Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Cancer remains a global health problem that requires constant research for the development of new treatment strategies. Flavonoids, a diverse group of naturally occurring polyphenolic compounds abundant in fruits, vegetables, and other plant sources, have received considerable attention for their potential anticancer properties. This review aimed to provide a comprehensive overview of the current scientific literature on five specific natural flavonoids, namely quercetin, Epigallocatechin Gallate (EGCG), kaempferol, apigenin, and curcumin that have been widely reported in numerous carcinomas and evaluate their effectiveness and mechanisms in fighting different types of cancer. Known for its antioxidant and anti-inflammatory properties, quercetin has shown promise in inhibiting cancer cells and modulating key signaling pathways. EGCG, a prominent catechin found in green tea, has been extensively studied for its ability to induce apoptosis and inhibit angiogenesis, highlighting its potential as an anticancer agent. Kaempferol has antioxidant and anti-inflammatory effects and has shown anticancer potential by modulating cellular processes involved in tumor development. Apigenin, abundant in parsley and chamomile, has been shown to exert anticancer properties by interrupting the cell cycle and inducing apoptosis in cancer cells. Curcumin has shown several anticancer effects, including inhibiting cell proliferation, inducing apoptosis, and modulating inflammatory pathways. Despite these promising findings, it is essential to recognize the complexity of cancer biology and the need for further research to clarify the precise mechanisms of action of these natural flavonoids and optimize their therapeutic applications. Furthermore, understanding flavonoids' potential synergy and interactions with traditional cancer therapies is paramount for developing effective combinatorial strategies. This review thus aimed to summarize the current knowledge on these natural flavonoids and provide insight into their potential role as an adjunctive or stand-alone therapy in the fight against breast, prostate, colon, lung, skin, ovarian, liver, and pancreatic cancer.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303320523240910072723
2024-09-23
2025-12-16
Loading full text...

Full text loading...

References

  1. RaffaD. MaggioB. RaimondiM.V. PlesciaF. DaidoneG. Recent discoveries of anticancer flavonoids.Eur. J. Med. Chem.201714221322810.1016/j.ejmech.2017.07.034 28793973
    [Google Scholar]
  2. LiskovaA. SamecM. KoklesovaL. BrockmuellerA. ZhaiK. AbdellatifB. SiddiquiM. BiringerK. KudelaE. PecM. GadanecL.K. ŠudomováM. HassanS.T.S. ZulliA. ShakibaeiM. GiordanoF.A. BüsselbergD. GolubnitschajaO. KubatkaP. Flavonoids as an effective sensitizer for anti-cancer therapy: insights into multi-faceted mechanisms and applicability towards individualized patient profiles.EPMA J.202112215517610.1007/s13167‑021‑00242‑5 34025826
    [Google Scholar]
  3. SharmaR. SapraK. SamamadarS. SapraA. KumarV. Current trends and prospective role of flavonoids and flavones as anticancer agents: A Review.Curr. Nutr. Food Sci.202319771272210.2174/1573401319666230213103617
    [Google Scholar]
  4. FarhanM. RizviA. AatifM. AhmadA. Current understanding of flavonoids in cancer therapy and prevention.Metabolites202313448110.3390/metabo13040481 37110140
    [Google Scholar]
  5. AbotalebM. SamuelS. VargheseE. VargheseS. KubatkaP. LiskovaA. BüsselbergD. Flavonoids in cancer and apoptosis.Cancers (Basel)20181112810.3390/cancers11010028 30597838
    [Google Scholar]
  6. KopustinskieneD.M. JakstasV. SavickasA. BernatonieneJ. Flavonoids as anticancer agents.Nutrients202012245710.3390/nu12020457 32059369
    [Google Scholar]
  7. NayakS.K. ShahS. NarangR. SinghV.J. PilliG. A review on anticancer profile of flavonoids: Sources, chemistry, mechanisms, structure-activity relationship and anticancer activity.Curr. Drug Res. Rev.202315212214810.2174/2589977515666230120144852 36683366
    [Google Scholar]
  8. LiuK. ZhaoF. YanJ. XiaZ. JiangD. MaP. Hispidulin: A promising flavonoid with diverse anti-cancer properties.Life Sci.202025911839510.1016/j.lfs.2020.118395 32905830
    [Google Scholar]
  9. López-LázaroM. Flavonoids as anticancer agents: structure-activity relationship study.Curr. Med. Chem. Anticancer Agents20022669171410.2174/1568011023353714 12678721
    [Google Scholar]
  10. MemarianiZ. AbbasS.Q. ul Hassan, S.S.; Ahmadi, A.; Chabra, A. Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review.Pharmacol. Res.202117110526410.1016/j.phrs.2020.105264 33166734
    [Google Scholar]
  11. RajasekarM. BhuvaneshP. VaradaP. SelvamM. Review on Anticancer activity of flavonoid derivatives: recent developments and future perspectives.Results Chem.2023202310105910.1016/j.rechem.2023.101059
    [Google Scholar]
  12. AzadA.K. DayoobM. ZoheraF.T. Anticancer Activity of Flavonoids: Past, Present, and Future.In Harnessing Medicinal Plants in Cancer Prevention and Treatment.IGI Global2024
    [Google Scholar]
  13. LiskovaA. KoklesovaL. SamecM. SmejkalK. SamuelS.M. VargheseE. AbotalebM. BiringerK. KudelaE. DankoJ. ShakibaeiM. KwonT.K. BüsselbergD. KubatkaP. Flavonoids in cancer metastasis.Cancers (Basel)2020126149810.3390/cancers12061498 32521759
    [Google Scholar]
  14. LothaR. SivasubramanianA. Flavonoids nutraceuticals in prevention and treatment of cancer: A review.Asian J. Pharm. Clin. Res.2018111424710.22159/ajpcr.2018.v11i1.23410
    [Google Scholar]
  15. ChaeH.S. XuR. WonJ.Y. ChinY.W. YimH. Molecular targets of genistein and its related flavonoids to exert anticancer effects.Int. J. Mol. Sci.20192010242010.3390/ijms20102420 31100782
    [Google Scholar]
  16. Martinez-PerezC. WardC. CookG. MullenP. McPhailD. HarrisonD.J. LangdonS.P. Novel flavonoids as anti-cancer agents: mechanisms of action and promise for their potential application in breast cancer.Biochem. Soc. Trans.20144241017102310.1042/BST20140073 25109996
    [Google Scholar]
  17. VueB. ZhangS. ChenQ.H. Flavonoids with therapeutic potential in prostate cancer. Anti-Cancer Agent.Med. Chem.201616101205122910.2174/1871520615666151008122622
    [Google Scholar]
  18. ForniC. RossiM. BorromeoI. FeriottoG. PlatamoneG. TabolacciC. MischiatiC. BeninatiS. Flavonoids: A myth or a reality for cancer therapy?Molecules20212612358310.3390/molecules26123583 34208196
    [Google Scholar]
  19. GanaiS.A. SheikhF.A. BabaZ.A. MirM.A. MantooM.A. YatooM.A. Anticancer activity of the plant flavonoid luteolin against preclinical models of various cancers and insights on different signalling mechanisms modulated.Phytother. Res.20213573509353210.1002/ptr.7044 33580629
    [Google Scholar]
  20. RaufA. RashidU. AkramZ. GhafoorM. MuhammadN. Al MasoudN. AlomarT.S. NazS. IritiM. In vitro and in silico antiproliferative potential of isolated flavonoids constitutes from Pistacia integerrima.Z. Naturforsch. C J. Biosci.2024797-818719310.1515/znc‑2023‑0153 38549290
    [Google Scholar]
  21. KikuchiH. YuanB. HuX. OkazakiM. Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents.Am. J. Cancer Res.20199815171535 31497340
    [Google Scholar]
  22. UllahA. MunirS. BadshahS.L. KhanN. GhaniL. PoulsonB.G. EmwasA.H. JaremkoM. Important flavonoids and their role as a therapeutic agent.Molecules20202522524310.3390/molecules25225243 33187049
    [Google Scholar]
  23. KhanT. AliM. KhanA. NisarP. JanS.A. AfridiS. ShinwariZ.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects.Biomolecules20191014710.3390/biom10010047 31892257
    [Google Scholar]
  24. LiskovaA. KoklesovaL. SamecM. VargheseE. AbotalebM. SamuelS.M. SmejkalK. BiringerK. PetrasM. BlahutovaD. BugosO. PecM. AdamkovM. BüsselbergD. CiccocioppoR. AdamekM. RodrigoL. CaprndaM. KruzliakP. KubatkaP. Implications of flavonoids as potential modulators of cancer neovascularity.J. Cancer Res. Clin. Oncol.2020146123079309610.1007/s00432‑020‑03383‑8 32902794
    [Google Scholar]
  25. BontaR.K. Dietary phenolic acids and flavonoids as potential anti-cancer agents: current state of the art and future perspectives. Anti-Cancer Agent.Med. Chem.2020201294810.2174/1871520619666191019112712
    [Google Scholar]
  26. KubinaR. KrzykawskiK. Kabała-DzikA. WojtyczkaR.D. ChodurekE. DziedzicA. Fisetin, a potent anticancer flavonol exhibiting cytotoxic activity against neoplastic malignant cells and cancerous conditions: A scoping, comprehensive review.Nutrients20221413260410.3390/nu14132604 35807785
    [Google Scholar]
  27. de MoraisE.F. de OliveiraL.Q.R. Farias MoraisH.G. Souto MedeirosM.R. FreitasR.A. RodiniC.O. ColettaR.D. The] anticancer potential of kaempferol: A systematic review based on in vitro studies.Cancers (Basel)202416358510.3390/cancers16030585 38339336
    [Google Scholar]
  28. TaoH. LiL. HeY. ZhangX. ZhaoY. WangQ. HongG. Flavonoids in vegetables: improvement of dietary flavonoids by metabolic engineering to promote health.Crit. Rev. Food Sci. Nutr.202464113220323410.1080/10408398.2022.2131726 36218329
    [Google Scholar]
  29. KhairnarS.J. AhireE.D. JagtapM.R. SuranaK.R. KshirsagarS.J. KeservaniR.K. Management and Prevention of Diseases by Flavonoids. Advances in Flavonoids for Human Health and Prevention of Diseases.Apple Academic Press2024
    [Google Scholar]
  30. TomkoA.M. WhynotE.G. EllisL.D. DupréD.J. Anti-cancer potential of cannabinoids, terpenes, and flavonoids present in cannabis.Cancers (Basel)2020127198510.3390/cancers12071985 32708138
    [Google Scholar]
  31. CarochoM. FerreiraC.F.R. The role of phenolic compounds in the fight against cancer–a review. Anti-Cancer Agent.Med. Chem.201313812361258
    [Google Scholar]
  32. WangH.K. The therapeutic potential of flavonoids.Expert Opin. Investig. Drugs2000992103211910.1517/13543784.9.9.2103 11060796
    [Google Scholar]
  33. OnuE.O. UgwokeJ.I. EdehH.O. OnuM.C. AE OnyimonyiA. review: Flavonoid; A Phyto-nutrient and its impact in livestock animal nutrition.World J Adv Res Rev202421131132010.30574/wjarr.2024.21.1.2701
    [Google Scholar]
  34. MeersonA. KhatibS. MahajnaJ. Natural products targeting cancer stem cells for augmenting cancer therapeutics.Int. J. Mol. Sci.202122231304410.3390/ijms222313044 34884848
    [Google Scholar]
  35. MontanéX. KowalczykO. Reig-VanoB. BajekA. RoszkowskiK. TomczykR. PawliszakW. GiamberiniM. Mocek-PłóciniakA. TylkowskiB. Current perspectives of the applications of polyphenols and flavonoids in cancer therapy.Molecules20202515334210.3390/molecules25153342 32717865
    [Google Scholar]
  36. ScottiL. Bezerra Mendonça Junior,F.J. Magalhaes MoreiraD.R. da SilvaM.S. PittaI.R. ScottiM.T. SAR, QSAR and docking of anticancer flavonoids and variants: a review.Curr. Top. Med. Chem.201212242785280910.2174/1568026611212240007 23368103
    [Google Scholar]
  37. ChenY.Y. LiangJ.J. WangD.L. ChenJ.B. CaoJ.P. WangY. SunC.D. Nobiletin as a chemopreventive natural product against cancer, a comprehensive review.Crit. Rev. Food Sci. Nutr.202363236309632910.1080/10408398.2022.2030297 35089821
    [Google Scholar]
  38. AdedokunK.A. ImodoyeS.O. BelloI.O. LanihunA.A. Therapeutic potentials of medicinal plants and significance of computational tools in anti-cancer drug discovery. Phytochemistry, Computational Tools and Databases in Drug Discovery.Elsevier202310.1016/B978‑0‑323‑90593‑0.00017‑4
    [Google Scholar]
  39. LiuY. ShiY. ZhangM. HanF. LiaoW. DuanX. Natural polyphenols for drug delivery and tissue engineering construction: A review.Eur. J. Med. Chem.202426611614110.1016/j.ejmech.2024.116141 38237341
    [Google Scholar]
  40. ZhangZ. YangL. HouJ. TianS. LiuY. Molecular mechanisms underlying the anticancer activities of licorice flavonoids.J. Ethnopharmacol.202126711363510.1016/j.jep.2020.113635 33246112
    [Google Scholar]
  41. AbbaszadehH. KeikhaeiB. MottaghiS. A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds.Phytother. Res.20193382002201410.1002/ptr.6403 31373113
    [Google Scholar]
  42. ZhangH. XuH. AshbyC.R.Jr AssarafY.G. ChenZ.S. LiuH.M. Chemical molecular‐based approach to overcome multidrug resistance in cancer by targeting P‐glycoprotein (P‐gp).Med. Res. Rev.202141152555510.1002/med.21739 33047304
    [Google Scholar]
  43. JyotirmayeeB. MahalikG. A review on selected pharmacological activities of Curcuma longa L.Int. J. Food Prop.20222511377139810.1080/10942912.2022.2082464
    [Google Scholar]
  44. Ghanbari-MovahedM. JacksonG. FarzaeiM.H. BishayeeA. A systematic review of the preventive and therapeutic effects of naringin against human malignancies.Front. Pharmacol.20211263984010.3389/fphar.2021.639840 33854437
    [Google Scholar]
  45. YiL. MaS. RenD. Phytochemistry and bioactivity of Citrus flavonoids: a focus on antioxidant, anti-inflammatory, anticancer and cardiovascular protection activities.Phytochem. Rev.201716347951110.1007/s11101‑017‑9497‑1
    [Google Scholar]
  46. DewanjeeS. ChakrabortyP. BhattacharyaH. SinghS.K. DuaK. DeyA. JhaN.K. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy.Drug Discov. Today202328110340910.1016/j.drudis.2022.103409 36265733
    [Google Scholar]
  47. HannumS.M. Potential impact of strawberries on human health: a review of the science.Crit. Rev. Food Sci. Nutr.200444111710.1080/10408690490263756 15077879
    [Google Scholar]
  48. HarlevE. NevoE. LanskyE.P. LanskyS. BishayeeA. Anticancer attributes of desert plants.Anticancer Drugs201223325527110.1097/CAD.0b013e32834f968c 22217921
    [Google Scholar]
  49. JiangC.H. SunT.L. XiangD.X. WeiS.S. LiW.Q. Anticancer activity and mechanism of xanthohumol: a prenylated flavonoid from hops (Humulus lupulus L.).Front. Pharmacol.2018953010.3389/fphar.2018.00530 29872398
    [Google Scholar]
  50. PatelP. JosheeN. RimandoA. ParajuliP. Anti-cancer scopes and associated mechanisms of Scutellaria extract and flavonoid wogonin.Curr. Cancer Ther. Rev.201391344210.2174/1573394711309010004
    [Google Scholar]
  51. KosmiderB. OsieckaR. Flavonoid compounds: a review of anticancer properties and interactions with cis ‐diamminedichloroplatinum(II).Drug Dev. Res.200463420021110.1002/ddr.10421
    [Google Scholar]
  52. GórniakI. BartoszewskiR. KróliczewskiJ. Comprehensive review of antimicrobial activities of plant flavonoids.Phytochem. Rev.201918124127210.1007/s11101‑018‑9591‑z
    [Google Scholar]
  53. WahleK.W. BrownI. RotondoD. HeysS.D. Plant phenolics in the prevention and treatment of cancer.Adv. Exp. Med. Biol.20106983651
    [Google Scholar]
  54. LeeK.H. Novel antitumor agents from higher plants.Med. Res. Rev.199919656959610.1002/(SICI)1098‑1128(199911)19:6<569:AID‑MED7>3.0.CO;2‑9 10557371
    [Google Scholar]
  55. AdnanM. SiddiquiA.J. HamadouW.S. PatelM. AshrafS.A. JamalA. AwadelkareemA.M. SachidanandanM. SnoussiM. De FeoV. Phytochemistry, bioactivities, pharmacokinetics and toxicity prediction of Selaginella repanda with its anticancer potential against human lung, breast and colorectal carcinoma cell lines.Molecules202126376810.3390/molecules26030768 33540783
    [Google Scholar]
  56. BirtD.F. HendrichS. WangW. Dietary agents in cancer prevention: flavonoids and isoflavonoids.Pharmacol. Ther.2001902-315717710.1016/S0163‑7258(01)00137‑1 11578656
    [Google Scholar]
  57. MansouriK. RasoulpoorS. DaneshkhahA. AbolfathiS. SalariN. MohammadiM. RasoulpoorS. ShabaniS. Clinical effects of curcumin in enhancing cancer therapy: A systematic review.BMC Cancer202020179110.1186/s12885‑020‑07256‑8 32838749
    [Google Scholar]
  58. PandeyP. KhanF. KhanM.A. KumarR. UpadhyayT.K. An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers.Nutrients20231514311110.3390/nu15143111 37513529
    [Google Scholar]
  59. YanW. WuT.H.Y. LeungS.S.Y. ToK.K.W. Flavonoids potentiated anticancer activity of cisplatin in non-small cell lung cancer cells in vitro by inhibiting histone deacetylases.Life Sci.202025811821110.1016/j.lfs.2020.118211 32768576
    [Google Scholar]
  60. KumazoeM. TachibanaH. Anti-cancer effect of EGCG and its mechanisms.Funct. Food Health Dis.201662707810.31989/ffhd.v6i2.239
    [Google Scholar]
  61. QaedE. Al-HamyariB. Al-MaamariA. QaidA. AlademyH. AlmoiliqyM. MunyemanaJ.C. Al-NusaifM. AlafifiJ. AlyafeaiE. SafiM. GengZ. TangZ. MaX. Fisetin’s promising antitumor effects: Uncovering mechanisms and targeting for future therapies.Global Medical Genetics202310320522010.1055/s‑0043‑1772219 37565061
    [Google Scholar]
  62. TengH. ZhengY. CaoH. HuangQ. XiaoJ. ChenL. Enhancement of bioavailability and bioactivity of diet-derived flavonoids by application of nanotechnology: a review.Crit. Rev. Food Sci. Nutr.202363337839310.1080/10408398.2021.1947772 34278842
    [Google Scholar]
  63. XuL. ZakyM.Y. YousufW. UllahA. AbdelbasetG.R. ZhangY. AhmedO.M. LiuS. LiuH. The anticancer potential of apigenin via immunoregulation.Curr. Pharm. Des.202127447948910.2174/18734286MTA4iMTMqy 32660399
    [Google Scholar]
  64. CuiJ. LiuX. ChowL.M.C. Flavonoids as P-gp inhibitors: a systematic review of SARs.Curr. Med. Chem.201926254799483110.2174/0929867325666181001115225 30277144
    [Google Scholar]
  65. SpataforaC. TringaliC. Natural-derived polyphenols as potential anticancer agents. Anti-Cancer Agent.Med. Chem.2012128902918
    [Google Scholar]
  66. YangT. FengY.L. ChenL. VaziriN.D. ZhaoY.Y. Dietary natural flavonoids treating cancer by targeting aryl hydrocarbon receptor.Crit. Rev. Toxicol.201949544546010.1080/10408444.2019.1635987 31433724
    [Google Scholar]
  67. KasiriN. RahmatiM. AhmadiL. EskandariN. MotedayyenH. Therapeutic potential of quercetin on human breast cancer in different dimensions.Inflammopharmacology2020281396210.1007/s10787‑019‑00660‑y 31754939
    [Google Scholar]
  68. WangG. WangJ.J. GuanR. DuL. GaoJ. FuX.L. Strategies to target glucose metabolism in tumor microenvironment on cancer by flavonoids.Nutr. Cancer201769453455410.1080/01635581.2017.1295090 28323500
    [Google Scholar]
  69. ShankarE. GoelA. GuptaK. GuptaS. Plant flavone apigenin: An emerging anticancer agent.Curr. Pharmacol. Rep.20173642344610.1007/s40495‑017‑0113‑2 29399439
    [Google Scholar]
  70. DaiJ. MumperR.J. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties.Molecules201015107313735210.3390/molecules15107313 20966876
    [Google Scholar]
  71. RenY. de BlancoE.J.C. FuchsJ.R. SoejartoD.D. BurdetteJ.E. SwansonS.M. KinghornA.D. Potential anticancer agents characterized from selected tropical plants.J. Nat. Prod.201982365767910.1021/acs.jnatprod.9b00018 30830783
    [Google Scholar]
  72. ParhiB. BharatiyaD. SwainS.K. Application of quercetin flavonoid based hybrid nanocomposites: A review.Saudi Pharm. J.202028121719173210.1016/j.jsps.2020.10.017 33424263
    [Google Scholar]
  73. RyanB.M. O’DonovanN. DuffyM.J. Survivin: A new target for anti-cancer therapy.Cancer Treat. Rev.200935755356210.1016/j.ctrv.2009.05.003 19559538
    [Google Scholar]
  74. González-VallinasM. González-CastejónM. Rodríguez-CasadoA. Ramírez de MolinaA. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives.Nutr. Rev.201371958559910.1111/nure.12051 24032363
    [Google Scholar]
  75. ShahidiF. YeoJ. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review.Int. J. Mol. Sci.2018196157310.3390/ijms19061573 29799460
    [Google Scholar]
  76. VerveridisF. TrantasE. DouglasC. VollmerG. KretzschmarG. PanopoulosN. Biotechnology of flavonoids and other phenylpropanoid‐derived natural products. Part I: Chemical diversity, impacts on plant biology and human health.Biotechnol. J.20072101214123410.1002/biot.200700084 17935117
    [Google Scholar]
  77. TapasA.R. SakarkarD.M. KakdeR.B. Flavonoids as nutraceuticals: a review.Trop. J. Pharm. Res.2008731089109910.4314/tjpr.v7i3.14693
    [Google Scholar]
  78. WangM. YuF. ZhangY. ChangW. ZhouM. The effects and mechanisms of flavonoids on cancer prevention and therapy: focus on gut microbiota.Int. J. Biol. Sci.20221841451147510.7150/ijbs.68170 35280689
    [Google Scholar]
  79. Reyes-FariasM. Carrasco-PozoC. The anti-cancer effect of quercetin: molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms20133177 31261749
    [Google Scholar]
  80. BabyJ. DevanA.R. KumarA.R. GorantlaJ.N. NairB. AishwaryaT.S. NathL.R. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review.J. Food Biochem.2021457e1376110.1111/jfbc.13761 34028054
    [Google Scholar]
  81. Benavente-GarcíaO. CastilloJ. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity.J. Agric. Food Chem.200856156185620510.1021/jf8006568 18593176
    [Google Scholar]
  82. RaufA. ShariatiM.A. ImranM. BashirK. KhanS.A. MitraS. EmranT.B. BadalovaK. UddinM.S. MubarakM.S. AljohaniA.S.M. AlhumaydhiF.A. DerkhoM. KorpayevS. ZenginG. Comprehensive review on naringenin and naringin polyphenols as a potent anticancer agent.Environ. Sci. Pollut. Res. Int.20222921310253104110.1007/s11356‑022‑18754‑6 35119637
    [Google Scholar]
  83. ZhengZ. ZhangL. HouX. Potential roles and molecular mechanisms of phytochemicals against cancer.Food Funct.202213189208922510.1039/D2FO01663J 36047380
    [Google Scholar]
  84. ModokS. MellorH. CallaghanR. Modulation of multidrug resistance efflux pump activity to overcome chemoresistance in cancer.Curr. Opin. Pharmacol.20066435035410.1016/j.coph.2006.01.009 16690355
    [Google Scholar]
  85. SelvarajS. KrishnaswamyS. DevashyaV. SethuramanS. KrishnanU.M. Flavonoid-metal ion complexes: a novel class of therapeutic agents.Med. Res. Rev.201434467770210.1002/med.21301 24037904
    [Google Scholar]
  86. LinY. ShiR. WangX. ShenH.M. Luteolin, a flavonoid with potential for cancer prevention and therapy.Curr. Cancer Drug Targets20088763464610.2174/156800908786241050 18991571
    [Google Scholar]
  87. BaillyC. Molecular and cellular basis of the anticancer activity of the prenylated flavonoid icaritin in hepatocellular carcinoma.Chem. Biol. Interact.202032510912410.1016/j.cbi.2020.109124 32437694
    [Google Scholar]
  88. AlshameriA.W. OwaisM. Antibacterial and cytotoxic potency of the plant-mediated synthesis of metallic nanoparticles Ag NPs and ZnO NPs: A Review.OpenNano20222022100077
    [Google Scholar]
  89. JuaidN. AminA. AbdallaA. ReeseK. AlamriZ. MoulayM. AbduS. MiledN. Anti-hepatocellular carcinoma biomolecules: molecular targets insights.Int. J. Mol. Sci.202122191077410.3390/ijms221910774 34639131
    [Google Scholar]
  90. ShahM.A. SchwartzG.K. Cell cycle-mediated drug resistance: an emerging concept in cancer therapy.Clin. Cancer Res.20017821682181 11489790
    [Google Scholar]
  91. YanX. QiM. LiP. ZhanY. ShaoH. Apigenin in cancer therapy: anti-cancer effects and mechanisms of action.Cell Biosci.2017715010.1186/s13578‑017‑0179‑x 29034071
    [Google Scholar]
  92. FerreiraJ.F.S. LuthriaD.L. SasakiT. HeyerickA. Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer.Molecules20101553135317010.3390/molecules15053135 20657468
    [Google Scholar]
  93. PandeyP. KhanF. SeifeldinS.A. AlshaghdaliK. SiddiquiS. AbdelwadoudM.E. VyasM. SaeedM. MazumderA. SaeedA. Targeting Wnt/β-catenin pathway by flavonoids: Implication for cancer therapeutics.Nutrients2023159208810.3390/nu15092088 37432240
    [Google Scholar]
  94. KapinovaA. KubatkaP. GolubnitschajaO. KelloM. ZuborP. SolarP. PecM. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention.Environ. Health Prev. Med.20182313610.1186/s12199‑018‑0724‑1 30092754
    [Google Scholar]
  95. DajasF. Life or death: Neuroprotective and anticancer effects of quercetin.J. Ethnopharmacol.2012143238339610.1016/j.jep.2012.07.005 22820241
    [Google Scholar]
  96. HussainF. RanaZ. ShafiqueH. MalikA. HussainZ. Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: A review.Asian Pac. J. Trop. Biomed.201771095095610.1016/j.apjtb.2017.09.015
    [Google Scholar]
  97. ChenD. WanS.B. YangH. YuanJ. ChanT.H. DouQ.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment.Adv. Clin. Chem.20115315517710.1016/B978‑0‑12‑385855‑9.00007‑2 21404918
    [Google Scholar]
  98. KerimiA. WilliamsonG. Differential impact of flavonoids on redox modulation, bioenergetics, and cell signaling in normal and tumor cells: a comprehensive review.Antioxid. Redox Signal.201829161633165910.1089/ars.2017.7086 28826224
    [Google Scholar]
  99. XiaJ. GaoJ.J. InagakiY. KokudoN. NakataM. TangW. Flavonoids as potential anti-hepatocellular carcinoma agents: Recent approaches using HepG2 cell line.Drug Discov. Ther.2013711810.5582/ddt.2013.v7.1.1 23524937
    [Google Scholar]
  100. GeorgeV.C. DellaireG. RupasingheH.P.V. Plant flavonoids in cancer chemoprevention: role in genome stability.J. Nutr. Biochem.20174511410.1016/j.jnutbio.2016.11.007 27951449
    [Google Scholar]
  101. KashyapD. TuliH.S. YererM.B. SharmaA. SakK. SrivastavaS. PandeyA. GargV.K. SethiG. BishayeeA. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges.Semin. Cancer Biol.20216952310.1016/j.semcancer.2019.08.014 31421264
    [Google Scholar]
  102. MoreM.P. PardeshiS.R. PardeshiC.V. SonawaneG.A. ShindeM.N. DeshmukhP.K. NaikJ.B. KulkarniA.D. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer.Med. Drug Discov.20211010008210.1016/j.medidd.2021.100082
    [Google Scholar]
  103. Maleki DizajS. AlipourM. DalirA.E. AhmadianE. EftekhariA. ForouhandehH. RahbarS.Y. SharifiS. Zununi VahedS. Curcumin nanoformulations: Beneficial nanomedicine against cancer.Phytother. Res.20223631156118110.1002/ptr.7389 35129230
    [Google Scholar]
  104. Davatgaran-TaghipourY. MasoomzadehS. FarzaeiM.H. BahramsoltaniR. Karimi-SourehZ. RahimiR. AbdollahiM. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective.Int. J. Nanomed.2017122689270210.2147/IJN.S131973 28435252
    [Google Scholar]
  105. SinghG. NarwalS. ChopraB. DhingraA.K. Quercetin-based nanoformulation: A potential approach for cancer treatment. Anti-Cancer Agent.Med. Chem.2023231819832007
    [Google Scholar]
  106. WangG. WangJ. MomeniM.R. Epigallocatechin-3-gallate and its nanoformulation in cervical cancer therapy: the role of genes, MicroRNA and DNA methylation patterns.Cancer Cell Int.202323133510.1186/s12935‑023‑03161‑9 38129839
    [Google Scholar]
  107. ChandekarL. KatgeriR. TakkeA. The potential clinical uses and nanoformulation strategies of kaempferol, a dietary flavonoid.Rev. Bras. Farmacogn.202232569370710.1007/s43450‑022‑00290‑6
    [Google Scholar]
  108. ZhouY. YuY. LvH. ZhangH. LiangT. ZhouG. HuangL. TianY. LiangW. Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent.Food Chem. Toxicol.202216811338510.1016/j.fct.2022.113385 36007853
    [Google Scholar]
  109. AmekyehH. AlkhaderE. SabraR. BillaN. Prospects of curcumin nanoformulations in cancer management.Molecules202227236110.3390/molecules27020361 35056675
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303320523240910072723
Loading
/content/journals/emiddt/10.2174/0118715303320523240910072723
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apigenin; cancer; curcumin; epigallocatechin gallate; kaempferol; Quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test