Skip to content
2000
image of Relationship Between Pituitary Gland and Stem Cell in the Aspect of Hormone Production and Disease Prevention: A Narrative Review

Abstract

Objectives

In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.

Aims

This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.

Methods

Based on many case reports and several types of research, a wide variety of relationships between the Pituitary Gland and Stem cells in the aspect of hormone Production and disease prevention are reviewed in this literature.

In this paper, we focus on various roles and functions of the pituitary gland, the responsibilities of stem cells as a mode of hormone production, and disease prevention.

Conclusion

Within this period, more was discovered concerning the contributions made to the transcription factors within the pituitary development, with factors such as Prop1, Pitx1, and Sox2 being defined as important in the development and action of hormone-secreting cells. They are also required in the appropriate specification of the cell types in the pituitary gland and the persistence of the progenitors. Manipulation of these factors causes developmental defects as well as tumors, thus the necessity of knowing the precise function and interaction of these factors. A closer look at these transcription factors could help expand treatment options for structural defect development or give rise to pituitary adenomas.

It has been established that signaling pathways such as Sonic Hedgehog (Shh), Wnt, and Notch play a part in modulating pituitary development. These pathways are involved in regulating important processes such as cellular proliferation, differentiation, and organization of the pituitary gland tissues. Breaching any of these pathways has been correlated with the development of various pituitary-related conditions including adenomas and congenital hypopituitarism. Moving forward, further studies of these pathways and their associations with stem cells could provide a better understanding of disease processes and approaches to manage them. This way, there is a possibility of developing new approaches aimed at treating the cause of the dysfunction of the pituitary gland by modulating its specific signaling activities.

Promising directions for the stimulation of hormone synthesis and restoration of normal pituitary function upon its disorders tissue regrowth could be found in stem cell application. The fact that one can generate functional pituitary cells from iPSCs for instance provides new avenues both for the understanding of pituitary disease mechanisms as well as for personalized medicine. It is possible to utilize these stem cell-derived cells for modeling disease, drug discovery or even transplantation to restore the function of the damaged pituitary gland. In the future, however, the focus ought to be on the effective application of stem cell therapies that have been research during the development of better differentiation processes.

The recent understanding of the system that carries the hypothalamic hormones to the pituitary gland, the hypophyseal portal vasculature, has had its implications too. This factorial consideration emphasizes the role of the vascular component in the control of pituitary activity – the release of hormones by the pituitary gland. Exploring stem cell-hypophyseal portal system interactions may open new avenues of treatment for diseases associated with deficient hormone transportation and/or pituitary dysfunction.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303314551241031093717
2025-01-13
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303314551241031093717/BMS-EMIDDT-2024-103.html?itemId=/content/journals/emiddt/10.2174/0118715303314551241031093717&mimeType=html&fmt=ahah

References

  1. Schwind J.L. The development of the hypophysis cerebri of the albino rat. Am. J. Anat. 1928 41 2 295 319 10.1002/aja.1000410206
    [Google Scholar]
  2. Rathke M.H. Evolutionary history of the adder (Coluber natrix). Königsberg Bornträger 1839
    [Google Scholar]
  3. Couly G.F. Le Douarin N.M. Mapping of the early neural primordium in quail-chick chimeras. Dev. Biol. 1985 110 2 422 439 10.1016/0012‑1606(85)90101‑0 4018406
    [Google Scholar]
  4. Gleiberman A.S. Fedtsova N.G. Rosenfeld M.G. Tissue interactions in the induction of anterior pituitary: Role of the ventral diencephalon, mesenchyme, and notochord. Dev. Biol. 1999 213 2 340 353 10.1006/dbio.1999.9386 10479452
    [Google Scholar]
  5. Takuma N. Sheng H.Z. Furuta Y. Ward J.M. Sharma K. Hogan B.L.M. Pfaff S.L. Westphal H. Kimura S. Mahon K.A. Formation of Rathke’s pouch requires dual induction from the diencephalon. Development 1998 125 23 4835 4840 10.1242/dev.125.23.4835 9806931
    [Google Scholar]
  6. Hermesz E. Mackem S. Mahon K.A. Rpx: A novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development 1996 122 1 41 52 10.1242/dev.122.1.41 8565852
    [Google Scholar]
  7. Simmons D.M. Voss J.W. Ingraham H.A. Holloway J.M. Broide R.S. Rosenfeld M.G. Swanson L.W. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 1990 4 5 695 711 10.1101/gad.4.5.695 2379827
    [Google Scholar]
  8. Mikami S. Hypophysis. Atlas of Endocrine Organs, Vertebrates and Invertebrates. Matsumoto A. Ishii S. Berlin Springer-Verlag 1992 39 62 10.1007/978‑3‑662‑11190‑1_5
    [Google Scholar]
  9. Japón M.A. Rubinstein M. Low M.J. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J. Histochem. Cytochem. 1994 42 8 1117 1125 10.1177/42.8.8027530 8027530
    [Google Scholar]
  10. Bancalari R.E. Gregory L.C. McCabe M.J. Dattani M.T. Pituitary gland development: An update. Endocr. Dev. 2012 23 1 15 10.1159/000341733 23182816
    [Google Scholar]
  11. Zhu X. Wang J. Ju B.G. Rosenfeld M.G. Signaling and epigenetic regulation of pituitary development. Curr. Opin. Cell Biol. 2007 19 6 605 611 10.1016/j.ceb.2007.09.011 17988851
    [Google Scholar]
  12. Schlosser G. Induction and specification of cranial placodes. Dev. Biol. 2006 294 2 303 351 10.1016/j.ydbio.2006.03.009 16677629
    [Google Scholar]
  13. Castinetti F. Régis J. Dufour H. Brue T. Role of stereotactic radiosurgery in the management of pituitary adenomas. Nat. Rev. Endocrinol. 2010 6 4 214 223 10.1038/nrendo.2010.4 20177403
    [Google Scholar]
  14. Drouin J. Bilodeau S. Roussel-Gervais A. Stem cells, differentiation and cell cycle control in pituitary. Front. Horm. Res. 2010 38 15 24 10.1159/000318490 20616491
    [Google Scholar]
  15. Szabó K. Csányi K. The vascular architecture of the developing pituitary-median eminence complex in the rat. Cell Tissue Res. 1982 224 3 563 577 10.1007/BF00213753 7116413
    [Google Scholar]
  16. Mollard P. Hodson D.J. Lafont C. Rizzoti K. Drouin J. A tridimensional view of pituitary development and function. Trends Endocrinol. Metab. 2012 23 6 261 269 10.1016/j.tem.2012.02.004 22436593
    [Google Scholar]
  17. Kelberman D. Rizzoti K. Lovell-Badge R. Robinson I.C.A.F. Dattani M.T. Genetic regulation of pituitary gland development in human and mouse. Endocr. Rev. 2009 30 7 790 829 10.1210/er.2009‑0008 19837867
    [Google Scholar]
  18. Melmed S. Pathogenesis of pituitary tumors. Nat. Rev. Endocrinol. 2011 7 5 257 266 10.1038/nrendo.2011.40 21423242
    [Google Scholar]
  19. Vandeva S. Vasilev V. Vroonen L. Naves L. Jaffrain-Rea M.L. Daly A.F. Zacharieva S. Beckers A. Familial pituitary adenomas. Ann. Endocrinol. 2010 71 6 479 485 10.1016/j.ando.2010.08.005 20961530
    [Google Scholar]
  20. Ericson J. Norlin S. Jessell T.M. Edlund T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 1998 125 6 1005 1015 10.1242/dev.125.6.1005 9463347
    [Google Scholar]
  21. Treier M. Gleiberman A.S. O’Connell S.M. Szeto D.P. McMahon J.A. McMahon A.P. Rosenfeld M.G. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev. 1998 12 11 1691 1704 10.1101/gad.12.11.1691 9620855
    [Google Scholar]
  22. Moerlooze L.D. Spencer-Dene B. Revest J.M. Hajihosseini M. Rosewell I. Dickson C. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 2000 127 3 483 492 10.1242/dev.127.3.483 10631169
    [Google Scholar]
  23. Ohuchi H. Hori Y. Yamasaki M. Harada H. Sekine K. Kato S. Itoh N. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem. Biophys. Res. Commun. 2000 277 3 643 649 10.1006/bbrc.2000.3721 11062007
    [Google Scholar]
  24. McCabe M.J. Gaston-Massuet C. Tziaferi V. Gregory L.C. Alatzoglou K.S. Signore M. Puelles E. Gerrelli D. Farooqi I.S. Raza J. Walker J. Kavanaugh S.I. Tsai P.S. Pitteloud N. Martinez-Barbera J.P. Dattani M.T. Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction. J. Clin. Endocrinol. Metab. 2011 96 10 E1709 E1718 10.1210/jc.2011‑0454 21832120
    [Google Scholar]
  25. Meyers E.N. Lewandoski M. Martin G.R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination. Nat. Genet. 1998 18 2 136 141 10.1038/ng0298‑136 9462741
    [Google Scholar]
  26. Maruoka Y. Ohbayashi N. Hoshikawa M. Itoh N. Hogan B.L.M. Furuta Y. Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo. Mech. Dev. 1998 74 1-2 175 177 10.1016/S0925‑4773(98)00061‑6 9651520
    [Google Scholar]
  27. Ohbayashi N. Hoshikawa M. Kimura S. Yamasaki M. Fukui S. Itoh N. Structure and expression of the mRNA encoding a novel fibroblast growth factor, FGF-18. J. Biol. Chem. 1998 273 29 18161 18164 10.1074/jbc.273.29.18161 9660775
    [Google Scholar]
  28. Brinkmeier M.L. Davis S.W. Carninci P. MacDonald J.W. Kawai J. Ghosh D. Hayashizaki Y. Lyons R.H. Camper S.A. Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics 2009 93 5 449 460 10.1016/j.ygeno.2008.11.010 19121383
    [Google Scholar]
  29. Davis S.W. Camper S.A. Noggin regulates Bmp4 activity during pituitary induction. Dev. Biol. 2007 305 1 145 160 10.1016/j.ydbio.2007.02.001 17359964
    [Google Scholar]
  30. Brinkmeier M.L. Potok M.A. Cha K.B. Gridley T. Stifani S. Meeldijk J. Clevers H. Camper S.A. TCF and Groucho-related genes influence pituitary growth and development. Mol. Endocrinol. 2003 17 11 2152 2161 10.1210/me.2003‑0225 12907761
    [Google Scholar]
  31. Brinkmeier M.L. Potok M.A. Davis S.W. Camper S.A. TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev. Biol. 2007 311 2 396 407 10.1016/j.ydbio.2007.08.046 17919533
    [Google Scholar]
  32. Cha K.B. Douglas K.R. Potok M.A. Liang H. Jones S.N. Camper S.A. WNT5A signaling affects pituitary gland shape. Mech. Dev. 2004 121 2 183 194 10.1016/j.mod.2003.12.002 15037319
    [Google Scholar]
  33. Potok M.A. Cha K.B. Hunt A. Brinkmeier M.L. Leitges M. Kispert A. Camper S.A. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev. Dyn. 2008 237 4 1006 1020 10.1002/dvdy.21511 18351662
    [Google Scholar]
  34. Ho H.Y.H. Susman M.W. Bikoff J.B. Ryu Y.K. Jonas A.M. Hu L. Kuruvilla R. Greenberg M.E. Wnt5a–Ror–Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc. Natl. Acad. Sci. USA 2012 109 11 4044 4051 10.1073/pnas.1200421109 22343533
    [Google Scholar]
  35. Zhao L. Zevallos S.E. Rizzoti K. Jeong Y. Lovell-Badge R. Epstein D.J. Disruption of SoxB1-dependent Sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia. Dev. Cell 2012 22 3 585 596 10.1016/j.devcel.2011.12.023 22421044
    [Google Scholar]
  36. Trowe M.O. Zhao L. Weiss A.C. Christoffels V. Epstein D.J. Kispert A. Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis. Development 2013 140 11 2299 2309 10.1242/dev.094524 23674600
    [Google Scholar]
  37. Hui C. Angers S. Gli proteins in development and disease. Annu. Rev. Cell Dev. Biol. 2011 27 1 513 537 10.1146/annurev‑cellbio‑092910‑154048 21801010
    [Google Scholar]
  38. Wang Y. Martin J.F. Bai C.B. Direct and indirect requirements of Shh/Gli signaling in early pituitary development. Dev. Biol. 2010 348 2 199 209 10.1016/j.ydbio.2010.09.024 20934421
    [Google Scholar]
  39. Zhao Y. Mailloux C.M. Hermesz E. Palkóvits M. Westphal H. A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development. Dev. Biol. 2010 337 2 313 323 10.1016/j.ydbio.2009.11.002 19900438
    [Google Scholar]
  40. Medina-Martinez O. Amaya-Manzanares F. Liu C. Mendoza M. Shah R. Zhang L. Behringer R.R. Mahon K.A. Jamrich M. Cell-autonomous requirement for rx function in the mammalian retina and posterior pituitary. PLoS One 2009 4 2 e4513 10.1371/journal.pone.0004513 19229337
    [Google Scholar]
  41. Le Tissier P.R. Hodson D.J. Lafont C. Fontanaud P. Schaeffer M. Mollard P. Anterior pituitary cell networks. Front. Neuroendocrinol. 2012 33 3 252 266 10.1016/j.yfrne.2012.08.002 22981652
    [Google Scholar]
  42. Davis S.W. Mortensen A.H. Camper S.A. Birthdating studies reshape models for pituitary gland cell specification. Dev. Biol. 2011 352 2 215 227 10.1016/j.ydbio.2011.01.010 21262217
    [Google Scholar]
  43. Seuntjens E. Denef C. Progenitor cells in the embryonic anterior pituitary abruptly and concurrently depress mitotic rate before progressing to terminal differentiation. Mol. Cell. Endocrinol. 1999 150 1-2 57 63 10.1016/S0303‑7207(99)00028‑3 10411300
    [Google Scholar]
  44. Bilodeau S. Roussel-Gervais A. Drouin J. Distinct developmental roles of cell cycle inhibitors p57Kip2 and p27Kip1 distinguish pituitary progenitor cell cycle exit from cell cycle reentry of differentiated cells. Mol. Cell. Biol. 2009 29 7 1895 1908 10.1128/MCB.01885‑08 19139274
    [Google Scholar]
  45. Olson L.E. Tollkuhn J. Scafoglio C. Krones A. Zhang J. Ohgi K.A. Wu W. Taketo M.M. Kemler R. Grosschedl R. Rose D. Li X. Rosenfeld M.G. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination. Cell 2006 125 3 593 605 10.1016/j.cell.2006.02.046 16678101
    [Google Scholar]
  46. Gaston-Massuet C. Andoniadou C.L. Signore M. Jayakody S.A. Charolidi N. Kyeyune R. Vernay B. Jacques T.S. Taketo M.M. Le Tissier P. Dattani M.T. Martinez-Barbera J.P. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc. Natl. Acad. Sci. USA 2011 108 28 11482 11487 10.1073/pnas.1101553108 21636786
    [Google Scholar]
  47. Dattani M.T. Martinez-Barbera J.P. Thomas P.Q. Brickman J.M. Gupta R. Mårtensson I.L. Toresson H. Fox M. Wales J.K.H. Hindmarsh P.C. Krauss S. Beddington R.S.P. Robinson I.C.A.F. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat. Genet. 1998 19 2 125 133 10.1038/477 9620767
    [Google Scholar]
  48. Gage P.J. Suh H. Camper S.A. Dosage requirement of Pitx2 for development of multiple organs. Development 1999 126 20 4643 4651 10.1242/dev.126.20.4643 10498698
    [Google Scholar]
  49. Maity M.K. Naagar M. Autoimmune Neurogenic Dysphagia. Int. J. Sci. Res. 2022 11 7 447 463 https://www.ijsr.net/getabstract.php?paperid=SR22630151732
    [Google Scholar]
  50. Treier M. O’Connell S. Gleiberman A. Price J. Szeto D.P. Burgess R. Chuang P.T. McMahon A.P. Rosenfeld M.G. Hedgehog signaling is required for pituitary gland development. Development 2001 128 3 377 386 10.1242/dev.128.3.377 11152636
    [Google Scholar]
  51. Brennan D. Chen X. Cheng L. Mahoney M. Riobo N.A. Noncanonical Hedgehog signaling. Vitam. Horm. 2012 88 55 72 10.1016/B978‑0‑12‑394622‑5.00003‑1 22391299
    [Google Scholar]
  52. Maity M.K. Naagar M. A review on headache: Epidemiology, pathophysiology, classifications, diagnosis, clinical management and treatment modalities. Int. J. Sci. Res. 2022 11 7 506 515 https://www.ijsr.net/getabstract.php?paperid=SR22703111804
    [Google Scholar]
  53. Zhu X. Zhang J. Tollkuhn J. Ohsawa R. Bresnick E.H. Guillemot F. Kageyama R. Rosenfeld M.G. Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes Dev. 2006 20 19 2739 2753 10.1101/gad.1444706 17015435
    [Google Scholar]
  54. Goldberg L.B. Aujla P.K. Raetzman L.T. Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis. Dev. Biol. 2011 358 1 23 32 10.1016/j.ydbio.2011.07.004 21781958
    [Google Scholar]
  55. Raetzman L.T. Ross S.A. Cook S. Dunwoodie S.L. Camper S.A. Thomas P.Q. Developmental regulation of Notch signaling genes in the embryonic pituitary: Prop1 deficiency affects Notch2 expression. Dev. Biol. 2004 265 2 329 340 10.1016/j.ydbio.2003.09.033 14732396
    [Google Scholar]
  56. Cheung L.Y.M. Rizzoti K. Lovell-Badge R. Le Tissier P.R. Pituitary phenotypes of mice lacking the notch signalling ligand delta-like 1 homologue. J. Neuroendocrinol. 2013 25 4 391 401 10.1111/jne.12010 23279263
    [Google Scholar]
  57. Puertas-Avendaño R.A. González-Gómez M.J. Ruvira M.D. Ruiz-Hidalgo M.J. Morales-Delgado N. Laborda J. Díaz C. Bello A.R. Role of the non-canonical notch ligand delta-like protein 1 in hormone-producing cells of the adult male mouse pituitary. J. Neuroendocrinol. 2011 23 9 849 859 10.1111/j.1365‑2826.2011.02189.x 21756269
    [Google Scholar]
  58. Ingraham H.A. Chen R. Mangalam H.J. Elsholtz H.P. Flynn S.E. Lin C.R. Simmons D.M. Swanson L. Rosenfeld M.G. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 1988 55 3 519 529 10.1016/0092‑8674(88)90038‑4 2902928
    [Google Scholar]
  59. Mangalam H.J. Albert V.R. Ingraham H.A. Kapiloff M. Wilson L. Nelson C. Elsholtz H. Rosenfeld M.G. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev. 1989 3 7 946 958 10.1101/gad.3.7.946 2550324
    [Google Scholar]
  60. Karin M. Theill L. Castrillo J.L. McCormick A. Brady H. Tissue-specific expression of the growth hormone gene and its control by growth hormone factor-1. Recent Prog. Horm. Res. 1990 46 43 57 10.1016/B978‑0‑12‑571146‑3.50006‑7
    [Google Scholar]
  61. Alam M.S. Maity M.K. Nazmi A.S. Alam M.S. Ansari M.S. Oral Health Issues And Preventive Measures In Geriatric Populations. J. Pharm. Negat. Results 2022 2647 2655
    [Google Scholar]
  62. Li S. Crenshaw E.B. III Rawson E.J. Simmons D.M. Swanson L.W. Rosenfeld M.G. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 1990 347 6293 528 533 10.1038/347528a0 1977085
    [Google Scholar]
  63. Sharma N. Alam M.S. Sharma A. Garg S. Maity M.K. Colorectal cancer in young adults: Epidemiology, risk factors, development, symptoms, traditional herbal therapy and prevention. J. Pharm. Negat. Results 2022 1370 1382 https://pnrjournal.com/index.php/home/article/view/6991
    [Google Scholar]
  64. Lala D.S. Rice D.A. Parker K.L. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol. Endocrinol. 1992 6 8 1249 1258 1406703
    [Google Scholar]
  65. Haque E. Ahmed F. Chaurasiya P. Yadav N. Dhiman N. Maity M.K. A review on antidepressant effect of herbal drugs. J. Pharm. Negat. Results 2023 2716 2723 https://www.pnrjournal.com/index.php/home/article/view/8841
    [Google Scholar]
  66. Lamolet B. Poulin G. Chu K. Guillemot F. Tsai M.J. Drouin J. Tpit-independent function of NeuroD1(BETA2) in pituitary corticotroph differentiation. Mol. Endocrinol. 2004 18 4 995 1003 10.1210/me.2003‑0127 14726486
    [Google Scholar]
  67. Lamolet B. Pulichino A.M. Lamonerie T. Gauthier Y. Brue T. Enjalbert A. Drouin J. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell 2001 104 6 849 859 10.1016/S0092‑8674(01)00282‑3 11290323
    [Google Scholar]
  68. Ingraham H.A. Lala D.S. Ikeda Y. Luo X. Shen W.H. Nachtigal M.W. Abbud R. Nilson J.H. Parker K.L. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev. 1994 8 19 2302 2312 10.1101/gad.8.19.2302 7958897
    [Google Scholar]
  69. Pulichino A.M. Vallette-Kasic S. Couture C. Gauthier Y. Brue T. David M. Malpuech G. Deal C. Van Vliet G. De Vroede M. Riepe F.G. Partsch C.J. Sippell W.G. Berberoglu M. Atasay B. Drouin J. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency. Genes Dev. 2003 17 6 711 716 10.1101/gad.1065603 12651888
    [Google Scholar]
  70. Pulichino A.M. Vallette-Kasic S. Tsai J.P.Y. Couture C. Gauthier Y. Drouin J. Tpit determines alternate fates during pituitary cell differentiation. Genes Dev. 2003 17 6 738 747 10.1101/gad.1065703 12651892
    [Google Scholar]
  71. Monahan P. Rybak S. Raetzman L.T. The notch target gene HES1 regulates cell cycle inhibitor expression in the developing pituitary. Endocrinology 2009 150 9 4386 4394 10.1210/en.2009‑0206 19541765
    [Google Scholar]
  72. Scully K.M. Rosenfeld M.G. Pituitary development: Regulatory codes in mammalian organogenesis. Science 2002 295 5563 2231 2235 10.1126/science.1062736 11910101
    [Google Scholar]
  73. Vakili H. Cattini P.A. The hidden but positive role for glucocorticoids in the regulation of growth hormone-producing cells. Mol. Cell. Endocrinol. 2012 363 1-2 1 9 10.1016/j.mce.2012.08.001 22910554
    [Google Scholar]
  74. Gutierrez-Hartmann A. Duval D.L. Bradford A.P. ETS transcription factors in endocrine systems. Trends Endocrinol. Metab. 2007 18 4 150 158 10.1016/j.tem.2007.03.002 17387021
    [Google Scholar]
  75. Budry L. Couture C. Balsalobre A. Drouin J. The Ets factor Etv1 interacts with Tpit protein for pituitary pro-opiomelanocortin (POMC) gene transcription. J. Biol. Chem. 2011 286 28 25387 25396 10.1074/jbc.M110.202788 21622576
    [Google Scholar]
  76. Davis S.W. Castinetti F. Carvalho L.R. Ellsworth B.S. Potok M.A. Lyons R.H. Brinkmeier M.L. Raetzman L.T. Carninci P. Mortensen A.H. Hayashizaki Y. Arnhold I.J.P. Mendonça B.B. Brue T. Camper S.A. Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Mol. Cell. Endocrinol. 2010 323 1 4 19 10.1016/j.mce.2009.12.012 20025935
    [Google Scholar]
  77. Budry L. Balsalobre A. Gauthier Y. Khetchoumian K. L’Honoré A. Vallette S. Brue T. Figarella-Branger D. Meij B. Drouin J. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Genes Dev. 2012 26 20 2299 2310 10.1101/gad.200436.112 23070814
    [Google Scholar]
  78. Gage P.J. Brinkmeier M.L. Scarlett L.M. Knapp L.T. Camper S.A. Mahon K.A. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation. Mol. Endocrinol. 1996 10 12 1570 1581 8961267
    [Google Scholar]
  79. Mortensen A.H. MacDonald J.W. Ghosh D. Camper S.A. Candidate genes for panhypopituitarism identified by gene expression profiling. Physiol. Genomics 2011 43 19 1105 1116 10.1152/physiolgenomics.00080.2011 21828248
    [Google Scholar]
  80. Sornson M.W. Wu W. Dasen J.S. Flynn S.E. Norman D.J. O’Connell S.M. Gukovsky I. Carrière C. Ryan A.K. Miller A.P. Zuo L. Gleiberman A.S. Andersen B. Beamer W.G. Rosenfeld M.G. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996 384 6607 327 333 10.1038/384327a0 8934515
    [Google Scholar]
  81. Dasen J.S. Barbera J-P.M. Herman T.S. Connell S.O. Olson L. Ju B. Tollkuhn J. Baek S.H. Rose D.W. Rosenfeld M.G. Temporal regulation of a paired -like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev. 2001 15 23 3193 3207 10.1101/gad.932601 11731482
    [Google Scholar]
  82. Pernasetti F. Toledo S.P. Vasilyev V.V. Hayashida C.Y. Cogan J.D. Ferrari C. Lourenço D.M. Jr Mellon P.L. Impaired adrenocorticotropin-adrenal axis in combined pituitary hormone deficiency caused by a two-base pair deletion (301-302delAG) in the prophet of Pit-1 gene. J. Clin. Endocrinol. Metab. 2000 85 1 390 397 10634415
    [Google Scholar]
  83. Nasonkin I.O. Ward R.D. Raetzman L.T. Seasholtz A.F. Saunders T.L. Gillespie P.J. Camper S.A. Pituitary hypoplasia and respiratory distress syndrome in Prop1 knockout mice. Hum. Mol. Genet. 2004 13 22 2727 2735 10.1093/hmg/ddh311 15459176
    [Google Scholar]
  84. Tang K. Bartke A. Gardiner C.S. Wagner T.E. Yun J.S. Gonadotropin secretion, synthesis, and gene expression in two types of bovine growth hormone transgenic mice. Biol. Reprod. 1993 49 2 346 353 10.1095/biolreprod49.2.346 8373959
    [Google Scholar]
  85. Ward R.D. Raetzman L.T. Suh H. Stone B.M. Nasonkin I.O. Camper S.A. Role of PROP1 in pituitary gland growth. Mol. Endocrinol. 2005 19 3 698 710 10.1210/me.2004‑0341 15591534
    [Google Scholar]
  86. Himes A.D. Raetzman L.T. Premature differentiation and aberrant movement of pituitary cells lacking both Hes1 and Prop1. Dev. Biol. 2009 325 1 151 161 10.1016/j.ydbio.2008.10.010 18996108
    [Google Scholar]
  87. Ellsworth B.S. Butts D.L. Camper S.A. Mechanisms underlying pituitary hypoplasia and failed cell specification in Lhx3-deficient mice. Dev. Biol. 2008 313 1 118 129 10.1016/j.ydbio.2007.10.006 18037398
    [Google Scholar]
  88. Charles M.A. Suh H. Hjalt T.A. Drouin J. Camper S.A. Gage P.J. PITX genes are required for cell survival and Lhx3 activation. Mol. Endocrinol. 2005 19 7 1893 1903 10.1210/me.2005‑0052 15761027
    [Google Scholar]
  89. Raetzman L.T. Ward R. Camper S.A. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia. Development 2002 129 18 4229 4239 10.1242/dev.129.18.4229 12183375
    [Google Scholar]
  90. Acampora D. Gulisano M. Simeone A. Genetic and molecular roles of Otx homeodomain proteins in head development. Gene 2000 246 1-2 23 35 10.1016/S0378‑1119(00)00070‑6 10767524
    [Google Scholar]
  91. Matsuo I. Kuratani S. Kimura C. Takeda N. Aizawa S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 1995 9 21 2646 2658 10.1101/gad.9.21.2646 7590242
    [Google Scholar]
  92. Acampora D. Mazan S. Tuorto F. Avantaggiato V. Tremblay J.J. Lazzaro D. Carlo A. Mariano A. Macchia P.E. Corte G. Macchia V. Drouin J. Brûlet P. Simeone A. Transient dwarfism and hypogonadism in mice lacking Otx1 reveal prepubescent stage-specific control of pituitary levels of GH, FSH and LH. Development 1998 125 7 1229 1239 10.1242/dev.125.7.1229 9477321
    [Google Scholar]
  93. Yagi T. Tokunaga T. Furuta Y. Nada S. Yoshida M. Tsukada T. Saga Y. Takeda N. Ikawa Y. Aizawa S. A novel ES cell line, TT2, with high germline-differentiating potency. Anal. Biochem. 1993 214 1 70 76 10.1006/abio.1993.1458 8250257
    [Google Scholar]
  94. Hide T. Hatakeyama J. Kimura-Yoshida C. Tian E. Takeda N. Ushio Y. Shiroishi T. Aizawa S. Matsuo I. Genetic modifiers of otocephalic phenotypes in Otx2 heterozygous mutant mice. Development 2002 129 18 4347 4357 10.1242/dev.129.18.4347 12183386
    [Google Scholar]
  95. Beby F. Lamonerie T. The homeobox gene Otx2 in development and disease. Exp. Eye Res. 2013 111 9 16 10.1016/j.exer.2013.03.007 23523800
    [Google Scholar]
  96. Sykiotis G.P. Pitteloud N. Seminara S.B. Kaiser U.B. Crowley W.F. Jr Deciphering genetic disease in the genomic era: The model of GnRH deficiency. Sci. Transl. Med. 2010 2 32 32rv2 10.1126/scitranslmed.3000288 20484732
    [Google Scholar]
  97. Miraoui H. Dwyer A.A. Sykiotis G.P. Plummer L. Chung W. Feng B. Beenken A. Clarke J. Pers T.H. Dworzynski P. Keefe K. Niedziela M. Raivio T. Crowley W.F. Jr Seminara S.B. Quinton R. Hughes V.A. Kumanov P. Young J. Yialamas M.A. Hall J.E. Van Vliet G. Chanoine J.P. Rubenstein J. Mohammadi M. Tsai P.S. Sidis Y. Lage K. Pitteloud N. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism. Am. J. Hum. Genet. 2013 92 5 725 743 10.1016/j.ajhg.2013.04.008 23643382
    [Google Scholar]
  98. Li X. Perissi V. Liu F. Rose D.W. Rosenfeld M.G. Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science 2002 297 5584 1180 1183 10.1126/science.1073263 12130660
    [Google Scholar]
  99. Gaston-Massuet C. Andoniadou C.L. Signore M. Sajedi E. Bird S. Turner J.M.A. Martinez-Barbera J.P. Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev. Biol. 2008 324 2 322 333 10.1016/j.ydbio.2008.08.008 18775421
    [Google Scholar]
  100. Benayoun B.A. Dipietromaria A. Bazin C. Veitia R.A. FOXL2: At the crossroads of female sex determination and ovarian function. Adv. Exp. Med. Biol. 2009 665 207 226 10.1007/978‑1‑4419‑1599‑3_16 20429427
    [Google Scholar]
  101. Lalmansingh A.S. Karmakar S. Jin Y. Nagaich A.K. Multiple modes of chromatin remodeling by Forkhead box proteins. Biochim. Biophys. Acta. Gene Regul. Mech. 2012 1819 7 707 715 10.1016/j.bbagrm.2012.02.018 22406422
    [Google Scholar]
  102. Kaestner K.H. Knöchel W. Martínez D.E. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev. 2000 14 2 142 146 10.1101/gad.14.2.142 10702024
    [Google Scholar]
  103. Jackson B.C. Carpenter C. Nebert D.W. Vasiliou V. Update of human and mouse forkhead box (FOX) gene families. Hum. Genomics 2010 4 5 345 352 10.1186/1479‑7364‑4‑5‑345 20650821
    [Google Scholar]
  104. Kuo F.T. Fan K. Bentsi-Barnes I. Barlow G.M. Pisarska M.D. Mouse forkhead L2 maintains repression of FSH-dependent genes in the granulosa cell. Reproduction 2012 144 4 485 494 10.1530/REP‑11‑0259 22847492
    [Google Scholar]
  105. Richards J.S. Pangas S.A. The ovary: Basic biology and clinical implications. J. Clin. Invest. 2010 120 4 963 972 10.1172/JCI41350 20364094
    [Google Scholar]
  106. Biason-Lauber A. WNT4, RSPO1, and FOXL2 in sex development. Semin. Reprod. Med. 2012 30 5 387 395 10.1055/s‑0032‑1324722 23044875
    [Google Scholar]
  107. Veitia R.A. FOXL2 versus SOX9: A lifelong “battle of the sexes”. BioEssays 2010 32 5 375 380 10.1002/bies.200900193 20414895
    [Google Scholar]
  108. Verdin H. De Baere E. FOXL2 impairment in human disease. Horm. Res. Paediatr. 2012 77 1 2 11 10.1159/000335236 22248822
    [Google Scholar]
  109. Tran S. Zhou X. Lafleur C. Calderon M.J. Ellsworth B.S. Kimmins S. Boehm U. Treier M. Boerboom D. Bernard D.J. Impaired fertility and FSH synthesis in gonadotrope-specific Foxl2 knockout mice. Mol. Endocrinol. 2013 27 3 407 421 10.1210/me.2012‑1286 23340250
    [Google Scholar]
  110. Uhlenhaut N.H. Jakob S. Anlag K. Eisenberger T. Sekido R. Kress J. Treier A.C. Klugmann C. Klasen C. Holter N.I. Riethmacher D. Schütz G. Cooney A.J. Lovell-Badge R. Treier M. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 2009 139 6 1130 1142 10.1016/j.cell.2009.11.021 20005806
    [Google Scholar]
  111. Schmidt D. Ovitt C.E. Anlag K. Fehsenfeld S. Gredsted L. Treier A.C. Treier M. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 2004 131 4 933 942 10.1242/dev.00969 14736745
    [Google Scholar]
  112. Uda M. Ottolenghi C. Crisponi L. Garcia J.E. Deiana M. Kimber W. Forabosco A. Cao A. Schlessinger D. Pilia G. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum. Mol. Genet. 2004 13 11 1171 1181 10.1093/hmg/ddh124 15056605
    [Google Scholar]
  113. Ellsworth B.S. Egashira N. Haller J.L. Butts D.L. Cocquet J. Clay C.M. Osamura R.Y. Camper S.A. FOXL2 in the pituitary: Molecular, genetic, and developmental analysis. Mol. Endocrinol. 2006 20 11 2796 2805 10.1210/me.2005‑0303 16840539
    [Google Scholar]
  114. Egashira N. Takekoshi S. Takei M. Teramoto A. Osamura R.Y. Expression of FOXL2 in human normal pituitaries and pituitary adenomas. Mod. Pathol. 2011 24 6 765 773 10.1038/modpathol.2010.169 21478824
    [Google Scholar]
  115. Chesnokova V. Zonis S. Wawrowsky K. Tani Y. Ben-Shlomo A. Ljubimov V. Mamelak A. Bannykh S. Melmed S. Clusterin and FOXL2 act concordantly to regulate pituitary gonadotroph adenoma growth. Mol. Endocrinol. 2012 26 12 2092 2103 10.1210/me.2012‑1158 23051594
    [Google Scholar]
  116. Blount A.L. Schmidt K. Justice N.J. Vale W.W. Fischer W.H. Bilezikjian L.M. FoxL2 and Smad3 coordinately regulate follistatin gene transcription. J. Biol. Chem. 2009 284 12 7631 7645 10.1074/jbc.M806676200 19106105
    [Google Scholar]
  117. Ellsworth B.S. Burns A.T. Escudero K.W. Duval D.L. Nelson S.E. Clay C.M. The gonadotropin releasing hormone (GnRH) receptor activating sequence (GRAS) is a composite regulatory element that interacts with multiple classes of transcription factors including Smads, AP-1 and a forkhead DNA binding protein. Mol. Cell. Endocrinol. 2003 206 1-2 93 111 10.1016/S0303‑7207(03)00235‑1 12943993
    [Google Scholar]
  118. Justice N.J. Blount A.L. Pelosi E. Schlessinger D. Vale W. Bilezikjian L.M. Impaired FSHbeta expression in the pituitaries of Foxl2 mutant animals. Mol. Endocrinol. 2011 25 8 1404 1415 10.1210/me.2011‑0093 21700720
    [Google Scholar]
  119. Bernard D.J. Tran S. Mechanisms of activin-stimulated FSH synthesis: The story of a pig and a FOX. Biol. Reprod. 2013 88 3 78 10.1095/biolreprod.113.107797 23426431
    [Google Scholar]
  120. Bilezikjian L.M. Justice N.J. Blackler A.N. Wiater E. Vale W.W. Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin. Mol. Cell. Endocrinol. 2012 359 1-2 43 52 10.1016/j.mce.2012.01.025 22330643
    [Google Scholar]
  121. Coss D. Mellon P.L. Thackray V.G. A FoxL in the Smad house: Activin regulation of FSH. Trends Endocrinol. Metab. 2010 21 9 562 568 10.1016/j.tem.2010.05.006 20598900
    [Google Scholar]
  122. Tran S. Lamba P. Wang Y. Bernard D.J. SMADs and FOXL2 synergistically regulate murine FSHbeta transcription via a conserved proximal promoter element. Mol. Endocrinol. 2011 25 7 1170 1183 10.1210/me.2010‑0480 21622537
    [Google Scholar]
  123. Lamba P. Wang Y. Tran S. Ouspenskaia T. Libasci V. Hébert T.E. Miller G.J. Bernard D.J. Activin A regulates porcine follicle-stimulating hormone beta-subunit transcription via cooperative actions of SMADs and FOXL2. Endocrinology 2010 151 11 5456 5467 10.1210/en.2010‑0605 20810560
    [Google Scholar]
  124. Lamba P. Fortin J. Tran S. Wang Y. Bernard D.J. A novel role for the forkhead transcription factor FOXL2 in activin A-regulated follicle-stimulating hormone beta subunit transcription. Mol. Endocrinol. 2009 23 7 1001 1013 10.1210/me.2008‑0324 19324968
    [Google Scholar]
  125. Ghochani Y. Saini J.K. Mellon P.L. Thackray V.G. FOXL2 is involved in the synergy between activin and progestins on the follicle-stimulating hormone β-subunit promoter. Endocrinology 2012 153 4 2023 2033 10.1210/en.2011‑1763 22294749
    [Google Scholar]
  126. Richards J.S. Sharma S.C. Falender A.E. Lo Y.H. Expression of FKHR, FKHRL1, and AFX genes in the rodent ovary: Evidence for regulation by IGF-I, estrogen, and the gonadotropins. Mol. Endocrinol. 2002 16 3 580 599 10.1210/mend.16.3.0806 11875118
    [Google Scholar]
  127. Majumdar S. Farris C.L. Kabat B.E. Jung D.O. Ellsworth B.S. Forkhead Box O1 is present in quiescent pituitary cells during development and is increased in the absence of p27 Kip1. PLoS One 2012 7 12 e52136 10.1371/journal.pone.0052136 23251696
    [Google Scholar]
  128. Arriola D.J. Mayo S.L. Skarra D.V. Benson C.A. Thackray V.G. FOXO1 transcription factor inhibits luteinizing hormone β gene expression in pituitary gonadotrope cells. J. Biol. Chem. 2012 287 40 33424 33435 10.1074/jbc.M112.362103 22865884
    [Google Scholar]
  129. De Felice M. Ovitt C. Biffali E. Rodriguez-Mallon A. Arra C. Anastassiadis K. Macchia P.E. Mattei M.G. Mariano A. Schöler H. Macchia V. Di Lauro R. A mouse model for hereditary thyroid dysgenesis and cleft palate. Nat. Genet. 1998 19 4 395 398 10.1038/1289 9697704
    [Google Scholar]
  130. Zannini M. Avantaggiato V. Biffali E. Arnone M.I. Sato K. Pischetola M. Taylor B.A. Phillips S.J. Simeone A. Di Lauro R. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation. EMBO J. 1997 16 11 3185 3197 10.1093/emboj/16.11.3185 9214635
    [Google Scholar]
  131. Gumbel J.H. Patterson E.M. Owusu S.A. Kabat B.E. Jung D.O. Simmons J. Hopkins T. Ellsworth B.S. The forkhead transcription factor, Foxd1, is necessary for pituitary luteinizing hormone expression in mice. PLoS One 2012 7 12 e52156 10.1371/journal.pone.0052156 23284914
    [Google Scholar]
  132. Jung D.O. Jasurda J.S. Egashira N. Ellsworth B.S. The forkhead transcription factor, FOXP3, is required for normal pituitary gonadotropin expression in mice. Biol Reprod. 2012 86 5 144
    [Google Scholar]
  133. Brunkow M.E. Jeffery E.W. Hjerrild K.A. Paeper B. Clark L.B. Yasayko S.A. Wilkinson J.E. Galas D. Ziegler S.F. Ramsdell F. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 2001 27 1 68 73 10.1038/83784 11138001
    [Google Scholar]
  134. Ziegler S.F. FOXP3: Of mice and men. Annu. Rev. Immunol. 2006 24 1 209 226 10.1146/annurev.immunol.24.021605.090547 16551248
    [Google Scholar]
  135. Hatini V. Huh S.O. Herzlinger D. Soares V.C. Lai E. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev. 1996 10 12 1467 1478 10.1101/gad.10.12.1467 8666231
    [Google Scholar]
  136. Levinson R.S. Batourina E. Choi C. Vorontchikhina M. Kitajewski J. Mendelsohn C.L. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development. Development 2005 132 3 529 539 10.1242/dev.01604 15634693
    [Google Scholar]
  137. Carbajo-Pérez E. Watanabe Y.G. Cellular proliferation in the anterior pituitary of the rat during the postnatal period. Cell Tissue Res. 1990 261 2 333 338 10.1007/BF00318674 2401005
    [Google Scholar]
  138. Lin S.C. Lin C.R. Gukovsky I. Lusis A.J. Sawchenko P.E. Rosenfeld M.G. Molecular basis of the little mouse phenotype and Implications for cell type-specific growth. Nature 1993 364 6434 208 213 10.1038/364208a0 8391647
    [Google Scholar]
  139. Ward R.D. Stone B.M. Raetzman L.T. Camper S.A. Cell proliferation and vascularization in mouse models of pituitary hormone deficiency. Mol. Endocrinol. 2006 20 6 1378 1390 10.1210/me.2005‑0409 16556738
    [Google Scholar]
  140. Stahl J.H. Kendall S.K. Brinkmeier M.L. Greco T.L. Watkins-Chow D.E. Campos-Barros A. Lloyd R.V. Camper S.A. Thyroid hormone is essential for pituitary somatotropes and lactotropes. Endocrinology 1999 140 4 1884 1892 10.1210/endo.140.4.6627 10098528
    [Google Scholar]
  141. Alba M. Schally A.V. Salvatori R. Partial reversibility of growth hormone (GH) deficiency in the GH-releasing hormone (GHRH) knockout mouse by postnatal treatment with a GHRH analog. Endocrinology 2005 146 3 1506 1513 10.1210/en.2004‑1044 15564325
    [Google Scholar]
  142. Muglia L. Jacobson L. Dikkes P. Majzoub J.A. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 1995 373 6513 427 432 10.1038/373427a0 7830793
    [Google Scholar]
  143. Shibusawa N. Yamada M. Hirato Tuyoshi Monden J. Satoh T. Mori M. Mori M. Requirement of thyrotropin-releasing hormone for the postnatal functions of pituitary thyrotrophs: Ontogeny study of congenital tertiary hypothyroidism in mice. Mol. Endocrinol. 2000 14 1 137 146 10.1210/mend.14.1.0404 10628753
    [Google Scholar]
  144. Taniguchi Y. Kominami R. Yasutaka S. Shinohara H. Mitoses of existing corticotrophs contribute to their proliferation in the rat pituitary during the late fetal period. Anat. Embryol. 2001 203 2 89 93 10.1007/s004290000140 11218062
    [Google Scholar]
  145. Taniguchi Y. Yasutaka S. Kominami R. Shinohara H. Proliferation and differentiation of pituitary somatotrophs and mammotrophs during late fetal and postnatal periods. Anat. Embryol. 2001 204 6 469 475 10.1007/s429‑001‑8003‑x 11876532
    [Google Scholar]
  146. Taniguchi Y. Yasutaka S. Kominami R. Shinohara H. Proliferation and differentiation of thyrotrophs in the pars distalis of the rat pituitary gland during the fetal and postnatal period. Anat. Embryol. 2001 203 4 249 253 10.1007/s004290100161 11396852
    [Google Scholar]
  147. Landolt A.M. Regeneration of the human pituitary. J. Neurosurg. 1973 39 1 35 41 10.3171/jns.1973.39.1.0035 4717141
    [Google Scholar]
  148. Fu Q. Gremeaux L. Luque R.M. Liekens D. Chen J. Buch T. Waisman A. Kineman R. Vankelecom H. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration. Endocrinology 2012 153 7 3224 3235 10.1210/en.2012‑1152 22518061
    [Google Scholar]
  149. Fu Q. Vankelecom H. Regenerative capacity of the adult pituitary: Multiple mechanisms of lactotrope restoration after transgenic ablation. Stem Cells Dev. 2012 21 18 3245 3257 10.1089/scd.2012.0290 22970885
    [Google Scholar]
  150. Singh O.Q. Sharma S.H. Eletriptan as treatment option for acute migraine. Int. J. Innov. Res. Anal. 2022 2 3 15 24
    [Google Scholar]
  151. Moore K.E. Mills J.F. Thornton M.M. Alternative sources of adult stem cells: A possible solution to the embryonic stem cell debate. Gend. Med. 2006 3 3 161 168 10.1016/S1550‑8579(06)80204‑4 17081949
    [Google Scholar]
  152. Tanwar P. Naagar M. Maity M.K. Relationship between type 2 Diabetes mellitus and osteoarthritis. Int. Res. J. Pharm. Med. Sci. 2023 6 2 59 70
    [Google Scholar]
  153. Leri A. Kajstura J. Anversa P. Cardiac stem cells and mechanisms of myocardial regeneration. Physiol. Rev. 2005 85 4 1373 1416 10.1152/physrev.00013.2005 16183916
    [Google Scholar]
  154. Castinetti F. Davis S.W. Brue T. Camper S.A. Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr. Rev. 2011 32 4 453 471 10.1210/er.2010‑0011 21493869
    [Google Scholar]
  155. Garcia-Lavandeira M. Quereda V. Flores I. Saez C. Diaz-Rodriguez E. Japon M.A. Ryan A.K. Blasco M.A. Dieguez C. Malumbres M. Alvarez C.V. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary. PLoS One 2009 4 3 e4815 10.1371/journal.pone.0004815 19283075
    [Google Scholar]
  156. Yoshimura F. Harumiya K. Ishikawa H. Ohtsuka Y. Differentiation of isolated chromophobes into acidophils or basophils when transplanted into the hypophysiotrophic area of hypothalamus. Endocrinol. Jpn. 1969 16 5 531 540 10.1507/endocrj1954.16.531 4191239
    [Google Scholar]
  157. Singh O. Sharma S. Naagar M. Maity M.K. Oral and parenteral to minimize the nasal delivery by thermoreversible mucoadhesive: A review. Int. J. Creative Res. Thoughts (IJCRT) 2022 10 9 356 371
    [Google Scholar]
  158. Alam S. Malik G. A review on small-cell lung cancer: Epidemiology, pathophysiology, riskfactors, diagnosis, clinical management and treatment modalities. Int. J. Curr. Sci. Res. Rev. 1969 6 1 129 151
    [Google Scholar]
  159. Tanwar P. Naagar M. Maity M.K. Relationship between diabetes mellitus and bone health – A review. Int. Res. Pharm. Med. Sci. 2023 6 2 46 58
    [Google Scholar]
  160. Manish K.M. A review on Helicobacter pylori infection. IJMSDR 2022 6 9 11 42 10.32553/ijmsdr.v6i9.950
    [Google Scholar]
  161. Lepore D.A. Jokubaitis V.J. Simmons P.J. Roeszler K.N. Rossi R. Bauer K. Thomas P.Q. A role for angiotensin-converting enzyme in the characterization, enrichment, and proliferation potential of adult murine pituitary colony-forming cells. Stem Cells 2006 24 11 2382 2390 10.1634/stemcells.2006‑0085 16857898
    [Google Scholar]
  162. Goodell M.A. Brose K. Paradis G. Conner A.S. Mulligan R.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 1996 183 4 1797 1806 10.1084/jem.183.4.1797 8666936
    [Google Scholar]
  163. Challen G.A. Little M.H. A side order of stem cells: The SP phenotype. Stem Cells 2006 24 1 3 12 10.1634/stemcells.2005‑0116 16449630
    [Google Scholar]
  164. Chen J. Gremeaux L. Fu Q. Liekens D. Van Laere S. Vankelecom H. Pituitary progenitor cells tracked down by side population dissection. Stem Cells 2009 27 5 1182 1195 10.1002/stem.51 19418455
    [Google Scholar]
  165. Takahashi K. Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006 126 4 663 676 10.1016/j.cell.2006.07.024 16904174
    [Google Scholar]
  166. Fauquier T. Rizzoti K. Dattani M. Lovell-Badge R. Robinson I.C.A.F. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc. Natl. Acad. Sci. USA 2008 105 8 2907 2912 10.1073/pnas.0707886105 18287078
    [Google Scholar]
  167. Alatzoglou K.S. Kelberman D. Dattani M.T. The role of SOX proteins in normal pituitary development. J. Endocrinol. 2009 200 3 245 258 10.1677/JOE‑08‑0447 19074474
    [Google Scholar]
  168. Episkopou V. SOX2 functions in adult neural stem cells. Trends Neurosci. 2005 28 5 219 221 10.1016/j.tins.2005.03.003 15866195
    [Google Scholar]
  169. Seymour P.A. Freude K.K. Tran M.N. Mayes E.E. Jensen J. Kist R. Scherer G. Sander M. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc. Natl. Acad. Sci. USA 2007 104 6 1865 1870 10.1073/pnas.0609217104 17267606
    [Google Scholar]
  170. Poché R.A. Furuta Y. Chaboissier M.C. Schedl A. Behringer R.R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller Glial cell development. J. Comp. Neurol. 2008 510 3 237 250 10.1002/cne.21746 18626943
    [Google Scholar]
  171. Scott C.E. Wynn S.L. Sesay A. Cruz C. Cheung M. Gaviro M-V.G. Booth S. Gao B. Cheah K.S.E. Lovell-Badge R. Briscoe J. SOX9 induces and maintains neural stem cells. Nat. Neurosci. 2010 13 10 1181 1189 10.1038/nn.2646 20871603
    [Google Scholar]
  172. Sekido R. SRY: A transcriptional activator of mammalian testis determination. Int. J. Biochem. Cell Biol. 2010 42 3 417 420 10.1016/j.biocel.2009.12.005 20005972
    [Google Scholar]
  173. Wegner M. Stolt C.C. From stem cells to neurons and glia: A Soxist’s view of neural development. Trends Neurosci. 2005 28 11 583 588 10.1016/j.tins.2005.08.008 16139372
    [Google Scholar]
  174. Lee Y.H. Saint-Jeannet J.P. Sox9 function in craniofacial development and disease. Genesis 2011 49 4 200 208 10.1002/dvg.20717 21309066
    [Google Scholar]
  175. Böttner A. Keller E. Kratzsch J. Stobbe H. Weigel J.F.W. Keller A. Hirsch W. Kiess W. Blum W.F. Pfäffle R.W. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency: A longitudinal analysis. J. Clin. Endocrinol. Metab. 2004 89 10 5256 5265 10.1210/jc.2004‑0661 15472232
    [Google Scholar]
  176. Krylyshkina O. Chen J. Mebis L. Denef C. Vankelecom H. Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells. Endocrinology 2005 146 5 2376 2387 10.1210/en.2004‑1209 15677762
    [Google Scholar]
  177. Gleiberman A.S. Michurina T. Encinas J.M. Roig J.L. Krasnov P. Balordi F. Fishell G. Rosenfeld M.G. Enikolopov G. Genetic approaches identify adult pituitary stem cells. Proc. Natl. Acad. Sci. USA 2008 105 17 6332 6337 10.1073/pnas.0801644105 18436641
    [Google Scholar]
  178. Galichet C. Lovell-Badge R. Rizzoti K. Nestin-Cre mice are affected by hypopituitarism, which is not due to significant activity of the transgene in the pituitary gland. PLoS One 2010 5 7 e11443 10.1371/journal.pone.0011443 20625432
    [Google Scholar]
  179. Nasonkin I.O. Ward R.D. Bavers D.L. Beuschlein F. Mortensen A.H. Keegan C.E. Hammer G.D. Camper S.A. Aged PROP1 deficient dwarf mice maintain ACTH production. PLoS One 2011 6 12 e28355 10.1371/journal.pone.0028355 22145038
    [Google Scholar]
  180. Susa T. Kato T. Yoshida S. Yako H. Higuchi M. Kato Y. Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation. J. Neuroendocrinol. 2012 24 9 1201 1212 10.1111/j.1365‑2826.2012.02336.x 22577874
    [Google Scholar]
  181. Yoshida S. Kato T. Yako H. Susa T. Cai L.Y. Osuna M. Inoue K. Kato Y. Significant quantitative and qualitative transition in pituitary stem / progenitor cells occurs during the postnatal development of the rat anterior pituitary. J. Neuroendocrinol. 2011 23 10 933 943 10.1111/j.1365‑2826.2011.02198.x 21815952
    [Google Scholar]
  182. Suga H. Kadoshima T. Minaguchi M. Ohgushi M. Soen M. Nakano T. Takata N. Wataya T. Muguruma K. Miyoshi H. Yonemura S. Oiso Y. Sasai Y. Self-formation of functional adenohypophysis in three-dimensional culture. Nature 2011 480 7375 57 62 10.1038/nature10637 22080957
    [Google Scholar]
  183. Lodish H. Berk A. Kaiser C.A. Molecular cell biology. Regulating the eukaryotic cell cycle New York, NY W.H. Freeman and Company 2008
    [Google Scholar]
  184. Sacco E. Hasan M.M. Alberghina L. Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol. Adv. 2012 30 1 73 98 10.1016/j.biotechadv.2011.09.009 21963686
    [Google Scholar]
  185. Pajalunga D. Mazzola A. Franchitto A. Puggioni E. Crescenzi M. The logic and regulation of cell cycle exit and reentry. Cell. Mol. Life Sci. 2008 65 1 8 15 10.1007/s00018‑007‑7425‑z 18030425
    [Google Scholar]
  186. Curtin N.J. DNA repair dysregulation from cancer driver to therapeutic target. Nat. Rev. Cancer 2012 12 12 801 817 10.1038/nrc3399 23175119
    [Google Scholar]
  187. Foley E.A. Kapoor T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol. 2013 14 1 25 37 10.1038/nrm3494 23258294
    [Google Scholar]
  188. Lange C. Calegari F. Cdks and cyclins link G 1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle 2010 9 10 1893 1900 10.4161/cc.9.10.11598 20436288
    [Google Scholar]
  189. Behbehani G.K. Bendall S.C. Clutter M.R. Fantl W.J. Nolan G.P. Single-cell mass cytometry adapted to measurements of the cell cycle. Cytometry A 2012 81A 7 552 566 10.1002/cyto.a.22075 22693166
    [Google Scholar]
  190. Darzynkiewicz Z. Huang X. Analysis of cellular DNA content by flow cytometry. Current Protocols in Immunology Wiley 2004 10.1002/0471142735.im0507s60
    [Google Scholar]
  191. Darzynkiewicz Z. Juan G. Bedner E. Determining cell cycle stages by flow cytometry. Current Protocols in Cell Biology Wiley 2001
    [Google Scholar]
  192. Duronio R.J. Xiong Y. Signaling pathways that control cell proliferation. Cold Spring Harb. Perspect. Biol. 2013 5 3 a008904 10.1101/cshperspect.a008904 23457258
    [Google Scholar]
  193. Talluri S. Dick F.A. Regulation of transcription and chromatin structure by pRB: Here, there and everywhere. Cell Cycle 2012 11 17 3189 3198 10.4161/cc.21263 22895179
    [Google Scholar]
  194. DePamphilis M.L. de Renty C.M. Ullah Z. Lee C.Y. “The Octet”: Eight Protein Kinases that Control Mammalian DNA Replication. Front. Physiol. 2012 3 368 10.3389/fphys.2012.00368 23055977
    [Google Scholar]
  195. Enders G.H. Mammalian interphase cdks: Dispensable master regulators of the cell cycle. Genes Cancer 2012 3 11-12 614 618 10.1177/1947601913479799 23634250
    [Google Scholar]
  196. Quereda V. Malumbres M. Cell cycle control of pituitary development and disease. J. Mol. Endocrinol. 2009 42 2 75 86 10.1677/JME‑08‑0146 18987159
    [Google Scholar]
  197. Brayton C.F. Treuting P.M. Ward J.M. Pathobiology of aging mice and GEM: Background strains and experimental design. Vet. Pathol. 2012 49 1 85 105 10.1177/0300985811430696 22215684
    [Google Scholar]
  198. Chesnokova V. Kovacs K. Castro A.V. Zonis S. Melmed S. Pituitary hypoplasia in Pttg-/- mice is protective for Rb+/- pituitary tumorigenesis. Mol. Endocrinol. 2005 19 9 2371 2379 10.1210/me.2005‑0137 15919720
    [Google Scholar]
  199. Jirawatnotai S. Aziyu A. Osmundson E.C. Moons D.S. Zou X. Kineman R.D. Kiyokawa H. Cdk4 is indispensable for postnatal proliferation of the anterior pituitary. J. Biol. Chem. 2004 279 49 51100 51106 10.1074/jbc.M409080200 15456744
    [Google Scholar]
  200. Moons D.S. Jirawatnotai S. Parlow A.F. Gibori G. Kineman R.D. Kiyokawa H. Pituitary hypoplasia and lactotroph dysfunction in mice deficient for cyclin-dependent kinase-4. Endocrinology 2002 143 8 3001 3008 10.1210/endo.143.8.8956 12130566
    [Google Scholar]
  201. Almeida M.Q. Muchow M. Boikos S. Bauer A.J. Griffin K.J. Tsang K.M. Cheadle C. Watkins T. Wen F. Starost M.F. Bossis I. Nesterova M. Stratakis C.A. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/− or Rb1+/− backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling. Hum. Mol. Genet. 2010 19 8 1387 1398 10.1093/hmg/ddq014 20080939
    [Google Scholar]
  202. Chesnokova V. Zonis S. Kovacs K. Ben-Shlomo A. Wawrowsky K. Bannykh S. Melmed S. p21 Cip1 restrains pituitary tumor growth. Proc. Natl. Acad. Sci. USA 2008 105 45 17498 17503 10.1073/pnas.0804810105 18981426
    [Google Scholar]
  203. Franklin D.S. Godfrey V.L. Lee H. Kovalev G.I. Schoonhoven R. Chen-Kiang S. Su L. Xiong Y. CDK inhibitors p18 INK4c and p27 Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev. 1998 12 18 2899 2911 10.1101/gad.12.18.2899 9744866
    [Google Scholar]
  204. Monahan P. Himes A.D. Parfieniuk A. Raetzman L.T. p21, an important mediator of quiescence during pituitary tumor formation, is dispensable for normal pituitary development during embryogenesis. Mech. Dev. 2012 128 11-12 640 652 10.1016/j.mod.2011.11.002 22154697
    [Google Scholar]
  205. Santamaría D. Barrière C. Cerqueira A. Hunt S. Tardy C. Newton K. Cáceres J.F. Dubus P. Malumbres M. Barbacid M. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 2007 448 7155 811 815 10.1038/nature06046 17700700
    [Google Scholar]
  206. Salehi F. Agur A. Scheithauer B.W. Kovacs K. Lloyd R.V. Cusimano M. Biomarkers of pituitary neoplasms: A review (Part II). Neurosurgery 2010 67 6 1790 1798 10.1227/NEU.0b013e3181faa680 21107210
    [Google Scholar]
  207. Salehi F. Kovacs K. Scheithauer B.W. Cantelmi D. Horvath E. Lloyd R.V. Cusimano M. Immunohistochemical expression of pituitary tumor transforming gene (PTTG) in pituitary adenomas: A correlative study of tumor subtypes. Int. J. Surg. Pathol. 2010 18 1 5 13 10.1177/1066896909356105 20106827
    [Google Scholar]
  208. Lee M. Pellegata N.S. Multiple endocrine neoplasia type 4. Front. Horm. Res. 2013 41 63 78 10.1159/000345670 23652671
    [Google Scholar]
  209. Ocker M. Schneider-Stock R. Histone deacetylase inhibitors: Signalling towards p21cip1/waf1. Int. J. Biochem. Cell Biol. 2007 39 7-8 1367 1374 10.1016/j.biocel.2007.03.001 17412634
    [Google Scholar]
  210. Nakakura T. Yoshida M. Dohra H. Suzuki M. Tanaka S. Gene expression of vascular endothelial growth factor-A in the pituitary during formation of the vascular system in the hypothalamic-pituitary axis of the rat. Cell Tissue Res. 2006 324 1 87 95 10.1007/s00441‑005‑0115‑y 16411082
    [Google Scholar]
  211. Lloyd R.V. Vidal S. Horvath E. Kovacs K. Scheithauer B. Angiogenesis in normal and neoplastic pituitary tissues. Microsc. Res. Tech. 2003 60 2 244 250 10.1002/jemt.10263 12539179
    [Google Scholar]
  212. Tanaka S. Nakakura T. Jansen E.J.R. Unno K. Okada R. Suzuki M. Martens G.J.M. Kikuyama S. Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function. Gen. Comp. Endocrinol. 2013 185 10 18 10.1016/j.ygcen.2013.01.009 23376532
    [Google Scholar]
  213. Korsisaari N. Ross J. Wu X. Kowanetz M. Pal N. Hall L. Eastham-Anderson J. Forrest W.F. Van Bruggen N. Peale F.V. Ferrara N. Blocking vascular endothelial growth factor-A inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1. Clin. Cancer Res. 2008 14 1 249 258 10.1158/1078‑0432.CCR‑07‑1552 18172277
    [Google Scholar]
  214. Maghnie M. Genovese E. Aricò M. Villa A. Beluffi G. Campani R. Severi F. Evolving pituitary hormone deficiency is associated with pituitary vasculopathy: Dynamic MR study in children with hypopituitarism, diabetes insipidus, and Langerhans cell histiocytosis. Radiology 1994 193 2 493 499 10.1148/radiology.193.2.7972767 7972767
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303314551241031093717
Loading
/content/journals/emiddt/10.2174/0118715303314551241031093717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test