016/j.smim.2009.05.01219595612
    [Google Scholar]
  124. ZhangY. LiuQ. YangS. LiaoQ. CD58 Immunobiology at a glance.Front. Immunol.202112570526010.3389/fimmu.2021.70526034168659
    [Google Scholar]
  125. De JagerP.L. Baecher-AllanC. MaierL.M. ArthurA.T. OttoboniL. BarcellosL. McCauleyJ.L. SawcerS. GorisA. SaarelaJ. YelenskyR. PriceA. LeppaV. PattersonN. de BakkerP.I.W. TranD. AubinC. PobywajloS. RossinE. HuX. AshleyC.W. ChoyE. RiouxJ.D. Pericak-VanceM.A. IvinsonA. BoothD.R. StewartG.J. PalotieA. PeltonenL. DuboisB. HainesJ.L. WeinerH.L. CompstonA. HauserS.L. DalyM.J. ReichD. OksenbergJ.R. HaflerD.A. The role of the CD58 locus in multiple sclerosis.Proc. Natl. Acad. Sci. USA2009106135264526910.1073/pnas.081331010619237575
    [Google Scholar]
  126. ZhouW. HuW. TangL. MaX. LiaoJ. YuZ. QiM. ChenB. LiJ. Meta-analysis of the selected genetic variants in immune-related genes and multiple sclerosis risk.Mol. Neurobiol.202461108175818710.1007/s12035‑024‑04095‑738478144
    [Google Scholar]
  127. KriegerS. CookK. HershC.M. Understanding multiple sclerosis as a disease spectrum: Above and below the clinical threshold.Curr. Opin. Neurol.202437318920110.1097/WCO.000000000000126238535979
    [Google Scholar]
  128. HeckerM. FitznerB. BlaschkeJ. BlaschkeP. ZettlU.K. Susceptibility variants in the CD58 gene locus point to a role of microRNA-548ac in the pathogenesis of multiple sclerosis.Mutat. Res. Rev. Mutat. Res.201576316116710.1016/j.mrrev.2014.10.00225795118
    [Google Scholar]
  129. BeechamA.H. PatsopoulosN.A. XifaraD.K. DavisM.F. KemppinenA. CotsapasC. ShahT.S. SpencerC. BoothD. GorisA. OturaiA. SaarelaJ. FontaineB. HemmerB. MartinC. ZippF. D’AlfonsoS. Martinelli-BoneschiF. TaylorB. HarboH.F. KockumI. HillertJ. OlssonT. BanM. OksenbergJ.R. HintzenR. BarcellosL.F. AgliardiC. AlfredssonL. AlizadehM. AndersonC. AndrewsR. SøndergaardH.B. BakerA. BandG. BaranziniS.E. BarizzoneN. BarrettJ. BellenguezC. BergamaschiL. BernardinelliL. BertheleA. BiberacherV. BinderT.M. BlackburnH. BomfimI.L. BrambillaP. BroadleyS. BrochetB. BrundinL. BuckD. ButzkuevenH. CaillierS.J. CamuW. CarpentierW. CavallaP. CeliusE.G. ComanI. ComiG. CorradoL. CosemansL. Cournu-RebeixI. CreeB.A. CusiD. DamotteV. DeferG. DelgadoS.R. DeloukasP. di SapioA. DiltheyA.T. DonnellyP. DuboisB. DuddyM. EdkinsS. ElovaaraI. EspositoF. EvangelouN. FiddesB. FieldJ. FrankeA. FreemanC. FrohlichI.Y. GalimbertiD. GiegerC. GourraudP.A. GraetzC. GrahamA. GrummelV. GuaschinoC. HadjixenofontosA. HakonarsonH. HalfpennyC. HallG. HallP. HamstenA. HarleyJ. HarrowerT. HawkinsC. HellenthalG. HillierC. HobartJ. HoshiM. HuntS.E. JagodicM. JelčićI. JochimA. KendallB. KermodeA. KilpatrickT. KoivistoK. KonidariI. KornT. KronsbeinH. LangfordC. LarssonM. LathropM. Lebrun-FrenayC. Lechner-ScottJ. LeeM.H. LeoneM.A. LeppäV. LiberatoreG. LieB.A. LillC.M. LindénM. LinkJ. LuessiF. LyckeJ. MacciardiF. MännistöS. ManriqueC.P. MartinR. MartinelliV. MasonD. MazibradaG. McCabeC. MeroI.L. MescheriakovaJ. MoutsianasL. MyhrK.M. NagelsG. NicholasR. NilssonP. PiehlF. PirinenM. PriceS.E. QuachH. ReunanenM. RobberechtW. RobertsonN.P. RodegherM. RogD. SalvettiM. Schnetz-BoutaudN.C. SellebjergF. SelterR.C. SchaeferC. ShaunakS. ShenL. ShieldsS. SiffrinV. SleeM. SorensenP.S. SorosinaM. SospedraM. SpurklandA. StrangeA. SundqvistE. ThijsV. ThorpeJ. TiccaA. TienariP. van DuijnC. VisserE.M. VucicS. WesterlindH. WileyJ.S. WilkinsA. WilsonJ.F. WinkelmannJ. ZajicekJ. ZindlerE. HainesJ.L. Pericak-VanceM.A. IvinsonA.J. StewartG. HaflerD. HauserS.L. CompstonA. McVeanG. De JagerP. SawcerS.J. McCauleyJ.L. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis.Nat. Genet.201345111353136010.1038/ng.277024076602
    [Google Scholar]
  130. PatsopoulosN.A. The multiple sclerosis genomic map: Role of peripheral immune cells and resident microglia in susceptibilitybioRxiv20193656460eaav718810.1101/143933
    [Google Scholar]
  131. D’NettoM.J. WardH. MorrisonK.M. RamagopalanS.V. DymentD.A. DeLucaG.C. HandunnetthiL. SadovnickA.D. EbersG.C. Risk alleles for multiple sclerosis in multiplex families.Neurology200972231984198810.1212/WNL.0b013e3181a92c2519506219
    [Google Scholar]
  132. HeckerM. BoxbergerN. IllnerN. FitznerB. SchröderI. WinkelmannA. DudesekA. MeisterS. KoczanD. LorenzP. ThiesenH.J. ZettlU.K. A genetic variant associated with multiple sclerosis inversely affects the expression of CD58 and microRNA-548ac from the same gene.PLoS Genet.2019152e100796110.1371/journal.pgen.100796130730892
    [Google Scholar]
  133. LeitnerJ. Herndler-BrandstetterD. ZlabingerG.J. Grubeck-LoebensteinB. SteinbergerP. CD58/CD2 Is the primary costimulatory pathway in human CD28−CD8+ T cells.J. Immunol.2015195247748710.4049/jimmunol.140191726041540
    [Google Scholar]
  134. PandeyR. BakayM. HakonarsonH. CLEC16A—An emerging master regulator of autoimmunity and neurodegeneration.Int. J. Mol. Sci.2023249822410.3390/ijms2409822437175930
    [Google Scholar]
  135. van LuijnM.M. KreftK.L. JongsmaM.L. MesS.W. Wierenga-WolfA.F. van MeursM. MeliefM.J. der KantR. JanssenL. JanssenH. TanR. PriatelJ.J. NeefjesJ. LamanJ.D. HintzenR.Q. Multiple sclerosis-associated CLEC16A controls HLA class II expression via late endosome biogenesis.Brain201513861531154710.1093/brain/awv08025823473
    [Google Scholar]
  136. ErikssonA.M. LeikfossI.S. AbrahamsenG. SundvoldV. IsomM.M. KeshariP.K. RognesT. LandsverkO.J.B. BosS.D. HarboH.F. SpurklandA. BergeT. Exploring the role of the multiple sclerosis susceptibility gene CLEC16A in T cells.Scand. J. Immunol.2021941e1305010.1111/sji.1305034643957
    [Google Scholar]
  137. PandeyR. BakayM. StrenkowskiB.P. HainH.S. HakonarsonH. JAK/STAT inhibitor therapy partially rescues the lipodystrophic autoimmune phenotype in Clec16a KO mice.Sci. Rep.2021111737210.1038/s41598‑021‑86493‑833795715
    [Google Scholar]
  138. MeroI-L. BanM. LorentzenÅ.R. SmestadC. CeliusE.G. SætherH. SaeediH. VikenM.K. SkinningsrudB. UndlienD.E. AarsethJ. MyhrK-M. GranumS. SpurklandA. SawcerS. CompstonA. LieB.A. HarboH.F. Exploring the CLEC16A gene reveals a MS-associated variant with correlation to the relative expression of CLEC16A isoforms in thymus.Genes Immun.201112319119810.1038/gene.2010.5921179112
    [Google Scholar]
  139. FanH.H. CuiL. JiangX.X. SongY.D. LiuS.S. WuK.Y. DongH.J. MaoM. OvlyakulovB. WuH.M. ZhuJ.H. ZhangX. Autoimmune disease associated CLEC16A variants convey risk of parkinson’s disease in han Chinese.Front. Genet.202213185649310.3389/fgene.2022.85649335432448
    [Google Scholar]
  140. WuM.Y. WangE.J. FengD. LiM. YeR.D. LuJ.H. Pharmacological insights into autophagy modulation in autoimmune diseases.Acta Pharm. Sin. B202111113364337810.1016/j.apsb.2021.03.02634900523
    [Google Scholar]
  141. YangZ. GoronzyJ.J. WeyandC.M. Autophagy in autoimmune disease.J. Mol. Med. (Berl.)201593770771710.1007/s00109‑015‑1297‑826054920
    [Google Scholar]
  142. SalemS. SalemD. GrosP. Role of IRF8 in immune cells functions, protection against infections, and susceptibility to inflammatory diseases.Hum. Genet.20201396-770772110.1007/s00439‑020‑02154‑232232558
    [Google Scholar]
  143. DasA. ChauhanK.S. KumarH. TailorP. Mutation in Irf8 gene (Irf8R294C ) impairs Type I IFN-mediated antiviral immune response by murine pDCs.Front. Immunol.20211275819010.3389/fimmu.2021.75819034867997
    [Google Scholar]
  144. ChiuS. BharatA. Role of monocytes and macrophages in regulating immune response following lung transplantation.Curr. Opin. Organ Transplant.201621323924510.1097/MOT.000000000000031326977996
    [Google Scholar]
  145. MoormanH.R. ReateguiY. PoschelD.B. LiuK. IRF8: Mechanism of action and health implications.Cells20221117263010.3390/cells1117263036078039
    [Google Scholar]
  146. ZhouT. ZhuX. YeZ. WangY.F. YaoC. XuN. ZhouM. MaJ. QinY. ShenY. TangY. YinZ. XuH. ZhangY. ZangX. DingH. YangW. GuoY. HarleyJ.B. NamjouB. KaufmanK.M. KottyanL.C. WeirauchM.T. HouG. ShenN. Lupus enhancer risk variant causes dysregulation of IRF8 through cooperative lncRNA and DNA methylation machinery.Nat. Commun.2022131185510.1038/s41467‑022‑29514‑y35388006
    [Google Scholar]
  147. MorimotoK. NakajimaK. Role of the immune system in the development of the central nervous system.Front. Neurosci.20191391610.3389/fnins.2019.0091631551681
    [Google Scholar]
  148. MattaB. SongS. LiD. BarnesB.J. Interferon regulatory factor signaling in autoimmune disease.Cytokine2017981152610.1016/j.cyto.2017.02.00628283223
    [Google Scholar]
  149. BerghoutJ. LanglaisD. RadovanovicI. TamM. MacMickingJ.D. StevensonM.M. GrosP. Irf8-regulated genomic responses drive pathological inflammation during cerebral malaria.PLoS Pathog.201397e100349110.1371/journal.ppat.100349123853600
    [Google Scholar]
  150. PrinzM. MasudaT. WheelerM.A. QuintanaF.J. Microglia and central nervous system-Associated macrophages from origin to disease modulation.Annu. Rev. Immunol.202139125127710.1146/annurev‑immunol‑093019‑11015933556248
    [Google Scholar]
  151. PonsV. RivestS. Beneficial roles of microglia and growth factors in MS, a brief review.Front. Cell. Neurosci.202014128410.3389/fncel.2020.0028433173466
    [Google Scholar]
  152. AdamsN.M. LauC.M. FanX. RappM. GearyC.D. WeizmanO.E. Diaz-SalazarC. SunJ.C. Transcription factor IRF8 orchestrates the adaptive natural killer cell response.Immunity201848611721182.e610.1016/j.immuni.2018.04.01829858012
    [Google Scholar]
  153. MoserB. CXCR5, the defining marker for follicular B helper T (TFH) cells.Front. Immunol.20156929610.3389/fimmu.2015.0029626106395
    [Google Scholar]
  154. PanZ. ZhuT. LiuY. ZhangN. Role of the CXCL13/CXCR5 axis in autoimmune diseases.Front. Immunol.202213185099810.3389/fimmu.2022.85099835309354
    [Google Scholar]
  155. AbdelrahmanA. AlvarezE. Advances in multiple sclerosis neurotherapeutics, neuroprotection, and risk mitigation strategies.Neurol. Clin.202442111513510.1016/j.ncl.2023.08.00237980110
    [Google Scholar]
  156. Gil-VareaE. FedetzM. EixarchH. SpataroN. VillarL.M. UrcelayE. SaizA. FernándezÓ. LeyvaL. Ramió-TorrentàL. VandenbroeckK. OtaeguiD. Castillo-TriviñoT. IzquierdoG. MalhotraS. BoschE. NavarroA. AlcinaA. MontalbanX. MatesanzF. ComabellaM. A new risk variant for multiple sclerosis at 11q23.3 Locus is associated with expansion of CXCR5+ circulating regulatory T cells.J. Clin. Med.20209362510.3390/jcm903062532110891
    [Google Scholar]
  157. HabermanA.M. GonzalezD.G. WongP. ZhangT. KerfootS.M. Germinal center B cell initiation, GC maturation, and the coevolution of its stromal cell niches.Immunol. Rev.20192881102710.1111/imr.1273130874342
    [Google Scholar]
  158. CrottyS. T follicular helper cell differentiation, function, and roles in disease.Immunity201441452954210.1016/j.immuni.2014.10.00425367570
    [Google Scholar]
  159. UenoH. BanchereauJ. VinuesaC.G. Pathophysiology of T follicular helper cells in humans and mice.Nat. Immunol.201516214215210.1038/ni.305425594465
    [Google Scholar]
  160. YuanJ. RenH. C–C chemokine receptor 5 and acute graft-versus-host disease.Immun. Inflamm. Dis.2022109e68710.1002/iid3.68736039647
    [Google Scholar]
  161. MahlaR.S. Lymphocytic infiltration in multiple sclerosis.Mult. Scler. Relat. Disord.202485210553310.1016/j.msard.2024.10553338479047
    [Google Scholar]
  162. VermaM.K. ShakyaS. Genetic variation in the chemokine receptor 5 gene and course of HIV infection; review on genetics and immunological aspect.Genes Dis.20218447548310.1016/j.gendis.2020.04.00734179311
    [Google Scholar]
  163. BarmaniaF. PepperM.S. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection.Appl. Transl. Genomics20132231610.1016/j.atg.2013.05.00427942440
    [Google Scholar]
  164. EllwangerJ.H. Kulmann-LealB. KaminskiV.L. RodriguesA.G. BragatteM.A.S. ChiesJ.A.B. Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases.Virus Res.2020286219804010.1016/j.virusres.2020.19804032479976
    [Google Scholar]
  165. ZengZ. LanT. WeiY. WeiX. CCL5/CCR5 axis in human diseases and related treatments.Genes Dis.202291122710.1016/j.gendis.2021.08.00434514075
    [Google Scholar]
  166. GumbarS. BhardwajS. MehanS. KhanZ. NarulaA.S. KalfinR. TabrezS. ZughaibiT.A. WasiS. Renal mitochondrial restoration by gymnemic acid in gentamicin-mediated experimental nephrotoxicity: Evidence from serum, kidney and histopathological alterations.Front. Pharmacol.202314121850610.3389/fphar.2023.121850637521462
    [Google Scholar]
  167. HengA.H.S. HanC.W. AbbottC. McCollS.R. ComerfordI. Chemokine-driven migration of pro-inflammatory CD4+ T cells in CNS autoimmune disease.Front. Immunol.20221381747310.3389/fimmu.2022.81747335250997
    [Google Scholar]
  168. McLarenP.J. FellayJ. HIV-1 and human genetic variation.Nat. Rev. Genet.2021221064565710.1038/s41576‑021‑00378‑034168330
    [Google Scholar]
  169. NekićJ. Stanković MatićI. RačkiV. Janko LabinacD. VuletićV. KapovićM. RistićS. PeterlinB. Starčević ČizmarevićN. CCR5 Δ32 and CTLA-4 +49 A/G gene polymorphisms and interferon-β treatment response in croatian and slovenian multiple sclerosis patients.Int. J. Mol. Sci.20242513741210.3390/ijms2513741239000519
    [Google Scholar]
  170. SobhaniN. Tardiel-CyrilD.R. DavtyanA. GeneraliD. RoudiR. LiY. CTLA-4 in regulatory T cells for cancer immunotherapy.Cancers (Basel)2021136144010.3390/cancers1306144033809974
    [Google Scholar]
  171. CrepeauR.L. FordM.L. Challenges and opportunities in targeting the CD28/CTLA-4 pathway in transplantation and autoimmunity.Expert Opin. Biol. Ther.20171781001101210.1080/14712598.2017.133359528525959
    [Google Scholar]
  172. Daei SorkhabiA. KomijaniE. SarkeshA. Ghaderi ShadbadP. Aghebati-MalekiA. Aghebati-MalekiL. Advances in immune checkpoint-based immunotherapies for multiple sclerosis: rationale and practice.Cell Commun. Signal.202321132110.1186/s12964‑023‑01289‑937946301
    [Google Scholar]
  173. BasileM.S. BramantiP. MazzonE. The role of cytotoxic T-lymphocyte antigen 4 in the pathogenesis of multiple sclerosis.Genes (Basel)2022138131910.3390/genes1308131935893056
    [Google Scholar]
  174. WangY. TsuoK. KanaiM. NealeB.M. MartinA.R. Challenges and opportunities for developing more generalizable polygenic risk scores.Annu. Rev. Biomed. Data Sci.20225129332010.1146/annurev‑biodatasci‑111721‑07483035576555
    [Google Scholar]
  175. Salinas-SantanderM.A. Cantu-SalinasC.S. Ocampo-CandianiJ. Suarez-ValenciaV.J. Ramirez-GuerreroJ.G. Sanchez-DominguezC.N. CTLA4 +49AG (rs231775) and CT60 (rs3087243) gene variants are not associated with alopecia areata in a Mexican population from Monterrey Mexico.An. Bras. Dermatol.202095328328810.1016/j.abd.2020.03.00132278632
    [Google Scholar]
  176. DasT. ChenZ. HendriksR.W. KoolM. A20/Tumor necrosis factor α-induced protein 3 in immune cells controls development of autoinflammation and autoimmunity: Lessons from mouse models.Front. Immunol.2018910410.3389/fimmu.2018.0010429515565
    [Google Scholar]
  177. JangD. LeeA.H. ShinH.Y. SongH.R. ParkJ.H. KangT.B. LeeS.R. YangS.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics.Int. J. Mol. Sci.2021225271910.3390/ijms2205271933800290
    [Google Scholar]
  178. HoffjanS. OkurA. EpplenJ.T. WieczorekS. ChanA. AkkadD.A. Association of TNFAIP 3 and TNFRSF 1A variation with multiple sclerosis in a German case–control cohort.Int. J. Immunogenet.201542210611010.1111/iji.1218325684197
    [Google Scholar]
  179. GrossC.C. Schulte-MecklenbeckA. RünziA. KuhlmannT. Posevitz-FejfárA. SchwabN. Schneider-HohendorfT. HerichS. HeldK. KonjevićM. HartwigM. DornmairK. HohlfeldR. ZiemssenT. KlotzL. MeuthS.G. WiendlH. Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation.Proc. Natl. Acad. Sci. USA201611321E2973E298210.1073/pnas.152492411327162345
    [Google Scholar]
  180. HaflerJ.P. MaierL.M. CooperJ.D. PlagnolV. HinksA. SimmondsM.J. StevensH.E. WalkerN.M. HealyB. HowsonJ.M.M. MaisuriaM. DuleyS. ColemanG. GoughS.C.L. WorthingtonJ. KuchrooV.K. WickerL.S. ToddJ.A. CD226 Gly307Ser association with multiple autoimmune diseases.Genes Immun.200910151010.1038/gene.2008.8218971939
    [Google Scholar]
  181. MaitiA.K. Kim-HowardX. ViswanathanP. GuillénL. QianX. Rojas-VillarragaA. SunC. CañasC. TobónG.J. MatsudaK. ShenN. CherñavskyA.C. AnayaJ.M. NathS.K. Non-synonymous variant (Gly307Ser) in CD226 is associated with susceptibility to multiple autoimmune diseases.Rheumatology (Oxford)20104971239124410.1093/rheumatology/kep47020338887
    [Google Scholar]
  182. Piédavent-SalomonM. WillingA. EnglerJ.B. SteinbachK. BauerS. EggertB. UferF. KursaweN. WehrmannS. JägerJ. ReinhardtS. FrieseM.A. Multiple sclerosis associated genetic variants of CD226 impair regulatory T cell function.Brain2015138113263327410.1093/brain/awv25626359290
    [Google Scholar]
  183. HuangZ. QiG. MillerJ.S. ZhengS.G. CD226: An emerging role in immunologic diseases.Front. Cell Dev. Biol.2020856410.3389/fcell.2020.0056432850777
    [Google Scholar]
  184. DendrouC.A. CortesA. ShipmanL. EvansH.G. AttfieldK.E. JostinsL. BarberT. KaurG. KuttikkatteS.B. LeachO.A. DeselC. FaergemanS.L. CheesemanJ. NevilleM.J. SawcerS. CompstonA. JohnsonA.R. EverettC. BellJ.I. KarpeF. UltschM. EigenbrotC. McVeanG. FuggerL. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity.Sci. Transl. Med.20168363363ra14910.1126/scitranslmed.aag197427807284
    [Google Scholar]
  185. GormanJ.A. HundhausenC. KinsmanM. ArkatkarT. AllenspachE.J. CloughC. WestS.E. ThomasK. EkenA. KhimS. HaleM. OukkaM. JacksonS.W. CerosalettiK. BucknerJ.H. RawlingsD.J. The TYK2-P1104A autoimmune protective variant limits coordinate signals required to generate specialized T cell subsets.Front. Immunol.2019103634410.3389/fimmu.2019.0004430740104
    [Google Scholar]
  186. TaoJ.H. ZouY.F. FengX.L. LiJ. WangF. PanF.M. YeD.Q. Meta-analysis of TYK2 gene polymorphisms association with susceptibility to autoimmune and inflammatory diseases.Mol. Biol. Rep.20113874663467210.1007/s11033‑010‑0601‑521140222
    [Google Scholar]
  187. PellenzF.M. DieterC. LemosN.E. BauerA.C. SouzaB.M. CrispimD. Association of TYK2 polymorphisms with autoimmune diseases: A comprehensive and updated systematic review with meta-analysis.Genet. Mol. Biol.2021442e2020042510.1590/1678‑4685‑gmb‑2020‑042533949620
    [Google Scholar]
  188. JensenL.T. AttfieldK.E. FeldmannM. FuggerL. Allosteric TYK2 inhibition: Redefining autoimmune disease therapy beyond JAK1-3 inhibitors.EBioMedicine20239710484010.1016/j.ebiom.2023.10484037863021
    [Google Scholar]
  189. ZaninN. Viaris de LesegnoC. LamazeC. BlouinC.M. Interferon receptor trafficking and signaling: Journey to the cross roads.Front. Immunol.20211161560310.3389/fimmu.2020.61560333552080
    [Google Scholar]
  190. O’SheaJ.J. PlengeR. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease.Immunity201236454255010.1016/j.immuni.2012.03.01422520847
    [Google Scholar]
  191. DengY.N. BellantiJ.A. ZhengS.G. Essential kinases and transcriptional regulators and their roles in autoimmunity.Biomolecules20199414510.3390/biom904014530974919
    [Google Scholar]
  192. PutlyaevaL.V. SchwartzA.M. KlepikovaA.V. VorontsovI.E. KulakovskiyI.V. KuprashD.V. The minor variant of the single-nucleotide polymorphism rs3753381 affects the activity of a SLAMF1 enhancer.Acta Nat. (Engl. Ed.)2017939410210.32607/20758251‑2017‑9‑3‑94‑10229104781
    [Google Scholar]
  193. ChenS.D. LiH.Q. ShenX.N. LiJ.Q. XuW. HuangY.Y. TanL. DongQ. YuJ.T. Genome-wide association study identifies SLAMF1 affecting the rate of memory decline.J. Alzheimers Dis.202074113914910.3233/JAD‑19121431985465
    [Google Scholar]
  194. YigitB. WangN. HerzogR.W. TerhorstC. SLAMF6 in health and disease: Implications for therapeutic targeting.Clin. Immunol.201920431310.1016/j.clim.2018.10.01330366106
    [Google Scholar]
  195. MaierL.M. LoweC.E. CooperJ. DownesK. AndersonD.E. SeversonC. ClarkP.M. HealyB. WalkerN. AubinC. OksenbergJ.R. HauserS.L. CompstonA. SawcerS. De JagerP.L. WickerL.S. ToddJ.A. HaflerD.A. IL2RA genetic heterogeneity in multiple sclerosis and type 1 diabetes susceptibility and soluble interleukin-2 receptor production.PLoS Genet.200951e100032210.1371/journal.pgen.100032219119414
    [Google Scholar]
  196. GregoryA.P. DendrouC.A. AttfieldK.E. HaghikiaA. XifaraD.K. ButterF. PoschmannG. KaurG. LambertL. LeachO.A. PrömelS. PunwaniD. FelceJ.H. DavisS.J. GoldR. NielsenF.C. SiegelR.M. MannM. BellJ.I. McVeanG. FuggerL. TNF receptor 1 genetic risk mirrors outcome of anti-TNF therapy in multiple sclerosis.Nature2012488741250851110.1038/nature1130722801493
    [Google Scholar]
  197. TangT. ChengX. TruongB. SunL. YangX. WangH. Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint.Pharmacol. Ther.202121910770910.1016/j.pharmthera.2020.10770933091428
    [Google Scholar]
  198. IgoR.P.Jr KinzyT.G. Cooke BaileyJ.N. Genetic Risk Scores.Curr. Protoc. Hum. Genet.20191041e9510.1002/cphg.9531765077
    [Google Scholar]
  199. ChoiS.W. MakT.S.H. O’ReillyP.F. Tutorial: a guide to performing polygenic risk score analyses.Nat. Protoc.20201592759277210.1038/s41596‑020‑0353‑132709988
    [Google Scholar]
  200. LinJ. ZhouJ. XuY. Potential drug targets for multiple sclerosis identified through Mendelian randomization analysis.Brain202314683364337210.1093/brain/awad07036864689
    [Google Scholar]
  201. MareesA.T. de KluiverH. StringerS. VorspanF. CurisE. Marie-ClaireC. DerksE.M. A tutorial on conducting genome-wide association studies: Quality control and statistical analysis.Int. J. Methods Psychiatr. Res.2018272e160810.1002/mpr.160829484742
    [Google Scholar]
  202. O’ConnorL.J. SchoechA.P. HormozdiariF. GazalS. PattersonN. PriceA.L. Extreme polygenicity of complex traits is explained by negative selection.Am. J. Hum. Genet.2019105345647610.1016/j.ajhg.2019.07.00331402091
    [Google Scholar]
  203. SchaidD.J. ChenW. LarsonN.B. From genome-wide associations to candidate causal variants by statistical fine-mapping.Nat. Rev. Genet.201819849150410.1038/s41576‑018‑0016‑z29844615
    [Google Scholar]
  204. LewisC.M. VassosE. Polygenic risk scores: From research tools to clinical instruments.Genome Med.20201214410.1186/s13073‑020‑00742‑532423490
    [Google Scholar]
  205. PlominR. von StummS. Polygenic scores: Prediction versus explanation.Mol. Psychiatry2022271495210.1038/s41380‑021‑01348‑y34686768
    [Google Scholar]
  206. HoneL. GiovannoniG. DobsonR. JacobsB.M. Predicting multiple sclerosis: Challenges and opportunities.Front. Neurol.202212176197310.3389/fneur.2021.76197335211072
    [Google Scholar]
  207. ShamsH. ShaoX. SantanielloA. KirkishG. HarroudA. MaQ. IsobeN. AlexanderJ. BoveR. BaranziniS. CreeB.A.C. CaverzasiE. CuneoR. CaillierS.J. CooperT. GreenA.J. GuoC-Y. GelfandJ.M. Gomez-O’sheaR. GuptaS. HollenbachJ. HarmsM. HenryR.G. HauserS.L. MendozaM. OksenbergJ.R. PapinuttoN. PleasureS. PowersK. RenschenA. SantanielloA. SabatinoJ.J.Jr SternW.A. WilsonM.R. ZamvilS.S. SchaeferC.A. McCauleyJ.L. CreeB.A.C. DidonnaA. BaranziniS.E. PatsopoulosN.A. HauserS.L. BarcellosL.F. HenryR.G. OksenbergJ.R. Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europeans.Brain2023146264565610.1093/brain/awac09235253861
    [Google Scholar]
  208. SluneckaJ.L. van der ZeeM.D. BeckJ.J. JohnsonB.N. FinnicumC.T. PoolR. HottengaJ.J. de GeusE.J.C. EhliE.A. Implementation and implications for polygenic risk scores in healthcare.Hum. Genomics20211514610.1186/s40246‑021‑00339‑y34284826
    [Google Scholar]
  209. SelzamS. RitchieS.J. PingaultJ.B. ReynoldsC.A. O’ReillyP.F. PlominR. Comparing within- and between-family polygenic score prediction.Am. J. Hum. Genet.2019105235136310.1016/j.ajhg.2019.06.00631303263
    [Google Scholar]
  210. AvinunR. KnafoA. Parenting as a reaction evoked by children’s genotype: A meta-analysis of children-as-twins studies.Pers. Soc. Psychol. Rev.20141818710210.1177/108886831349830823940232
    [Google Scholar]
  211. IaffaldanoP. PortaccioE. LucisanoG. SimoneM. ManniA. GuerraT. PaolicelliD. BettiM. De MeoE. PastòL. RazzoliniL. RoccaM.A. FerrèL. Brescia MorraV. PattiF. ZaffaroniM. GasperiniC. De LucaG. FerraroD. GranellaF. PozzilliC. RomanoS. GalloP. BergamaschiR. ConiglioM.G. LusG. VianelloM. BanfiP. LugaresiA. TotaroR. SpitaleriD. CoccoE. Di PalmaF. MaimoneD. ValentinoP. Torri ClericiV. ProttiA. ManiscalcoG.T. SalemiG. PesciI. AgugliaU. LeporeV. FilippiM. TrojanoM. AmatoM.P. FerraroE. LogulloF.O. MarfiaG.A. BombardiR. NasuelliD. BellantonioP. De RizM. GazzolaP. CavalettiG. IngleseM. ConteA. TedeschiG. Di SapioA. LeoneA. MontepietraS. MariniB. GattoM. SessaM. FerròM.T. RiniA. CargneluttiD. MirabellaM. BurlinaA. AvolioC. CavallaP. RovarisM. ArditoB. PiantadosiC. ConfalonieriP.A. ClericiR. StrumiaS. De RobertisF. QuatraleR. SinisiL. FiorettiC. Di LazzaroV. BucelloS. MancinelliL. RibizziG. ZarboR. GrimaldiL.M.E. CoreaF. SidotiV. MassacesiL. BalgeraR. RomanoM.C. D’AndreaF. AnconaA.L. PizzornoM. RinalduzziS. PassantinoF. CaponeL. BianchiM. VenturiS. TrivelliG. BrichettoG. FermiS. BramantiP. IodiceR. PirasM.L. CelaniM.G. BaroneP. TassinariT. MarsonA. ClericoM. BanfiP. SolaroC. Multiple sclerosis progression and relapse activity in children.JAMA Neurol.2024811505810.1001/jamaneurol.2023.445538010712
    [Google Scholar]
  212. JelenkovicA. SundR. HurY.M. YokoyamaY. HjelmborgJ.B. MöllerS. HondaC. MagnussonP.K.E. PedersenN.L. OokiS. AaltonenS. StaziM.A. FagnaniC. D’IppolitoC. FreitasD.L. MaiaJ.A. JiF. NingF. PangZ. RebatoE. BusjahnA. KandlerC. SaudinoK.J. JangK.L. CozenW. HwangA.E. MackT.M. GaoW. YuC. LiL. CorleyR.P. HuibregtseB.M. DeromC.A. VlietinckR.F. LoosR.J.F. HeikkiläK. WardleJ. LlewellynC.H. FisherA. McAdamsT.A. EleyT.C. GregoryA.M. HeM. DingX. Bjerregaard-AndersenM. Beck-NielsenH. SodemannM. TarnokiA.D. TarnokiD.L. Knafo-NoamA. MankutaD. AbramsonL. BurtS.A. KlumpK.L. SilbergJ.L. EavesL.J. MaesH.H. KruegerR.F. McGueM. PahlenS. GatzM. ButlerD.A. BartelsM. van BeijsterveldtT.C.E.M. CraigJ.M. SafferyR. DuboisL. BoivinM. BrendgenM. DionneG. VitaroF. MartinN.G. MedlandS.E. MontgomeryG.W. SwanG.E. KrasnowR. TyneliusP. LichtensteinP. HaworthC.M.A. PlominR. BayasgalanG. NarandalaiD. HardenK.P. Tucker-DrobE.M. SpectorT. ManginoM. LachanceG. BakerL.A. TuvbladC. DuncanG.E. BuchwaldD. WillemsenG. SkyttheA. KyvikK.O. ChristensenK. ÖncelS.Y. AlievF. RasmussenF. GoldbergJ.H. SørensenT.I.A. BoomsmaD.I. KaprioJ. SilventoinenK. Genetic and environmental influences on height from infancy to early adulthood: An individual-based pooled analysis of 45 twin cohorts.Sci. Rep.2016612849610.1038/srep2849627333805
    [Google Scholar]
  213. AhmadzadehY.I. SchoelerT. HanM. PingaultJ.B. CreswellC. McAdamsT.A. Systematic review and meta-analysis of genetically informed research: Associations between parent anxiety and offspring internalizing problems.J. Am. Acad. Child Adolesc. Psychiatry202160782384010.1016/j.jaac.2020.12.03733675965
    [Google Scholar]
  214. WillisM.D. RobertsonN.P. Multiple sclerosis: Early indicators of disease and assessing future risk.J. Neurol.2020267113436343810.1007/s00415‑020‑10239‑133030606
    [Google Scholar]
  215. DobsonR. RiceD.R. D’hoogheM. HorneR. LearmonthY. MateenF.J. MarckC.H. ReyesS. WilliamsM.J. GiovannoniG. FordH.L. Social determinants of health in multiple sclerosis.Nat. Rev. Neurol.2022181272373410.1038/s41582‑022‑00735‑536369488
    [Google Scholar]
  216. GinsburgO. YipC.H. BrooksA. CabanesA. CaleffiM. Dunstan YatacoJ.A. GyawaliB. McCormackV. McLaughlin de AndersonM. MehrotraR. MoharA. MurilloR. PaceL.E. PaskettE.D. RomanoffA. RositchA.F. ScheelJ.R. SchneidmanM. Unger-SaldañaK. VanderpuyeV. WuT.Y. YumaS. DvaladzeA. DugganC. AndersonB.O. Breast cancer early detection: A phased approach to implementation.Cancer2020126S10Suppl. 102379239310.1002/cncr.3288732348566
    [Google Scholar]
  217. FilippiM. AmatoM.P. CentonzeD. GalloP. GasperiniC. IngleseM. PattiF. PozzilliC. PreziosaP. TrojanoM. Early use of high-efficacy disease-modifying therapies makes the difference in people with multiple sclerosis: an expert opinion.J. Neurol.2022269105382539410.1007/s00415‑022‑11193‑w35608658
    [Google Scholar]
  218. GajofattoA. BenedettiM.D. Treatment strategies for multiple sclerosis: When to start, when to change, when to stop?World J. Clin. Cases20153754555510.12998/wjcc.v3.i7.54526244148
    [Google Scholar]
  219. CrossB. TurnerR. PirmohamedM. Polygenic risk scores: An overview from bench to bedside for personalised medicine.Front. Genet.202213100066710.3389/fgene.2022.100066736437929
    [Google Scholar]
  220. UginetM. LefeuvreL. LerusseJ. PotC. Du PasquierR. LaliveP.H. Traitements de la sclérose en plaques :mise à jour.Rev. Med. Suisse20242087183784210.53738/REVMED.2024.20.871.83738665104
    [Google Scholar]
  221. ChatawayJ. WilliamsT. LiV. MarrieR.A. OntanedaD. FoxR.J. Clinical trials for progressive multiple sclerosis: progress, new lessons learned, and remaining challenges.Lancet Neurol.202423327730110.1016/S1474‑4422(24)00027‑938365380
    [Google Scholar]
  222. AscherioA. MungerK.L. LünemannJ.D. The initiation and prevention of multiple sclerosis.Nat. Rev. Neurol.201281160261210.1038/nrneurol.2012.19823045241
    [Google Scholar]
  223. de MolC.L. JansenP.R. MuetzelR.L. KnolM.J. AdamsH.H. JaddoeV.W. VernooijM.W. HintzenR.Q. WhiteT.J. NeuteboomR.F. Polygenic multiple sclerosis risk and population-based childhood brain imaging.Ann. Neurol.202087577478710.1002/ana.2571732162725
    [Google Scholar]
  224. QassimA. SouzeauE. HollittG. HassallM.M. SiggsO.M. CraigJ.E. Risk stratification and clinical utility of polygenic risk scores in ophthalmology.Transl. Vis. Sci. Technol.20211061410.1167/tvst.10.6.1434111261
    [Google Scholar]
  225. EeltinkE. van der HorstM.Z. ZinkstokJ.R. AalfsC.M. LuykxJ.J. Polygenic risk scores for genetic counseling in psychiatry: Lessons learned from other fields of medicine.Neurosci. Biobehav. Rev.202112111912710.1016/j.neubiorev.2020.11.02133301779
    [Google Scholar]
  226. MaximL.D. NieboR. UtellM.J. Screening tests: A review with examples.Inhal. Toxicol.2014261381182810.3109/08958378.2014.95593225264934
    [Google Scholar]
  227. NairB. Clinical trial designs.Indian Dermatol. Online J.201910219320110.4103/idoj.IDOJ_475_1830984604
    [Google Scholar]
  228. LambertS.A. AbrahamG. InouyeM. Towards clinical utility of polygenic risk scores.Hum. Mol. Genet.201928R2R133R14210.1093/hmg/ddz18731363735
    [Google Scholar]
  229. StrianeseO. RizzoF. CiccarelliM. GalassoG. D’AgostinoY. SalvatiA. Del GiudiceC. TesorioP. RuscianoM.R. Precision and personalized medicine: how genomic approach improves the management of cardiovascular and neurodegenerative disease.Genes (Basel)202011774710.3390/genes1107074732640513
    [Google Scholar]
  230. BaderC. CossinS. MaillardA. BénardA. A new approach for sample size calculation in cost-effectiveness studies based on value of information.BMC Med. Res. Methodol.201818111310.1186/s12874‑018‑0571‑130348087
    [Google Scholar]
  231. ZeinomarN. ChungW.K. Cases in precision medicine: the role of polygenic risk scores in breast cancer risk assessment.Ann. Intern. Med.2021174340841210.7326/M20‑587433253037
    [Google Scholar]
  232. RippeJ.M. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease.Am. J. Lifestyle Med.201913220421210.1177/155982761881239530800027
    [Google Scholar]
  233. GudapatiS. ChaudhariK. ShrivastavaD. YelneS. Advancements and applications of preimplantation genetic testing in in vitro fertilization: A comprehensive review.Cureus2024163e5735710.7759/cureus.5735738694414
    [Google Scholar]
  234. ChitnisT. PratA. A roadmap to precision medicine for multiple sclerosis.Mult. Scler.202026552253210.1177/135245851988155831965904
    [Google Scholar]
  235. ReayW.R. AtkinsJ.R. CarrV.J. GreenM.J. CairnsM.J. Pharmacological enrichment of polygenic risk for precision medicine in complex disorders.Sci. Rep.202010187910.1038/s41598‑020‑57795‑031964963
    [Google Scholar]
  236. JohnsonK.B. WeiW.Q. WeeraratneD. FrisseM.E. MisulisK. RheeK. ZhaoJ. SnowdonJ.L. Precision medicine, AI, and the future of personalized health care.Clin. Transl. Sci.2021141869310.1111/cts.1288432961010
    [Google Scholar]
  237. HadleyT.D. AghaA.M. BallantyneC.M. How do we incorporate polygenic risk scores in cardiovascular disease risk asessment and management?Curr. Atheroscler. Rep.20212362810.1007/s11883‑021‑00915‑633791884
    [Google Scholar]
  238. OrmondK.E. BorenszteinM.J. HallquistM.L.G. BuchananA.H. FaucettW.A. PeayH.L. SmithM.E. TricouE.P. UhlmannW.R. WainK.E. CoughlinC.R.II Defining the critical components of informed consent for genetic testing.J. Pers. Med.20211112130410.3390/jpm1112130434945775
    [Google Scholar]
  239. BischofA. PapinuttoN. KeshavanA. RajeshA. KirkishG. ZhangX. MallottJ.M. AsteggianoC. SaccoS. GundelT.J. ZhaoC. SternW.A. CaverzasiE. ZhouY. GomezR. RaganN.R. SantanielloA. ZhuA.H. JuwonoJ. BevanC.J. BoveR.M. CrabtreeE. GelfandJ.M. GoodinD.S. GravesJ.S. GreenA.J. OksenbergJ.R. WaubantE. WilsonM.R. ZamvilS.S. CreeB.A.C. HauserS.L. HenryR.G. Spinal cord atrophy predicts progressive disease in relapsing multiple sclerosis.Ann. Neurol.202291226828110.1002/ana.2628134878197
    [Google Scholar]
  240. MishraS. BapurajJ. SrinivasanA. Multiple sclerosis part 2.Magn. Reson. Imaging Clin. N. Am.202432222123110.1016/j.mric.2024.01.00238555138
    [Google Scholar]
  241. Cano-GamezE. TrynkaG. From GWAS to function: Using functional genomics to identify the mechanisms underlying complex diseases.Front. Genet.202011942410.3389/fgene.2020.0042432477401
    [Google Scholar]
  242. MuhammadI.I. KongS.L. Akmar AbdullahS.N. MunusamyU. RNA-seq and ChIP-seq as complementary approaches for comprehension of plant transcriptional regulatory mechanism.Int. J. Mol. Sci.201921116710.3390/ijms2101016731881735
    [Google Scholar]
  243. SatamH. JoshiK. MangroliaU. WaghooS. ZaidiG. RawoolS. ThakareR.P. BandayS. MishraA.K. DasG. MaloniaS.K. Next-Generation sequencing technology: Current trends and advancements.Biology (Basel)202312799710.3390/biology1207099737508427
    [Google Scholar]
  244. ManzoniC. KiaD.A. VandrovcovaJ. HardyJ. WoodN.W. LewisP.A. FerrariR. Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences.Brief. Bioinform.201819228630210.1093/bib/bbw11427881428
    [Google Scholar]
  245. LibbrechtM.W. NobleW.S. Machine learning applications in genetics and genomics.Nat. Rev. Genet.201516632133210.1038/nrg392025948244
    [Google Scholar]
  246. BlayneyJ.W. FrancisH. RampasekovaA. CamellatoB. MitchellL. StolperR. CornellL. BabbsC. BoekeJ.D. HiggsD.R. KassoufM. Super-enhancers include classical enhancers and facilitators to fully activate gene expression.Cell20231862658265839.e1810.1016/j.cell.2023.11.03038101409
    [Google Scholar]
  247. GoodinD.S. KhankhanianP. GourraudP.A. VinceN. Genetic susceptibility to multiple sclerosis: Interactions between conserved extended haplotypes of the MHC and other susceptibility regions.BMC Med. Genomics202114118310.1186/s12920‑021‑01018‑634246256
    [Google Scholar]
  248. WhiteM.J. YaspanB.L. VeatchO.J. GoddardP. Risse-AdamsO.S. ContrerasM.G. Strategies for pathway analysis using GWAS and WGS data.Curr. Protoc. Hum. Genet.20191001e7910.1002/cphg.7930387919
    [Google Scholar]
  249. HartyB.L. CoelhoF. Pease-RaissiS.E. MoghaA. AckermanS.D. HerbertA.L. GereauR.W.IV GoldenJ.P. LyonsD.A. ChanJ.R. MonkK.R. Myelinating Schwann cells ensheath multiple axons in the absence of E3 ligase component Fbxw7.Nat. Commun.2019101297610.1038/s41467‑019‑10881‑y31278268
    [Google Scholar]
  250. SlimL. ChatelainC. FoucauldH. AzencottC.A. A systematic analysis of gene–gene interaction in multiple sclerosis.BMC Med. Genomics202215110010.1186/s12920‑022‑01247‑335501860
    [Google Scholar]
  251. OlssonT. BarcellosL.F. AlfredssonL. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis.Nat. Rev. Neurol.2017131253610.1038/nrneurol.2016.18727934854
    [Google Scholar]
  252. HedströmA.K. SundqvistE. BäärnhielmM. NordinN. HillertJ. KockumI. OlssonT. AlfredssonL. Smoking and two human leukocyte antigen genes interact to increase the risk for multiple sclerosis.Brain2011134365366410.1093/brain/awq37121303861
    [Google Scholar]
  253. VirolainenS.J. VonHandorfA. VielK.C.M.F. WeirauchM.T. KottyanL.C. Gene–environment interactions and their impact on human health.Genes Immun.202224111110.1038/s41435‑022‑00192‑636585519
    [Google Scholar]
  254. KahlertJ. GribsholtS. B. GammelagerH. DekkersO. M. LutaG. Control of confounding in the analysis phase - an overview for clinicians.Clin. Epidemiol.2017919520410.2147/CLEP.S129886
    [Google Scholar]
  255. AxisaP.P. HaflerD.A. Multiple sclerosis.Curr. Opin. Neurol.201629334535310.1097/WCO.000000000000031927058221
    [Google Scholar]
  256. HasinY. SeldinM. LusisA. Multi-omics approaches to disease.Genome Biol.20171818310.1186/s13059‑017‑1215‑128476144
    [Google Scholar]
  257. LoweR. ShirleyN. BleackleyM. DolanS. ShafeeT. Transcriptomics technologies.PLOS Comput. Biol.2017135e100545710.1371/journal.pcbi.100545728545146
    [Google Scholar]
  258. ShangZ. SunW. ZhangM. XuL. JiaX. ZhangR. FuS. Identification of key genes associated with multiple sclerosis based on gene expression data from peripheral blood mononuclear cells.PeerJ20208e835710.7717/peerj.835732117605
    [Google Scholar]
  259. KimD.Y. KimJ.M. Multi-omics integration strategies for animal epigenetic studies — A review.Anim. Biosci.20213481271128210.5713/ab.21.004233902167
    [Google Scholar]
  260. HoS.M. JohnsonA. TaraporeP. JanakiramV. ZhangX. LeungY.K. Environmental epigenetics and its implication on disease risk and health outcomes.ILAR J.2012533-428930510.1093/ilar.53.3‑4.28923744968
    [Google Scholar]
  261. JendoubiT. Approaches to integrating metabolomics and multi-omics data: A primer.Metabolites202111318410.3390/metabo1103018433801081
    [Google Scholar]
  262. Al-AmraniS. Al-JabriZ. Al-ZaabiA. AlshekailiJ. Al-KhaboriM. Proteomics: Concepts and applications in human medicine.World J. Biol. Chem.2021125576910.4331/wjbc.v12.i5.5734630910
    [Google Scholar]
  263. AltieriC. SperanzaB. CorboM.R. SinigagliaM. BevilacquaA. Gut-Microbiota, and multiple sclerosis: Background, evidence, and perspectives.Nutrients202315494210.3390/nu1504094236839299
    [Google Scholar]
  264. HuangW.J. ChenW.W. ZhangX. Multiple sclerosis: Pathology, diagnosis and treatments.Exp. Ther. Med.20171363163316610.3892/etm.2017.441028588671
    [Google Scholar]
  265. HedströmA.K. OlssonT. AlfredssonL. The increased risk of multiple sclerosis associated with HLA-DRB1*15:01 and smoking is modified by alcohol consumption.Sci. Rep.20211112123710.1038/s41598‑021‑00578‑y34707149
    [Google Scholar]
  266. KaleN. Optic neuritis as an early sign of multiple sclerosis.Eye Brain2016819520210.2147/EB.S54131
    [Google Scholar]
  267. FilippiM. RoccaM.A. CiccarelliO. De StefanoN. EvangelouN. KapposL. RoviraA. Sastre-GarrigaJ. TintorèM. FrederiksenJ.L. GasperiniC. PalaceJ. ReichD.S. BanwellB. MontalbanX. BarkhofF. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines.Lancet Neurol.201615329230310.1016/S1474‑4422(15)00393‑226822746
    [Google Scholar]
  268. BoveR. SuttonP. NicholasJ. Women’s health and pregnancy in multiple sclerosis.Neurol. Clin.202442127529310.1016/j.ncl.2023.07.00437980119
    [Google Scholar]
  269. ÖmerhocaS. Yazici AkkasS. Kale IcenN. Multiple sclerosis: Diagnosis and differrential diagnosis.Noro Psikiyatri Arsivi2018553Suppl. 1S1S910.29399/npa.2341830692847
    [Google Scholar]
  270. PaulA. ComabellaM. GandhiR. Biomarkers in mMultiple sclerosis.Cold Spring Harb. Perspect. Med.201993a02905810.1101/cshperspect.a02905829500303
    [Google Scholar]
  271. ParnellG.P. BoothD.R. The Multiple sclerosis (MS) genetic risk factors indicate both acquired and innate immune cell subsets contribute to ms pathogenesis and identify novel therapeutic opportunities.Front. Immunol.2017842510.3389/fimmu.2017.0042528458668
    [Google Scholar]
  272. PardoG. JonesD.E. The sequence of disease-modifying therapies in relapsing multiple sclerosis: Safety and immunologic considerations.J. Neurol.2017264122351237410.1007/s00415‑017‑8594‑928879412
    [Google Scholar]
  273. YuX. SongL. ZhengH. WeiS. WenX. HuangB. LiuD. Association between functional genetic variants in retinoid X receptor -α/γ and the risk of gestational diabetes mellitus in a southern Chinese population.Biosci. Rep.20214110BSR2021133810.1042/BSR2021133834633445
    [Google Scholar]
  274. HenschkeA. DesboroughJ. ParkinsonA. BrunoroC. FanningV. LueckC. Brew-SamN. BrüstleA. DrewJ. ChisholmK. ElishaM. SuominenH. TricoliA. PhillipsC. CookM. Personalizing medicine and technologies to address the experiences and needs of people with multiple sclerosis.J. Pers. Med.202111879110.3390/jpm1108079134442434
    [Google Scholar]
  275. GoetzL.H. SchorkN.J. Personalized medicine: Motivation, challenges, and progress.Fertil. Steril.2018109695296310.1016/j.fertnstert.2018.05.00629935653
    [Google Scholar]
  276. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑434393317
    [Google Scholar]
  277. MalgorzataM. MariaS. MichałW. Genetic testing—whether to allow complete freedom? Direct to consumer tests versus genetic tests for medical purposes.J. Appl. Genet.202263111912610.1007/s13353‑021‑00670‑z34826052
    [Google Scholar]
  278. MulliganK. BaidD. DoctorJ.N. PhelpsC. LakdawallaD.N. Risk preferences over health: Empirical estimates and implications for healthcare decision-making.SSRN2023202310.2139/ssrn.4533238
    [Google Scholar]
  279. FranceschiniN. FrickA. KoppJ.B. Genetic testing in clinical settings.Am. J. Kidney Dis.201872456958110.1053/j.ajkd.2018.02.35129655499
    [Google Scholar]
  280. HassanM. AwanF.M. NazA. deAndrés-GalianaE.J. AlvarezO. CerneaA. Fernández-BrilletL. Fernández-MartínezJ.L. KloczkowskiA. Innovations in genomics and big data analytics for personalized medicine and health care: A review.Int. J. Mol. Sci.2022239464510.3390/ijms2309464535563034
    [Google Scholar]
  281. CrewsK.R. CrossS.J. McCormickJ.N. BakerD.K. MolinelliA.R. MullinsR. RellingM.V. HoffmanJ.M. Development and implementation of a pharmacist-managed clinical pharmacogenetics service.Am. J. Health Syst. Pharm.201168214315010.2146/ajhp10011321200062
    [Google Scholar]
  282. LopezD. LopezD. Pharmacogenetics: An important part of drug development with a focus on its application.Int. J. Biomed. Investig.20181211610.31531/2581‑4745.100011132467882
    [Google Scholar]
  283. AhmedS. ZhouZ. ZhouJ. ChenS.Q. Pharmacogenomics of drug metabolizing enzymes and transporters: Relevance to precision medicine.Genom. Proteom. Bioinfor.201614529831310.1016/j.gpb.2016.03.00827729266
    [Google Scholar]
  284. OliveriS. FerrariF. ManfrinatiA. PravettoniG. A systematic review of the psychological implications of genetic testing: a comparative analysis among cardiovascular, neurodegenerative and cancer diseases.Front. Genet.2018962410.3389/fgene.2018.0062430619456
    [Google Scholar]
  285. WilliamsM.J. OrlandoC. AkisanyaJ. AmezcuaL. Multiple sclerosis in black and hispanic populations.Neurol. Clin.202442129531710.1016/j.ncl.2023.06.00537980120
    [Google Scholar]
  286. McGowanM.L. GlinkaA. HighlandJ. AsaadG. SharpR.R. Genetics patients’ perspectives on clinical genomic testing.Per. Med.201310433934710.2217/pme.13.3224955098
    [Google Scholar]
  287. ClarkeA. Anticipated stigma and blameless guilt: Mothers’ evaluation of life with the sex-linked disorder, hypohidrotic ectodermal dysplasia (XHED).Soc. Sci. Med.201615814114810.1016/j.socscimed.2016.04.02727140840
    [Google Scholar]
  288. SchrøderK. Assing HvidtE. Emotional responses and support needs of healthcare professionals after adverse or traumatic experiences in healthcare—evidence from seminars on peer support.Int. J. Environ. Res. Public Health2023209574910.3390/ijerph2009574937174266
    [Google Scholar]
  289. AyatollahiH. HosseiniS.F. HemmatM. Integrating genetic data into electronic health records: medical geneticists’ perspectives.Healthc. Inform. Res.201925428929610.4258/hir.2019.25.4.28931777672
    [Google Scholar]
  290. Martinez-MartinN. MagnusD. Privacy and ethical challenges in next-generation sequencing.Expert Rev. Precis. Med. Drug Dev.2019429510410.1080/23808993.2019.159968532775691
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303325979241206115417
Loading
/content/journals/emiddt/10.2174/0118715303325979241206115417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test