Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Objectives

In the last two decades, scientists have gained a better understanding of several aspects of pituitary development. The signaling pathways that govern pituitary morphology and development have been identified, and the compensatory relationships among them are now known.

Aims

This paper aims to emphasize the wide variety of relationships between Pituitary Gland and Stem cells in hormone Production and disease prevention.

Methods

Based on many case reports and several types of research, a wide variety of relationships between the Pituitary Gland and Stem cells in the aspect of hormone Production and disease prevention are reviewed in this literature. In this paper, we focus on various roles and functions of the pituitary gland, the responsibilities of stem cells as a mode of hormone production, and disease prevention.

Conclusion

Within this period, more was discovered concerning the contributions made to the transcription factors within the pituitary development, with factors such as Prop1, Pitx1, and Sox2 being defined as important in the development and action of hormone-secreting cells. They are also required in the appropriate specification of the cell types in the pituitary gland and the persistence of the progenitors. Manipulation of these factors causes developmental defects as well as tumors, thus the necessity of knowing the precise function and interaction of these factors. A closer look at these transcription factors could help expand treatment options for structural defect development or give rise to pituitary adenomas.

It has been established that signaling pathways such as Sonic Hedgehog (Shh), Wnt, and Notch play a part in modulating pituitary development. These pathways are involved in regulating important processes such as cellular proliferation, differentiation, and organization of the pituitary gland tissues. Breaching any of these pathways has been correlated with the development of various pituitary-related conditions including adenomas and congenital hypopituitarism. Moving forward, further studies of these pathways and their associations with stem cells could provide a better understanding of disease processes and approaches to manage them. This way, there is a possibility of developing new approaches aimed at treating the cause of the dysfunction of the pituitary gland by modulating its specific signaling activities.

Promising directions for the stimulation of hormone synthesis and restoration of normal pituitary function upon its disorders tissue regrowth could be found in stem cell application. The fact that one can generate functional pituitary cells from iPSCs for instance provides new avenues both for the understanding of pituitary disease mechanisms as well as for personalized medicine. It is possible to utilize these stem cell-derived cells for modeling disease, drug discovery or even transplantation to restore the function of the damaged pituitary gland. In the future, however, the focus ought to be on the effective application of stem cell therapies that have been research during the development of better differentiation processes.

The recent understanding of the system that carries the hypothalamic hormones to the pituitary gland, the hypophyseal portal vasculature, has had its implications too. This factorial consideration emphasizes the role of the vascular component in the control of pituitary activity – the release of hormones by the pituitary gland. Exploring stem cell-hypophyseal portal system interactions may open new avenues of treatment for diseases associated with deficient hormone transportation and/or pituitary dysfunction.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303314551241031093717
2025-01-13
2025-12-10
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/7/EMIDDT-25-7-01.html?itemId=/content/journals/emiddt/10.2174/0118715303314551241031093717&mimeType=html&fmt=ahah

References

  1. SchwindJ.L. The development of the hypophysis cerebri of the albino rat.Am. J. Anat.192841229531910.1002/aja.1000410206
    [Google Scholar]
  2. RathkeM.H. Evolutionary history of the adder (Coluber natrix).Königsberg Bornträger1839
    [Google Scholar]
  3. CoulyG.F. Le DouarinN.M. Mapping of the early neural primordium in quail-chick chimeras.Dev. Biol.1985110242243910.1016/0012‑1606(85)90101‑04018406
    [Google Scholar]
  4. GleibermanA.S. FedtsovaN.G. RosenfeldM.G. Tissue interactions in the induction of anterior pituitary: Role of the ventral diencephalon, mesenchyme, and notochord.Dev. Biol.1999213234035310.1006/dbio.1999.938610479452
    [Google Scholar]
  5. TakumaN. ShengH.Z. FurutaY. WardJ.M. SharmaK. HoganB.L.M. PfaffS.L. WestphalH. KimuraS. MahonK.A. Formation of Rathke’s pouch requires dual induction from the diencephalon.Development1998125234835484010.1242/dev.125.23.48359806931
    [Google Scholar]
  6. HermeszE. MackemS. MahonK.A. Rpx: A novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo.Development19961221415210.1242/dev.122.1.418565852
    [Google Scholar]
  7. SimmonsD.M. VossJ.W. IngrahamH.A. HollowayJ.M. BroideR.S. RosenfeldM.G. SwansonL.W. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors.Genes Dev.19904569571110.1101/gad.4.5.6952379827
    [Google Scholar]
  8. MikamiS. Hypophysis.Atlas of Endocrine Organs, Vertebrates and Invertebrates. MatsumotoA. IshiiS. BerlinSpringer-Verlag1992396210.1007/978‑3‑662‑11190‑1_5
    [Google Scholar]
  9. JapónM.A. RubinsteinM. LowM.J. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development.J. Histochem. Cytochem.19944281117112510.1177/42.8.80275308027530
    [Google Scholar]
  10. BancalariR.E. GregoryL.C. McCabeM.J. DattaniM.T. Pituitary gland development: An update.Endocr. Dev.20122311510.1159/00034173323182816
    [Google Scholar]
  11. ZhuX. WangJ. JuB.G. RosenfeldM.G. Signaling and epigenetic regulation of pituitary development.Curr. Opin. Cell Biol.200719660561110.1016/j.ceb.2007.09.01117988851
    [Google Scholar]
  12. SchlosserG. Induction and specification of cranial placodes.Dev. Biol.2006294230335110.1016/j.ydbio.2006.03.00916677629
    [Google Scholar]
  13. CastinettiF. RégisJ. DufourH. BrueT. Role of stereotactic radiosurgery in the management of pituitary adenomas.Nat. Rev. Endocrinol.20106421422310.1038/nrendo.2010.420177403
    [Google Scholar]
  14. DrouinJ. BilodeauS. Roussel-GervaisA. Stem cells, differentiation and cell cycle control in pituitary.Front. Horm. Res.201038152410.1159/00031849020616491
    [Google Scholar]
  15. SzabóK. CsányiK. The vascular architecture of the developing pituitary-median eminence complex in the rat.Cell Tissue Res.1982224356357710.1007/BF002137537116413
    [Google Scholar]
  16. MollardP. HodsonD.J. LafontC. RizzotiK. DrouinJ. A tridimensional view of pituitary development and function.Trends Endocrinol. Metab.201223626126910.1016/j.tem.2012.02.00422436593
    [Google Scholar]
  17. KelbermanD. RizzotiK. Lovell-BadgeR. RobinsonI.C.A.F. DattaniM.T. Genetic regulation of pituitary gland development in human and mouse.Endocr. Rev.200930779082910.1210/er.2009‑000819837867
    [Google Scholar]
  18. MelmedS. Pathogenesis of pituitary tumors.Nat. Rev. Endocrinol.20117525726610.1038/nrendo.2011.4021423242
    [Google Scholar]
  19. VandevaS. VasilevV. VroonenL. NavesL. Jaffrain-ReaM.L. DalyA.F. ZacharievaS. BeckersA. Familial pituitary adenomas.Ann. Endocrinol.201071647948510.1016/j.ando.2010.08.00520961530
    [Google Scholar]
  20. EricsonJ. NorlinS. JessellT.M. EdlundT. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary.Development199812561005101510.1242/dev.125.6.10059463347
    [Google Scholar]
  21. TreierM. GleibermanA.S. O’ConnellS.M. SzetoD.P. McMahonJ.A. McMahonA.P. RosenfeldM.G. Multistep signaling requirements for pituitary organogenesis in vivo.Genes Dev.199812111691170410.1101/gad.12.11.16919620855
    [Google Scholar]
  22. MoerloozeL.D. Spencer-DeneB. RevestJ.M. HajihosseiniM. RosewellI. DicksonC. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis.Development2000127348349210.1242/dev.127.3.48310631169
    [Google Scholar]
  23. OhuchiH. HoriY. YamasakiM. HaradaH. SekineK. KatoS. ItohN. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development.Biochem. Biophys. Res. Commun.2000277364364910.1006/bbrc.2000.372111062007
    [Google Scholar]
  24. McCabeM.J. Gaston-MassuetC. TziaferiV. GregoryL.C. AlatzoglouK.S. SignoreM. PuellesE. GerrelliD. FarooqiI.S. RazaJ. WalkerJ. KavanaughS.I. TsaiP.S. PitteloudN. Martinez-BarberaJ.P. DattaniM.T. Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo-pituitary dysfunction.J. Clin. Endocrinol. Metab.20119610E1709E171810.1210/jc.2011‑045421832120
    [Google Scholar]
  25. MeyersE.N. LewandoskiM. MartinG.R. An Fgf8 mutant allelic series generated by Cre- and Flp-mediated recombination.Nat. Genet.199818213614110.1038/ng0298‑1369462741
    [Google Scholar]
  26. MaruokaY. OhbayashiN. HoshikawaM. ItohN. HoganB.L.M. FurutaY. Comparison of the expression of three highly related genes, Fgf8, Fgf17 and Fgf18, in the mouse embryo.Mech. Dev.1998741-217517710.1016/S0925‑4773(98)00061‑69651520
    [Google Scholar]
  27. OhbayashiN. HoshikawaM. KimuraS. YamasakiM. FukuiS. ItohN. Structure and expression of the mRNA encoding a novel fibroblast growth factor, FGF-18.J. Biol. Chem.199827329181611816410.1074/jbc.273.29.181619660775
    [Google Scholar]
  28. BrinkmeierM.L. DavisS.W. CarninciP. MacDonaldJ.W. KawaiJ. GhoshD. HayashizakiY. LyonsR.H. CamperS.A. Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches.Genomics200993544946010.1016/j.ygeno.2008.11.01019121383
    [Google Scholar]
  29. DavisS.W. CamperS.A. Noggin regulates Bmp4 activity during pituitary induction.Dev. Biol.2007305114516010.1016/j.ydbio.2007.02.00117359964
    [Google Scholar]
  30. BrinkmeierM.L. PotokM.A. ChaK.B. GridleyT. StifaniS. MeeldijkJ. CleversH. CamperS.A. TCF and Groucho-related genes influence pituitary growth and development.Mol. Endocrinol.200317112152216110.1210/me.2003‑022512907761
    [Google Scholar]
  31. BrinkmeierM.L. PotokM.A. DavisS.W. CamperS.A. TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors.Dev. Biol.2007311239640710.1016/j.ydbio.2007.08.04617919533
    [Google Scholar]
  32. ChaK.B. DouglasK.R. PotokM.A. LiangH. JonesS.N. CamperS.A. WNT5A signaling affects pituitary gland shape.Mech. Dev.2004121218319410.1016/j.mod.2003.12.00215037319
    [Google Scholar]
  33. PotokM.A. ChaK.B. HuntA. BrinkmeierM.L. LeitgesM. KispertA. CamperS.A. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth.Dev. Dyn.200823741006102010.1002/dvdy.2151118351662
    [Google Scholar]
  34. HoH.Y.H. SusmanM.W. BikoffJ.B. RyuY.K. JonasA.M. HuL. KuruvillaR. GreenbergM.E. Wnt5a–Ror–Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis.Proc. Natl. Acad. Sci. USA2012109114044405110.1073/pnas.120042110922343533
    [Google Scholar]
  35. ZhaoL. ZevallosS.E. RizzotiK. JeongY. Lovell-BadgeR. EpsteinD.J. Disruption of SoxB1-dependent Sonic hedgehog expression in the hypothalamus causes septo-optic dysplasia.Dev. Cell201222358559610.1016/j.devcel.2011.12.02322421044
    [Google Scholar]
  36. TroweM.O. ZhaoL. WeissA.C. ChristoffelsV. EpsteinD.J. KispertA. Inhibition of Sox2-dependent activation of Shh in the ventral diencephalon by Tbx3 is required for formation of the neurohypophysis.Development2013140112299230910.1242/dev.09452423674600
    [Google Scholar]
  37. HuiC. AngersS. Gli proteins in development and disease.Annu. Rev. Cell Dev. Biol.201127151353710.1146/annurev‑cellbio‑092910‑15404821801010
    [Google Scholar]
  38. WangY. MartinJ.F. BaiC.B. Direct and indirect requirements of Shh/Gli signaling in early pituitary development.Dev. Biol.2010348219920910.1016/j.ydbio.2010.09.02420934421
    [Google Scholar]
  39. ZhaoY. MaillouxC.M. HermeszE. PalkóvitsM. WestphalH. A role of the LIM-homeobox gene Lhx2 in the regulation of pituitary development.Dev. Biol.2010337231332310.1016/j.ydbio.2009.11.00219900438
    [Google Scholar]
  40. Medina-MartinezO. Amaya-ManzanaresF. LiuC. MendozaM. ShahR. ZhangL. BehringerR.R. MahonK.A. JamrichM. Cell-autonomous requirement for rx function in the mammalian retina and posterior pituitary.PLoS One200942e451310.1371/journal.pone.000451319229337
    [Google Scholar]
  41. Le TissierP.R. HodsonD.J. LafontC. FontanaudP. SchaefferM. MollardP. Anterior pituitary cell networks.Front. Neuroendocrinol.201233325226610.1016/j.yfrne.2012.08.00222981652
    [Google Scholar]
  42. DavisS.W. MortensenA.H. CamperS.A. Birthdating studies reshape models for pituitary gland cell specification.Dev. Biol.2011352221522710.1016/j.ydbio.2011.01.01021262217
    [Google Scholar]
  43. SeuntjensE. DenefC. Progenitor cells in the embryonic anterior pituitary abruptly and concurrently depress mitotic rate before progressing to terminal differentiation.Mol. Cell. Endocrinol.19991501-2576310.1016/S0303‑7207(99)00028‑310411300
    [Google Scholar]
  44. BilodeauS. Roussel-GervaisA. DrouinJ. Distinct developmental roles of cell cycle inhibitors p57Kip2 and p27Kip1 distinguish pituitary progenitor cell cycle exit from cell cycle reentry of differentiated cells.Mol. Cell. Biol.20092971895190810.1128/MCB.01885‑0819139274
    [Google Scholar]
  45. OlsonL.E. TollkuhnJ. ScafoglioC. KronesA. ZhangJ. OhgiK.A. WuW. TaketoM.M. KemlerR. GrosschedlR. RoseD. LiX. RosenfeldM.G. Homeodomain-mediated beta-catenin-dependent switching events dictate cell-lineage determination.Cell2006125359360510.1016/j.cell.2006.02.04616678101
    [Google Scholar]
  46. Gaston-MassuetC. AndoniadouC.L. SignoreM. JayakodyS.A. CharolidiN. KyeyuneR. VernayB. JacquesT.S. TaketoM.M. Le TissierP. DattaniM.T. Martinez-BarberaJ.P. Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans.Proc. Natl. Acad. Sci. USA201110828114821148710.1073/pnas.110155310821636786
    [Google Scholar]
  47. DattaniM.T. Martinez-BarberaJ.P. ThomasP.Q. BrickmanJ.M. GuptaR. MårtenssonI.L. ToressonH. FoxM. WalesJ.K.H. HindmarshP.C. KraussS. BeddingtonR.S.P. RobinsonI.C.A.F. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse.Nat. Genet.199819212513310.1038/4779620767
    [Google Scholar]
  48. GageP.J. SuhH. CamperS.A. Dosage requirement of Pitx2 for development of multiple organs.Development1999126204643465110.1242/dev.126.20.464310498698
    [Google Scholar]
  49. MaityM.K. NaagarM. Autoimmune neurogenic dysphagia.Int. J. Sci. Res.2022117447463
    [Google Scholar]
  50. TreierM. O’ConnellS. GleibermanA. PriceJ. SzetoD.P. BurgessR. ChuangP.T. McMahonA.P. RosenfeldM.G. Hedgehog signaling is required for pituitary gland development.Development2001128337738610.1242/dev.128.3.37711152636
    [Google Scholar]
  51. BrennanD. ChenX. ChengL. MahoneyM. RioboN.A. Noncanonical Hedgehog signaling.Vitam. Horm.201288557210.1016/B978‑0‑12‑394622‑5.00003‑122391299
    [Google Scholar]
  52. MaityM.K. NaagarM. A review on headache: Epidemiology, pathophysiology, classifications, diagnosis, clinical management and treatment modalities.Int. J. Sci. Res.2022117506515
    [Google Scholar]
  53. ZhuX. ZhangJ. TollkuhnJ. OhsawaR. BresnickE.H. GuillemotF. KageyamaR. RosenfeldM.G. Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis.Genes Dev.200620192739275310.1101/gad.144470617015435
    [Google Scholar]
  54. GoldbergL.B. AujlaP.K. RaetzmanL.T. Persistent expression of activated Notch inhibits corticotrope and melanotrope differentiation and results in dysfunction of the HPA axis.Dev. Biol.20113581233210.1016/j.ydbio.2011.07.00421781958
    [Google Scholar]
  55. RaetzmanL.T. RossS.A. CookS. DunwoodieS.L. CamperS.A. ThomasP.Q. Developmental regulation of Notch signaling genes in the embryonic pituitary: Prop1 deficiency affects Notch2 expression.Dev. Biol.2004265232934010.1016/j.ydbio.2003.09.03314732396
    [Google Scholar]
  56. CheungL.Y.M. RizzotiK. Lovell-BadgeR. Le TissierP.R. Pituitary phenotypes of mice lacking the notch signalling ligand delta-like 1 homologue.J. Neuroendocrinol.201325439140110.1111/jne.1201023279263
    [Google Scholar]
  57. Puertas-AvendañoR.A. González-GómezM.J. RuviraM.D. Ruiz-HidalgoM.J. Morales-DelgadoN. LabordaJ. DíazC. BelloA.R. Role of the non-canonical notch ligand delta-like protein 1 in hormone-producing cells of the adult male mouse pituitary.J. Neuroendocrinol.201123984985910.1111/j.1365‑2826.2011.02189.x21756269
    [Google Scholar]
  58. IngrahamH.A. ChenR. MangalamH.J. ElsholtzH.P. FlynnS.E. LinC.R. SimmonsD.M. SwansonL. RosenfeldM.G. A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype.Cell198855351952910.1016/0092‑8674(88)90038‑42902928
    [Google Scholar]
  59. MangalamH.J. AlbertV.R. IngrahamH.A. KapiloffM. WilsonL. NelsonC. ElsholtzH. RosenfeldM.G. A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally.Genes Dev.19893794695810.1101/gad.3.7.9462550324
    [Google Scholar]
  60. KarinM. TheillL. CastrilloJ.L. McCormickA. BradyH. Tissue-specific expression of the growth hormone gene and its control by growth hormone factor-1.Recent Prog. Horm. Res.199046435710.1016/B978‑0‑12‑571146‑3.50006‑7
    [Google Scholar]
  61. AlamM.S. MaityM.K. NazmiA.S. AlamM.S. AnsariM.S. Oral health issues and preventive measures in geriatric populations.J. Pharm. Negat. Results202226472655
    [Google Scholar]
  62. LiS. CrenshawE.B.III RawsonE.J. SimmonsD.M. SwansonL.W. RosenfeldM.G. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1.Nature1990347629352853310.1038/347528a01977085
    [Google Scholar]
  63. SharmaN. AlamM.S. SharmaA. GargS. MaityM.K. Colorectal cancer in young adults: Epidemiology, risk factors, development, symptoms, traditional herbal therapy and prevention.J. Pharm. Negat. Results202213701382
    [Google Scholar]
  64. LalaD.S. RiceD.A. ParkerK.L. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I.Mol. Endocrinol.199268124912581406703
    [Google Scholar]
  65. HaqueE. AhmedF. ChaurasiyaP. YadavN. DhimanN. MaityM.K. A review on antidepressant effect of herbal drugs.J. Pharm. Negat. Results202327162723
    [Google Scholar]
  66. LamoletB. PoulinG. ChuK. GuillemotF. TsaiM.J. DrouinJ. Tpit-independent function of NeuroD1(BETA2) in pituitary corticotroph differentiation.Mol. Endocrinol.2004184995100310.1210/me.2003‑012714726486
    [Google Scholar]
  67. LamoletB. PulichinoA.M. LamonerieT. GauthierY. BrueT. EnjalbertA. DrouinJ. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins.Cell2001104684985910.1016/S0092‑8674(01)00282‑311290323
    [Google Scholar]
  68. IngrahamH.A. LalaD.S. IkedaY. LuoX. ShenW.H. NachtigalM.W. AbbudR. NilsonJ.H. ParkerK.L. The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis.Genes Dev.19948192302231210.1101/gad.8.19.23027958897
    [Google Scholar]
  69. PulichinoA.M. Vallette-KasicS. CoutureC. GauthierY. BrueT. DavidM. MalpuechG. DealC. Van VlietG. De VroedeM. RiepeF.G. PartschC.J. SippellW.G. BerberogluM. AtasayB. DrouinJ. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency.Genes Dev.200317671171610.1101/gad.106560312651888
    [Google Scholar]
  70. PulichinoA.M. Vallette-KasicS. TsaiJ.P.Y. CoutureC. GauthierY. DrouinJ. Tpit determines alternate fates during pituitary cell differentiation.Genes Dev.200317673874710.1101/gad.106570312651892
    [Google Scholar]
  71. MonahanP. RybakS. RaetzmanL.T. The notch target gene HES1 regulates cell cycle inhibitor expression in the developing pituitary.Endocrinology200915094386439410.1210/en.2009‑020619541765
    [Google Scholar]
  72. ScullyK.M. RosenfeldM.G. Pituitary development: Regulatory codes in mammalian organogenesis.Science200229555632231223510.1126/science.106273611910101
    [Google Scholar]
  73. VakiliH. CattiniP.A. The hidden but positive role for glucocorticoids in the regulation of growth hormone-producing cells.Mol. Cell. Endocrinol.20123631-21910.1016/j.mce.2012.08.00122910554
    [Google Scholar]
  74. Gutierrez-HartmannA. DuvalD.L. BradfordA.P. ETS transcription factors in endocrine systems.Trends Endocrinol. Metab.200718415015810.1016/j.tem.2007.03.00217387021
    [Google Scholar]
  75. BudryL. CoutureC. BalsalobreA. DrouinJ. The Ets factor Etv1 interacts with Tpit protein for pituitary pro-opiomelanocortin (POMC) gene transcription.J. Biol. Chem.201128628253872539610.1074/jbc.M110.20278821622576
    [Google Scholar]
  76. DavisS.W. CastinettiF. CarvalhoL.R. EllsworthB.S. PotokM.A. LyonsR.H. BrinkmeierM.L. RaetzmanL.T. CarninciP. MortensenA.H. HayashizakiY. ArnholdI.J.P. MendonçaB.B. BrueT. CamperS.A. Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes.Mol. Cell. Endocrinol.2010323141910.1016/j.mce.2009.12.01220025935
    [Google Scholar]
  77. BudryL. BalsalobreA. GauthierY. KhetchoumianK. L’HonoréA. ValletteS. BrueT. Figarella-BrangerD. MeijB. DrouinJ. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling.Genes Dev.201226202299231010.1101/gad.200436.11223070814
    [Google Scholar]
  78. GageP.J. BrinkmeierM.L. ScarlettL.M. KnappL.T. CamperS.A. MahonK.A. The Ames dwarf gene, df, is required early in pituitary ontogeny for the extinction of Rpx transcription and initiation of lineage-specific cell proliferation.Mol. Endocrinol.19961012157015818961267
    [Google Scholar]
  79. MortensenA.H. MacDonaldJ.W. GhoshD. CamperS.A. Candidate genes for panhypopituitarism identified by gene expression profiling.Physiol. Genomics201143191105111610.1152/physiolgenomics.00080.201121828248
    [Google Scholar]
  80. SornsonM.W. WuW. DasenJ.S. FlynnS.E. NormanD.J. O’ConnellS.M. GukovskyI. CarrièreC. RyanA.K. MillerA.P. ZuoL. GleibermanA.S. AndersenB. BeamerW.G. RosenfeldM.G. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism.Nature1996384660732733310.1038/384327a08934515
    [Google Scholar]
  81. DasenJ.S. BarberaJ-P.M. HermanT.S. ConnellS.O. OlsonL. JuB. TollkuhnJ. BaekS.H. RoseD.W. RosenfeldM.G. Temporal regulation of a paired -like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis.Genes Dev.200115233193320710.1101/gad.93260111731482
    [Google Scholar]
  82. PernasettiF. ToledoS.P. VasilyevV.V. HayashidaC.Y. CoganJ.D. FerrariC. LourençoD.M.Jr MellonP.L. Impaired adrenocorticotropin-adrenal axis in combined pituitary hormone deficiency caused by a two-base pair deletion (301-302delAG) in the prophet of Pit-1 gene.J. Clin. Endocrinol. Metab.200085139039710634415
    [Google Scholar]
  83. NasonkinI.O. WardR.D. RaetzmanL.T. SeasholtzA.F. SaundersT.L. GillespieP.J. CamperS.A. Pituitary hypoplasia and respiratory distress syndrome in Prop1 knockout mice.Hum. Mol. Genet.200413222727273510.1093/hmg/ddh31115459176
    [Google Scholar]
  84. TangK. BartkeA. GardinerC.S. WagnerT.E. YunJ.S. Gonadotropin secretion, synthesis, and gene expression in two types of bovine growth hormone transgenic mice.Biol. Reprod.199349234635310.1095/biolreprod49.2.3468373959
    [Google Scholar]
  85. WardR.D. RaetzmanL.T. SuhH. StoneB.M. NasonkinI.O. CamperS.A. Role of PROP1 in pituitary gland growth.Mol. Endocrinol.200519369871010.1210/me.2004‑034115591534
    [Google Scholar]
  86. HimesA.D. RaetzmanL.T. Premature differentiation and aberrant movement of pituitary cells lacking both Hes1 and Prop1.Dev. Biol.2009325115116110.1016/j.ydbio.2008.10.01018996108
    [Google Scholar]
  87. EllsworthB.S. ButtsD.L. CamperS.A. Mechanisms underlying pituitary hypoplasia and failed cell specification in Lhx3-deficient mice.Dev. Biol.2008313111812910.1016/j.ydbio.2007.10.00618037398
    [Google Scholar]
  88. CharlesM.A. SuhH. HjaltT.A. DrouinJ. CamperS.A. GageP.J. PITX genes are required for cell survival and Lhx3 activation.Mol. Endocrinol.20051971893190310.1210/me.2005‑005215761027
    [Google Scholar]
  89. RaetzmanL.T. WardR. CamperS.A. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia.Development2002129184229423910.1242/dev.129.18.422912183375
    [Google Scholar]
  90. AcamporaD. GulisanoM. SimeoneA. Genetic and molecular roles of Otx homeodomain proteins in head development.Gene20002461-2233510.1016/S0378‑1119(00)00070‑610767524
    [Google Scholar]
  91. MatsuoI. KurataniS. KimuraC. TakedaN. AizawaS. Mouse Otx2 functions in the formation and patterning of rostral head.Genes Dev.19959212646265810.1101/gad.9.21.26467590242
    [Google Scholar]
  92. AcamporaD. MazanS. TuortoF. AvantaggiatoV. TremblayJ.J. LazzaroD. CarloA. MarianoA. MacchiaP.E. CorteG. MacchiaV. DrouinJ. BrûletP. SimeoneA. Transient dwarfism and hypogonadism in mice lacking Otx1 reveal prepubescent stage-specific control of pituitary levels of GH, FSH and LH.Development199812571229123910.1242/dev.125.7.12299477321
    [Google Scholar]
  93. YagiT. TokunagaT. FurutaY. NadaS. YoshidaM. TsukadaT. SagaY. TakedaN. IkawaY. AizawaS. A novel ES cell line, TT2, with high germline-differentiating potency.Anal. Biochem.19932141707610.1006/abio.1993.14588250257
    [Google Scholar]
  94. HideT. HatakeyamaJ. Kimura-YoshidaC. TianE. TakedaN. UshioY. ShiroishiT. AizawaS. MatsuoI. Genetic modifiers of otocephalic phenotypes in Otx2 heterozygous mutant mice.Development2002129184347435710.1242/dev.129.18.434712183386
    [Google Scholar]
  95. BebyF. LamonerieT. The homeobox gene Otx2 in development and disease.Exp. Eye Res.201311191610.1016/j.exer.2013.03.00723523800
    [Google Scholar]
  96. SykiotisG.P. PitteloudN. SeminaraS.B. KaiserU.B. CrowleyW.F.Jr Deciphering genetic disease in the genomic era: The model of GnRH deficiency.Sci. Transl. Med.201023232rv210.1126/scitranslmed.300028820484732
    [Google Scholar]
  97. MiraouiH. DwyerA.A. SykiotisG.P. PlummerL. ChungW. FengB. BeenkenA. ClarkeJ. PersT.H. DworzynskiP. KeefeK. NiedzielaM. RaivioT. CrowleyW.F.Jr SeminaraS.B. QuintonR. HughesV.A. KumanovP. YoungJ. YialamasM.A. HallJ.E. Van VlietG. ChanoineJ.P. RubensteinJ. MohammadiM. TsaiP.S. SidisY. LageK. PitteloudN. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism.Am. J. Hum. Genet.201392572574310.1016/j.ajhg.2013.04.00823643382
    [Google Scholar]
  98. LiX. PerissiV. LiuF. RoseD.W. RosenfeldM.G. Tissue-specific regulation of retinal and pituitary precursor cell proliferation.Science200229755841180118310.1126/science.107326312130660
    [Google Scholar]
  99. Gaston-MassuetC. AndoniadouC.L. SignoreM. SajediE. BirdS. TurnerJ.M.A. Martinez-BarberaJ.P. Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development.Dev. Biol.2008324232233310.1016/j.ydbio.2008.08.00818775421
    [Google Scholar]
  100. BenayounB.A. DipietromariaA. BazinC. VeitiaR.A. FOXL2: At the crossroads of female sex determination and ovarian function.Adv. Exp. Med. Biol.200966520722610.1007/978‑1‑4419‑1599‑3_1620429427
    [Google Scholar]
  101. LalmansinghA.S. KarmakarS. JinY. NagaichA.K. Multiple modes of chromatin remodeling by Forkhead box proteins.Biochim. Biophys. Acta. Gene Regul. Mech.20121819770771510.1016/j.bbagrm.2012.02.01822406422
    [Google Scholar]
  102. KaestnerK.H. KnöchelW. MartínezD.E. Unified nomenclature for the winged helix/forkhead transcription factors.Genes Dev.200014214214610.1101/gad.14.2.14210702024
    [Google Scholar]
  103. JacksonB.C. CarpenterC. NebertD.W. VasiliouV. Update of human and mouse forkhead box (FOX) gene families.Hum. Genomics20104534535210.1186/1479‑7364‑4‑5‑34520650821
    [Google Scholar]
  104. KuoF.T. FanK. Bentsi-BarnesI. BarlowG.M. PisarskaM.D. Mouse forkhead L2 maintains repression of FSH-dependent genes in the granulosa cell.Reproduction2012144448549410.1530/REP‑11‑025922847492
    [Google Scholar]
  105. RichardsJ.S. PangasS.A. The ovary: Basic biology and clinical implications.J. Clin. Invest.2010120496397210.1172/JCI4135020364094
    [Google Scholar]
  106. Biason-LauberA. WNT4, RSPO1, and FOXL2 in sex development.Semin. Reprod. Med.201230538739510.1055/s‑0032‑132472223044875
    [Google Scholar]
  107. VeitiaR.A. FOXL2 versus SOX9: A lifelong “battle of the sexes”.BioEssays201032537538010.1002/bies.20090019320414895
    [Google Scholar]
  108. VerdinH. De BaereE. FOXL2 impairment in human disease.Horm. Res. Paediatr.201277121110.1159/00033523622248822
    [Google Scholar]
  109. TranS. ZhouX. LafleurC. CalderonM.J. EllsworthB.S. KimminsS. BoehmU. TreierM. BoerboomD. BernardD.J. Impaired fertility and FSH synthesis in gonadotrope-specific Foxl2 knockout mice.Mol. Endocrinol.201327340742110.1210/me.2012‑128623340250
    [Google Scholar]
  110. UhlenhautN.H. JakobS. AnlagK. EisenbergerT. SekidoR. KressJ. TreierA.C. KlugmannC. KlasenC. HolterN.I. RiethmacherD. SchützG. CooneyA.J. Lovell-BadgeR. TreierM. Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation.Cell200913961130114210.1016/j.cell.2009.11.02120005806
    [Google Scholar]
  111. SchmidtD. OvittC.E. AnlagK. FehsenfeldS. GredstedL. TreierA.C. TreierM. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance.Development2004131493394210.1242/dev.0096914736745
    [Google Scholar]
  112. UdaM. OttolenghiC. CrisponiL. GarciaJ.E. DeianaM. KimberW. ForaboscoA. CaoA. SchlessingerD. PiliaG. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development.Hum. Mol. Genet.200413111171118110.1093/hmg/ddh12415056605
    [Google Scholar]
  113. EllsworthB.S. EgashiraN. HallerJ.L. ButtsD.L. CocquetJ. ClayC.M. OsamuraR.Y. CamperS.A. FOXL2 in the pituitary: Molecular, genetic, and developmental analysis.Mol. Endocrinol.200620112796280510.1210/me.2005‑030316840539
    [Google Scholar]
  114. EgashiraN. TakekoshiS. TakeiM. TeramotoA. OsamuraR.Y. Expression of FOXL2 in human normal pituitaries and pituitary adenomas.Mod. Pathol.201124676577310.1038/modpathol.2010.16921478824
    [Google Scholar]
  115. ChesnokovaV. ZonisS. WawrowskyK. TaniY. Ben-ShlomoA. LjubimovV. MamelakA. BannykhS. MelmedS. Clusterin and FOXL2 act concordantly to regulate pituitary gonadotroph adenoma growth.Mol. Endocrinol.201226122092210310.1210/me.2012‑115823051594
    [Google Scholar]
  116. BlountA.L. SchmidtK. JusticeN.J. ValeW.W. FischerW.H. BilezikjianL.M. FoxL2 and Smad3 coordinately regulate follistatin gene transcription.J. Biol. Chem.2009284127631764510.1074/jbc.M80667620019106105
    [Google Scholar]
  117. EllsworthB.S. BurnsA.T. EscuderoK.W. DuvalD.L. NelsonS.E. ClayC.M. The gonadotropin releasing hormone (GnRH) receptor activating sequence (GRAS) is a composite regulatory element that interacts with multiple classes of transcription factors including Smads, AP-1 and a forkhead DNA binding protein.Mol. Cell. Endocrinol.20032061-29311110.1016/S0303‑7207(03)00235‑112943993
    [Google Scholar]
  118. JusticeN.J. BlountA.L. PelosiE. SchlessingerD. ValeW. BilezikjianL.M. Impaired FSHbeta expression in the pituitaries of Foxl2 mutant animals.Mol. Endocrinol.20112581404141510.1210/me.2011‑009321700720
    [Google Scholar]
  119. BernardD.J. TranS. Mechanisms of activin-stimulated FSH synthesis: The story of a pig and a FOX.Biol. Reprod.20138837810.1095/biolreprod.113.10779723426431
    [Google Scholar]
  120. BilezikjianL.M. JusticeN.J. BlacklerA.N. WiaterE. ValeW.W. Cell-type specific modulation of pituitary cells by activin, inhibin and follistatin.Mol. Cell. Endocrinol.20123591-2435210.1016/j.mce.2012.01.02522330643
    [Google Scholar]
  121. CossD. MellonP.L. ThackrayV.G. A FoxL in the Smad house: Activin regulation of FSH.Trends Endocrinol. Metab.201021956256810.1016/j.tem.2010.05.00620598900
    [Google Scholar]
  122. TranS. LambaP. WangY. BernardD.J. SMADs and FOXL2 synergistically regulate murine FSHbeta transcription via a conserved proximal promoter element.Mol. Endocrinol.20112571170118310.1210/me.2010‑048021622537
    [Google Scholar]
  123. LambaP. WangY. TranS. OuspenskaiaT. LibasciV. HébertT.E. MillerG.J. BernardD.J. Activin A regulates porcine follicle-stimulating hormone beta-subunit transcription via cooperative actions of SMADs and FOXL2.Endocrinology2010151115456546710.1210/en.2010‑060520810560
    [Google Scholar]
  124. LambaP. FortinJ. TranS. WangY. BernardD.J. A novel role for the forkhead transcription factor FOXL2 in activin A-regulated follicle-stimulating hormone beta subunit transcription.Mol. Endocrinol.20092371001101310.1210/me.2008‑032419324968
    [Google Scholar]
  125. GhochaniY. SainiJ.K. MellonP.L. ThackrayV.G. FOXL2 is involved in the synergy between activin and progestins on the follicle-stimulating hormone β-subunit promoter.Endocrinology201215342023203310.1210/en.2011‑176322294749
    [Google Scholar]
  126. RichardsJ.S. SharmaS.C. FalenderA.E. LoY.H. Expression of FKHR, FKHRL1, and AFX genes in the rodent ovary: Evidence for regulation by IGF-I, estrogen, and the gonadotropins.Mol. Endocrinol.200216358059910.1210/mend.16.3.080611875118
    [Google Scholar]
  127. MajumdarS. FarrisC.L. KabatB.E. JungD.O. EllsworthB.S. Forkhead Box O1 is present in quiescent pituitary cells during development and is increased in the absence of p27 Kip1.PLoS One2012712e5213610.1371/journal.pone.005213623251696
    [Google Scholar]
  128. ArriolaD.J. MayoS.L. SkarraD.V. BensonC.A. ThackrayV.G. FOXO1 transcription factor inhibits luteinizing hormone β gene expression in pituitary gonadotrope cells.J. Biol. Chem.201228740334243343510.1074/jbc.M112.36210322865884
    [Google Scholar]
  129. De FeliceM. OvittC. BiffaliE. Rodriguez-MallonA. ArraC. AnastassiadisK. MacchiaP.E. MatteiM.G. MarianoA. SchölerH. MacchiaV. Di LauroR. A mouse model for hereditary thyroid dysgenesis and cleft palate.Nat. Genet.199819439539810.1038/12899697704
    [Google Scholar]
  130. ZanniniM. AvantaggiatoV. BiffaliE. ArnoneM.I. SatoK. PischetolaM. TaylorB.A. PhillipsS.J. SimeoneA. Di LauroR. TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent with a role in controlling the onset of differentiation.EMBO J.199716113185319710.1093/emboj/16.11.31859214635
    [Google Scholar]
  131. GumbelJ.H. PattersonE.M. OwusuS.A. KabatB.E. JungD.O. SimmonsJ. HopkinsT. EllsworthB.S. The forkhead transcription factor, Foxd1, is necessary for pituitary luteinizing hormone expression in mice.PLoS One2012712e5215610.1371/journal.pone.005215623284914
    [Google Scholar]
  132. JungD.O. JasurdaJ.S. EgashiraN. EllsworthB.S. The forkhead transcription factor, FOXP3, is required for normal pituitary gonadotropin expression in mice.Biol Reprod.2012865144
    [Google Scholar]
  133. BrunkowM.E. JefferyE.W. HjerrildK.A. PaeperB. ClarkL.B. YasaykoS.A. WilkinsonJ.E. GalasD. ZieglerS.F. RamsdellF. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse.Nat. Genet.2001271687310.1038/8378411138001
    [Google Scholar]
  134. ZieglerS.F. FOXP3: Of mice and men.Annu. Rev. Immunol.200624120922610.1146/annurev.immunol.24.021605.09054716551248
    [Google Scholar]
  135. HatiniV. HuhS.O. HerzlingerD. SoaresV.C. LaiE. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2.Genes Dev.199610121467147810.1101/gad.10.12.14678666231
    [Google Scholar]
  136. LevinsonR.S. BatourinaE. ChoiC. VorontchikhinaM. KitajewskiJ. MendelsohnC.L. Foxd1-dependent signals control cellularity in the renal capsule, a structure required for normal renal development.Development2005132352953910.1242/dev.0160415634693
    [Google Scholar]
  137. Carbajo-PérezE. WatanabeY.G. Cellular proliferation in the anterior pituitary of the rat during the postnatal period.Cell Tissue Res.1990261233333810.1007/BF003186742401005
    [Google Scholar]
  138. LinS.C. LinC.R. GukovskyI. LusisA.J. SawchenkoP.E. RosenfeldM.G. Molecular basis of the little mouse phenotype and Implications for cell type-specific growth.Nature1993364643420821310.1038/364208a08391647
    [Google Scholar]
  139. WardR.D. StoneB.M. RaetzmanL.T. CamperS.A. Cell proliferation and vascularization in mouse models of pituitary hormone deficiency.Mol. Endocrinol.20062061378139010.1210/me.2005‑040916556738
    [Google Scholar]
  140. StahlJ.H. KendallS.K. BrinkmeierM.L. GrecoT.L. Watkins-ChowD.E. Campos-BarrosA. LloydR.V. CamperS.A. Thyroid hormone is essential for pituitary somatotropes and lactotropes.Endocrinology199914041884189210.1210/endo.140.4.662710098528
    [Google Scholar]
  141. AlbaM. SchallyA.V. SalvatoriR. Partial reversibility of growth hormone (GH) deficiency in the GH-releasing hormone (GHRH) knockout mouse by postnatal treatment with a GHRH analog.Endocrinology200514631506151310.1210/en.2004‑104415564325
    [Google Scholar]
  142. MugliaL. JacobsonL. DikkesP. MajzoubJ.A. Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need.Nature1995373651342743210.1038/373427a07830793
    [Google Scholar]
  143. ShibusawaN. YamadaM. Hirato Tuyoshi MondenJ. SatohT. MoriM. MoriM. Requirement of thyrotropin-releasing hormone for the postnatal functions of pituitary thyrotrophs: Ontogeny study of congenital tertiary hypothyroidism in mice.Mol. Endocrinol.200014113714610.1210/mend.14.1.040410628753
    [Google Scholar]
  144. TaniguchiY. KominamiR. YasutakaS. ShinoharaH. Mitoses of existing corticotrophs contribute to their proliferation in the rat pituitary during the late fetal period.Anat. Embryol.20012032899310.1007/s00429000014011218062
    [Google Scholar]
  145. TaniguchiY. YasutakaS. KominamiR. ShinoharaH. Proliferation and differentiation of pituitary somatotrophs and mammotrophs during late fetal and postnatal periods.Anat. Embryol.2001204646947510.1007/s429‑001‑8003‑x11876532
    [Google Scholar]
  146. TaniguchiY. YasutakaS. KominamiR. ShinoharaH. Proliferation and differentiation of thyrotrophs in the pars distalis of the rat pituitary gland during the fetal and postnatal period.Anat. Embryol.2001203424925310.1007/s00429010016111396852
    [Google Scholar]
  147. LandoltA.M. Regeneration of the human pituitary.J. Neurosurg.1973391354110.3171/jns.1973.39.1.00354717141
    [Google Scholar]
  148. FuQ. GremeauxL. LuqueR.M. LiekensD. ChenJ. BuchT. WaismanA. KinemanR. VankelecomH. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration.Endocrinology201215373224323510.1210/en.2012‑115222518061
    [Google Scholar]
  149. FuQ. VankelecomH. Regenerative capacity of the adult pituitary: Multiple mechanisms of lactotrope restoration after transgenic ablation.Stem Cells Dev.201221183245325710.1089/scd.2012.029022970885
    [Google Scholar]
  150. SinghO.Q. SharmaS.H. Eletriptan as treatment option for acute migraine.Int. J. Innov. Res. Anal.2022231524
    [Google Scholar]
  151. MooreK.E. MillsJ.F. ThorntonM.M. Alternative sources of adult stem cells: A possible solution to the embryonic stem cell debate.Gend. Med.20063316116810.1016/S1550‑8579(06)80204‑417081949
    [Google Scholar]
  152. TanwarP. NaagarM. MaityM.K. Relationship between type 2 Diabetes mellitus and osteoarthritis.Int. Res. J. Pharm. Med. Sci.2023625970
    [Google Scholar]
  153. LeriA. KajsturaJ. AnversaP. Cardiac stem cells and mechanisms of myocardial regeneration.Physiol. Rev.20058541373141610.1152/physrev.00013.200516183916
    [Google Scholar]
  154. CastinettiF. DavisS.W. BrueT. CamperS.A. Pituitary stem cell update and potential implications for treating hypopituitarism.Endocr. Rev.201132445347110.1210/er.2010‑001121493869
    [Google Scholar]
  155. Garcia-LavandeiraM. QueredaV. FloresI. SaezC. Diaz-RodriguezE. JaponM.A. RyanA.K. BlascoM.A. DieguezC. MalumbresM. AlvarezC.V. A GRFa2/Prop1/stem (GPS) cell niche in the pituitary.PLoS One200943e481510.1371/journal.pone.000481519283075
    [Google Scholar]
  156. YoshimuraF. HarumiyaK. IshikawaH. OhtsukaY. Differentiation of isolated chromophobes into acidophils or basophils when transplanted into the hypophysiotrophic area of hypothalamus.Endocrinol. Jpn.196916553154010.1507/endocrj1954.16.5314191239
    [Google Scholar]
  157. SinghO. SharmaS. NaagarM. MaityM.K. Oral and parenteral to minimize the nasal delivery by thermoreversible mucoadhesive: A review.Int. J. Creative Res. Thoughts (IJCRT)2022109356371
    [Google Scholar]
  158. AlamS. MalikG. A review on small-cell lung cancer: Epidemiology, pathophysiology, riskfactors, diagnosis, clinical management and treatment modalities.Int. J. Curr. Sci. Res. Rev.196961129151
    [Google Scholar]
  159. TanwarP. NaagarM. MaityM.K. Relationship between diabetes mellitus and bone health – A review.Int. Res. Pharm. Med. Sci.2023624658
    [Google Scholar]
  160. ManishK.M. A review on Helicobacter pylori infection.IJMSDR202269114210.32553/ijmsdr.v6i9.950
    [Google Scholar]
  161. LeporeD.A. JokubaitisV.J. SimmonsP.J. RoeszlerK.N. RossiR. BauerK. ThomasP.Q. A role for angiotensin-converting enzyme in the characterization, enrichment, and proliferation potential of adult murine pituitary colony-forming cells.Stem Cells200624112382239010.1634/stemcells.2006‑008516857898
    [Google Scholar]
  162. GoodellM.A. BroseK. ParadisG. ConnerA.S. MulliganR.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo.J. Exp. Med.199618341797180610.1084/jem.183.4.17978666936
    [Google Scholar]
  163. ChallenG.A. LittleM.H. A side order of stem cells: The SP phenotype.Stem Cells200624131210.1634/stemcells.2005‑011616449630
    [Google Scholar]
  164. ChenJ. GremeauxL. FuQ. LiekensD. Van LaereS. VankelecomH. Pituitary progenitor cells tracked down by side population dissection.Stem Cells20092751182119510.1002/stem.5119418455
    [Google Scholar]
  165. TakahashiK. YamanakaS. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.Cell2006126466367610.1016/j.cell.2006.07.02416904174
    [Google Scholar]
  166. FauquierT. RizzotiK. DattaniM. Lovell-BadgeR. RobinsonI.C.A.F. SOX2-expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland.Proc. Natl. Acad. Sci. USA200810582907291210.1073/pnas.070788610518287078
    [Google Scholar]
  167. AlatzoglouK.S. KelbermanD. DattaniM.T. The role of SOX proteins in normal pituitary development.J. Endocrinol.2009200324525810.1677/JOE‑08‑044719074474
    [Google Scholar]
  168. EpiskopouV. SOX2 functions in adult neural stem cells.Trends Neurosci.200528521922110.1016/j.tins.2005.03.00315866195
    [Google Scholar]
  169. SeymourP.A. FreudeK.K. TranM.N. MayesE.E. JensenJ. KistR. SchererG. SanderM. SOX9 is required for maintenance of the pancreatic progenitor cell pool.Proc. Natl. Acad. Sci. USA200710461865187010.1073/pnas.060921710417267606
    [Google Scholar]
  170. PochéR.A. FurutaY. ChaboissierM.C. SchedlA. BehringerR.R. Sox9 is expressed in mouse multipotent retinal progenitor cells and functions in Müller Glial cell development.J. Comp. Neurol.2008510323725010.1002/cne.2174618626943
    [Google Scholar]
  171. ScottC.E. WynnS.L. SesayA. CruzC. CheungM. GaviroM-V.G. BoothS. GaoB. CheahK.S.E. Lovell-BadgeR. BriscoeJ. SOX9 induces and maintains neural stem cells.Nat. Neurosci.201013101181118910.1038/nn.264620871603
    [Google Scholar]
  172. SekidoR. SRY: A transcriptional activator of mammalian testis determination.Int. J. Biochem. Cell Biol.201042341742010.1016/j.biocel.2009.12.00520005972
    [Google Scholar]
  173. WegnerM. StoltC.C. From stem cells to neurons and glia: A Soxist’s view of neural development.Trends Neurosci.2005281158358810.1016/j.tins.2005.08.00816139372
    [Google Scholar]
  174. LeeY.H. Saint-JeannetJ.P. Sox9 function in craniofacial development and disease.Genesis201149420020810.1002/dvg.2071721309066
    [Google Scholar]
  175. BöttnerA. KellerE. KratzschJ. StobbeH. WeigelJ.F.W. KellerA. HirschW. KiessW. BlumW.F. PfäffleR.W. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency: A longitudinal analysis.J. Clin. Endocrinol. Metab.200489105256526510.1210/jc.2004‑066115472232
    [Google Scholar]
  176. KrylyshkinaO. ChenJ. MebisL. DenefC. VankelecomH. Nestin-immunoreactive cells in rat pituitary are neither hormonal nor typical folliculo-stellate cells.Endocrinology200514652376238710.1210/en.2004‑120915677762
    [Google Scholar]
  177. GleibermanA.S. MichurinaT. EncinasJ.M. RoigJ.L. KrasnovP. BalordiF. FishellG. RosenfeldM.G. EnikolopovG. Genetic approaches identify adult pituitary stem cells.Proc. Natl. Acad. Sci. USA2008105176332633710.1073/pnas.080164410518436641
    [Google Scholar]
  178. GalichetC. Lovell-BadgeR. RizzotiK. Nestin-Cre mice are affected by hypopituitarism, which is not due to significant activity of the transgene in the pituitary gland.PLoS One201057e1144310.1371/journal.pone.001144320625432
    [Google Scholar]
  179. NasonkinI.O. WardR.D. BaversD.L. BeuschleinF. MortensenA.H. KeeganC.E. HammerG.D. CamperS.A. Aged PROP1 deficient dwarf mice maintain ACTH production.PLoS One2011612e2835510.1371/journal.pone.002835522145038
    [Google Scholar]
  180. SusaT. KatoT. YoshidaS. YakoH. HiguchiM. KatoY. Paired-related homeodomain proteins Prx1 and Prx2 are expressed in embryonic pituitary stem/progenitor cells and may be involved in the early stage of pituitary differentiation.J. Neuroendocrinol.20122491201121210.1111/j.1365‑2826.2012.02336.x22577874
    [Google Scholar]
  181. YoshidaS. KatoT. YakoH. SusaT. CaiL.Y. OsunaM. InoueK. KatoY. Significant quantitative and qualitative transition in pituitary stem / progenitor cells occurs during the postnatal development of the rat anterior pituitary.J. Neuroendocrinol.2011231093394310.1111/j.1365‑2826.2011.02198.x21815952
    [Google Scholar]
  182. SugaH. KadoshimaT. MinaguchiM. OhgushiM. SoenM. NakanoT. TakataN. WatayaT. MugurumaK. MiyoshiH. YonemuraS. OisoY. SasaiY. Self-formation of functional adenohypophysis in three-dimensional culture.Nature20114807375576210.1038/nature1063722080957
    [Google Scholar]
  183. LodishH. BerkA. KaiserC.A. Molecular cell biology.Regulating the eukaryotic cell cycleNew York, NYW.H. Freeman and Company2008
    [Google Scholar]
  184. SaccoE. HasanM.M. AlberghinaL. VanoniM. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells.Biotechnol. Adv.2012301739810.1016/j.biotechadv.2011.09.00921963686
    [Google Scholar]
  185. PajalungaD. MazzolaA. FranchittoA. PuggioniE. CrescenziM. The logic and regulation of cell cycle exit and reentry.Cell. Mol. Life Sci.200865181510.1007/s00018‑007‑7425‑z18030425
    [Google Scholar]
  186. CurtinN.J. DNA repair dysregulation from cancer driver to therapeutic target.Nat. Rev. Cancer2012121280181710.1038/nrc339923175119
    [Google Scholar]
  187. FoleyE.A. KapoorT.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore.Nat. Rev. Mol. Cell Biol.2013141253710.1038/nrm349423258294
    [Google Scholar]
  188. LangeC. CalegariF. Cdks and cyclins link G 1 length and differentiation of embryonic, neural and hematopoietic stem cells.Cell Cycle20109101893190010.4161/cc.9.10.1159820436288
    [Google Scholar]
  189. BehbehaniG.K. BendallS.C. ClutterM.R. FantlW.J. NolanG.P. Single-cell mass cytometry adapted to measurements of the cell cycle.Cytometry A201281A755256610.1002/cyto.a.2207522693166
    [Google Scholar]
  190. DarzynkiewiczZ. HuangX. Analysis of cellular DNA content by flow cytometry.Current Protocols in ImmunologyWiley200410.1002/0471142735.im0507s60
    [Google Scholar]
  191. DarzynkiewiczZ. JuanG. BednerE. Determining cell cycle stages by flow cytometry.Current Protocols in Cell BiologyWiley2001
    [Google Scholar]
  192. DuronioR.J. XiongY. Signaling pathways that control cell proliferation.Cold Spring Harb. Perspect. Biol.201353a00890410.1101/cshperspect.a00890423457258
    [Google Scholar]
  193. TalluriS. DickF.A. Regulation of transcription and chromatin structure by pRB: Here, there and everywhere.Cell Cycle201211173189319810.4161/cc.2126322895179
    [Google Scholar]
  194. DePamphilisM.L. de RentyC.M. UllahZ. LeeC.Y. “The Octet”: Eight Protein Kinases that Control Mammalian DNA Replication.Front. Physiol.2012336810.3389/fphys.2012.0036823055977
    [Google Scholar]
  195. EndersG.H. Mammalian interphase cdks: Dispensable master regulators of the cell cycle.Genes Cancer2012311-1261461810.1177/194760191347979923634250
    [Google Scholar]
  196. QueredaV. MalumbresM. Cell cycle control of pituitary development and disease.J. Mol. Endocrinol.2009422758610.1677/JME‑08‑014618987159
    [Google Scholar]
  197. BraytonC.F. TreutingP.M. WardJ.M. Pathobiology of aging mice and GEM: Background strains and experimental design.Vet. Pathol.20124918510510.1177/030098581143069622215684
    [Google Scholar]
  198. ChesnokovaV. KovacsK. CastroA.V. ZonisS. MelmedS. Pituitary hypoplasia in Pttg-/- mice is protective for Rb+/- pituitary tumorigenesis.Mol. Endocrinol.20051992371237910.1210/me.2005‑013715919720
    [Google Scholar]
  199. JirawatnotaiS. AziyuA. OsmundsonE.C. MoonsD.S. ZouX. KinemanR.D. KiyokawaH. Cdk4 is indispensable for postnatal proliferation of the anterior pituitary.J. Biol. Chem.200427949511005110610.1074/jbc.M40908020015456744
    [Google Scholar]
  200. MoonsD.S. JirawatnotaiS. ParlowA.F. GiboriG. KinemanR.D. KiyokawaH. Pituitary hypoplasia and lactotroph dysfunction in mice deficient for cyclin-dependent kinase-4.Endocrinology200214383001300810.1210/endo.143.8.895612130566
    [Google Scholar]
  201. AlmeidaM.Q. MuchowM. BoikosS. BauerA.J. GriffinK.J. TsangK.M. CheadleC. WatkinsT. WenF. StarostM.F. BossisI. NesterovaM. StratakisC.A. Mouse Prkar1a haploinsufficiency leads to an increase in tumors in the Trp53+/− or Rb1+/− backgrounds and chemically induced skin papillomas by dysregulation of the cell cycle and Wnt signaling.Hum. Mol. Genet.20101981387139810.1093/hmg/ddq01420080939
    [Google Scholar]
  202. ChesnokovaV. ZonisS. KovacsK. Ben-ShlomoA. WawrowskyK. BannykhS. MelmedS. p21 Cip1 restrains pituitary tumor growth.Proc. Natl. Acad. Sci. USA200810545174981750310.1073/pnas.080481010518981426
    [Google Scholar]
  203. FranklinD.S. GodfreyV.L. LeeH. KovalevG.I. SchoonhovenR. Chen-KiangS. SuL. XiongY. CDK inhibitors p18 INK4c and p27 Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis.Genes Dev.199812182899291110.1101/gad.12.18.28999744866
    [Google Scholar]
  204. MonahanP. HimesA.D. ParfieniukA. RaetzmanL.T. p21, an important mediator of quiescence during pituitary tumor formation, is dispensable for normal pituitary development during embryogenesis.Mech. Dev.201212811-1264065210.1016/j.mod.2011.11.00222154697
    [Google Scholar]
  205. SantamaríaD. BarrièreC. CerqueiraA. HuntS. TardyC. NewtonK. CáceresJ.F. DubusP. MalumbresM. BarbacidM. Cdk1 is sufficient to drive the mammalian cell cycle.Nature2007448715581181510.1038/nature0604617700700
    [Google Scholar]
  206. SalehiF. AgurA. ScheithauerB.W. KovacsK. LloydR.V. CusimanoM. Biomarkers of pituitary neoplasms: A review (Part II).Neurosurgery20106761790179810.1227/NEU.0b013e3181faa68021107210
    [Google Scholar]
  207. SalehiF. KovacsK. ScheithauerB.W. CantelmiD. HorvathE. LloydR.V. CusimanoM. Immunohistochemical expression of pituitary tumor transforming gene (PTTG) in pituitary adenomas: A correlative study of tumor subtypes.Int. J. Surg. Pathol.201018151310.1177/106689690935610520106827
    [Google Scholar]
  208. LeeM. PellegataN.S. Multiple endocrine neoplasia type 4.Front. Horm. Res.201341637810.1159/00034567023652671
    [Google Scholar]
  209. OckerM. Schneider-StockR. Histone deacetylase inhibitors: Signalling towards p21cip1/waf1.Int. J. Biochem. Cell Biol.2007397-81367137410.1016/j.biocel.2007.03.00117412634
    [Google Scholar]
  210. NakakuraT. YoshidaM. DohraH. SuzukiM. TanakaS. Gene expression of vascular endothelial growth factor-A in the pituitary during formation of the vascular system in the hypothalamic-pituitary axis of the rat.Cell Tissue Res.20063241879510.1007/s00441‑005‑0115‑y16411082
    [Google Scholar]
  211. LloydR.V. VidalS. HorvathE. KovacsK. ScheithauerB. Angiogenesis in normal and neoplastic pituitary tissues.Microsc. Res. Tech.200360224425010.1002/jemt.1026312539179
    [Google Scholar]
  212. TanakaS. NakakuraT. JansenE.J.R. UnnoK. OkadaR. SuzukiM. MartensG.J.M. KikuyamaS. Angiogenesis in the intermediate lobe of the pituitary gland alters its structure and function.Gen. Comp. Endocrinol.2013185101810.1016/j.ygcen.2013.01.00923376532
    [Google Scholar]
  213. KorsisaariN. RossJ. WuX. KowanetzM. PalN. HallL. Eastham-AndersonJ. ForrestW.F. Van BruggenN. PealeF.V. FerraraN. Blocking vascular endothelial growth factor-A inhibits the growth of pituitary adenomas and lowers serum prolactin level in a mouse model of multiple endocrine neoplasia type 1.Clin. Cancer Res.200814124925810.1158/1078‑0432.CCR‑07‑155218172277
    [Google Scholar]
  214. MaghnieM. GenoveseE. AricòM. VillaA. BeluffiG. CampaniR. SeveriF. Evolving pituitary hormone deficiency is associated with pituitary vasculopathy: Dynamic MR study in children with hypopituitarism, diabetes insipidus, and Langerhans cell histiocytosis.Radiology1994193249349910.1148/radiology.193.2.79727677972767
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303314551241031093717
Loading
/content/journals/emiddt/10.2174/0118715303314551241031093717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test