Skip to content
2000
image of Identification of Biomarkers Related to Liquid-Liquid Phase Separation for Ulcerative Colitis Based on Single-Cell and Bulk RNA Transcriptome Sequencing Data

Abstract

Background

Liquid-Liquid Phase Separation (LLPS) is a process involved in the formation of established organelles and various condensates that lack membranes; however, the relationship between LLPS and Ulcerative Colitis (UC) remains unclear.

Aims

This study aimed to comprehensively clarify the correlation between ulcerative colitis (UC) and liquid-liquid phase separation (LLPS).

Objectives

In this study, bioinformatics analyses and public databases were applied to screen and validate key genes associated with LLPS in UC. Furthermore, the roles of these key genes in UC were comprehensively analyzed.

Methods

Based on the single-cell transcriptomic data of UC obtained from the Gene Expression Omnibus (GEO) database, differences between patients with UC and their controls were compared using the limma package. The single-cell data were then filtered and normalized by the ‘Seurat’ package and subjected to dimension reduction by the Uniform Manifold Approximation and Projection (UMAP) algorithm. The LLPS-related genes (LLPSRGs) were searched on the DrLLPS website to obtain cross-correlated genes, which were scored using the ssGSEA algorithm. Next, functional enrichment, interaction network, immune landscape, and diagnostic and drug prediction of the LLPSRGs were comprehensively explored. Finally, the results were validated using external datasets and quantitative real-time PCR (qRT-PCR).

Results

A total of eight cell types in UC were classified, namely, fibroblasts, macrophages, endothelial cells, neutrophils, NK cells, B cells, epithelial cells, and T cells. The intersection between differently expressed genes (DEGs) among the eight cell types identified 44 key genes, which were predominantly enriched in immune- and infection-related pathways. According to receiver operating characteristic (ROC) curves, , , , , and reached an AUC value of 0.94, 0.95, 0.86, 0.89, and 0.93, respectively. Drug prediction revealed that decitabine, tetrachlorodibenzodioxin, tetradecanoylphorbol acetate, thapsigargin, and cisplatin were the potential small molecular compounds for , , , , and . Immune cell infiltration analysis demonstrated that the infiltration of CD4 memory T cell activation, macrophage M1, T macrophage M0, neutrophils, and mast cell activation was higher in the UC group than in the normal group.

Conclusion

The LLPSRGs play crucial roles in UC and can be used as prognostic and diagnostic markers for UC. The current findings contribute to the management of UC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303355042241208171133
2025-01-08
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303355042241208171133/BMS-EMIDDT-2024-347.html?itemId=/content/journals/emiddt/10.2174/0118715303355042241208171133&mimeType=html&fmt=ahah

References

  1. Ananthakrishnan A.N. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 2015 12 4 205 217 10.1038/nrgastro.2015.34 25732745
    [Google Scholar]
  2. Loftus E.V. Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology 2004 126 6 1504 1517 10.1053/j.gastro.2004.01.063 15168363
    [Google Scholar]
  3. Shin Y. Brangwynne C.P. Liquid phase condensation in cell physiology and disease. Science 2017 357 6357 eaaf4382 10.1126/science.aaf4382 28935776
    [Google Scholar]
  4. Banani S.F. Lee H.O. Hyman A.A. Rosen M.K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 2017 18 5 285 298 10.1038/nrm.2017.7 28225081
    [Google Scholar]
  5. Zhang H. Ji X. Li P. Liu C. Lou J. Wang Z. Wen W. Xiao Y. Zhang M. Zhu X. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Sci. China Life Sci. 2020 63 7 953 985 10.1007/s11427‑020‑1702‑x 32548680
    [Google Scholar]
  6. Peng P.H. Hsu K.W. Wu K.J. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Am. J. Cancer Res. 2021 11 8 3766 3776 34522448
    [Google Scholar]
  7. Liu Z. Qin Z. Liu Y. Xia X. He L. Chen N. Hu X. Peng X. Liquid‒liquid phase separation: Roles and implications in future cancer treatment. Int. J. Biol. Sci. 2023 19 13 4139 4156 10.7150/ijbs.81521 37705755
    [Google Scholar]
  8. Su X. Ditlev J.A. Hui E. Xing W. Banjade S. Okrut J. King D.S. Taunton J. Rosen M.K. Vale R.D. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 2016 352 6285 595 599 10.1126/science.aad9964 27056844
    [Google Scholar]
  9. Du M. Chen Z.J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018 361 6403 704 709 10.1126/science.aat1022 29976794
    [Google Scholar]
  10. Zeng M. Shang Y. Araki Y. Guo T. Huganir R.L. Zhang M. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 2016 166 5 1163 1175.e12 10.1016/j.cell.2016.07.008 27565345
    [Google Scholar]
  11. Zeng M. Chen X. Guan D. Xu J. Wu H. Tong P. Zhang M. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell 2018 174 5 1172 1187.e16 10.1016/j.cell.2018.06.047 30078712
    [Google Scholar]
  12. Molliex A. Temirov J. Lee J. Coughlin M. Kanagaraj A.P. Kim H.J. Mittag T. Taylor J.P. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 2015 163 1 123 133 10.1016/j.cell.2015.09.015 26406374
    [Google Scholar]
  13. Riback J.A. Katanski C.D. Kear-Scott J.L. Pilipenko E.V. Rojek A.E. Sosnick T.R. Drummond D.A. Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell 2017 168 6 1028 1040.e19 10.1016/j.cell.2017.02.027 28283059
    [Google Scholar]
  14. Feric M. Vaidya N. Harmon T.S. Mitrea D.M. Zhu L. Richardson T.M. Kriwacki R.W. Pappu R.V. Brangwynne C.P. Coexisting liquid phases underlie nucleolar subcompartments. Cell 2016 165 7 1686 1697 10.1016/j.cell.2016.04.047 27212236
    [Google Scholar]
  15. Sabari B.R. Dall’Agnese A. Boija A. Klein I.A. Coffey E.L. Shrinivas K. Abraham B.J. Hannett N.M. Zamudio A.V. Manteiga J.C. Li C.H. Guo Y.E. Day D.S. Schuijers J. Vasile E. Malik S. Hnisz D. Lee T.I. Cisse I.I. Roeder R.G. Sharp P.A. Chakraborty A.K. Young R.A. Coactivator condensation at super-enhancers links phase separation and gene control. Science 2018 361 6400 eaar3958 10.1126/science.aar3958 29930091
    [Google Scholar]
  16. Strom A.R. Emelyanov A.V. Mir M. Fyodorov D.V. Darzacq X. Karpen G.H. Phase separation drives heterochromatin domain formation. Nature 2017 547 7662 241 245 10.1038/nature22989 28636597
    [Google Scholar]
  17. Nozawa R.S. Yamamoto T. Takahashi M. Tachiwana H. Maruyama R. Hirota T. Saitoh N. Nuclear microenvironment in cancer: Control through liquid-liquid phase separation. Cancer Sci. 2020 111 9 3155 3163 10.1111/cas.14551 32594560
    [Google Scholar]
  18. Larson A.G. Elnatan D. Keenen M.M. Trnka M.J. Johnston J.B. Burlingame A.L. Agard D.A. Redding S. Narlikar G.J. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 2017 547 7662 236 240 10.1038/nature22822 28636604
    [Google Scholar]
  19. Sheu-Gruttadauria J. MacRae I.J. Phase transitions in the assembly and function of human miRISC. Cell 2018 173 4 946 957.e16 10.1016/j.cell.2018.02.051 29576456
    [Google Scholar]
  20. Zhang G. Wang Z. Du Z. Zhang H. mTOR Regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 2018 174 6 1492 1506.e22 10.1016/j.cell.2018.08.006 30173914
    [Google Scholar]
  21. Sun D. Wu R. Zheng J. Li P. Yu L. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation. Cell Res. 2018 28 4 405 415 10.1038/s41422‑018‑0017‑7 29507397
    [Google Scholar]
  22. Guo L. Kim H.J. Wang H. Monaghan J. Freyermuth F. Sung J.C. O’Donovan K. Fare C.M. Diaz Z. Singh N. Zhang Z.C. Coughlin M. Sweeny E.A. DeSantis M.E. Jackrel M.E. Rodell C.B. Burdick J.A. King O.D. Gitler A.D. Lagier-Tourenne C. Pandey U.B. Chook Y.M. Taylor J.P. Shorter J. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains. Cell 2018 173 3 677 692.e20 10.1016/j.cell.2018.03.002 29677512
    [Google Scholar]
  23. Hofweber M. Hutten S. Bourgeois B. Spreitzer E. Niedner-Boblenz A. Schifferer M. Ruepp M.D. Simons M. Niessing D. Madl T. Dormann D. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 2018 173 3 706 719.e13 10.1016/j.cell.2018.03.004 29677514
    [Google Scholar]
  24. Yoshizawa T. Ali R. Jiou J. Fung H.Y.J. Burke K.A. Kim S.J. Lin Y. Peeples W.B. Saltzberg D. Soniat M. Baumhardt J.M. Oldenbourg R. Sali A. Fawzi N.L. Rosen M.K. Chook Y.M. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites. Cell 2018 173 3 693 705.e22 10.1016/j.cell.2018.03.003 29677513
    [Google Scholar]
  25. Chen Z. Zhao M. Li M. Sui Q. Bian Y. Liang J. Hu Z. Zheng Y. Lu T. Huang Y. Zhan C. Jiang W. Wang Q. Tan L. Identification of differentially expressed genes in lung adenocarcinoma cells using single-cell RNA sequencing not detected using traditional RNA sequencing and microarray. Lab. Invest. 2020 100 10 1318 1329 10.1038/s41374‑020‑0428‑1 32327726
    [Google Scholar]
  26. Shahrajabian M.H. Sun W. Survey on multi-omics, and multi- omics data analysis, integration and application. Curr. Pharm. Anal. 2023 19 4 267 281 10.2174/1573412919666230406100948
    [Google Scholar]
  27. Liang L. Yu J. Li J. Li N. Liu J. Xiu L. Zeng J. Wang T. Wu L. Integration of scRNA-Seq and bulk RNA-Seq to analyse the heterogeneity of ovarian cancer immune cells and establish a molecular risk model. Front. Oncol. 2021 11 711020 10.3389/fonc.2021.711020 34621670
    [Google Scholar]
  28. Zulibiya A. Wen J. Yu H. Chen X. Xu L. Ma X. Zhang B. Single-Cell RNA sequencing reveals potential for endothelial- to-mesenchymal transition in tetralogy of fallot. Congenit. Heart Dis. 2023 18 6 611 625 10.32604/chd.2023.047689
    [Google Scholar]
  29. Jiang A. Wang J. Liu N. Zheng X. Li Y. Ma Y. Zheng H. Chen X. Fan C. Zhang R. Fu X. Yao Y. Integration of single-cell RNA sequencing and bulk RNA sequencing data to establish and validate a prognostic model for patients with lung adenocarcinoma. Front. Genet. 2022 13 833797 10.3389/fgene.2022.833797 35154287
    [Google Scholar]
  30. He Z. Zhou Q. Du J. Huang Y. Wu B. Xu Z. Wang C. Cheng X. Integrated single-cell and bulk RNA sequencing reveals CREM is involved in the pathogenesis of ulcerative colitis. Heliyon 2024 10 6 e27805 10.1016/j.heliyon.2024.e27805 38496850
    [Google Scholar]
  31. Dai Y.C. Qiao D. Fang C.Y. Chen Q.Q. Que R.Y. Xiao T.G. Zheng L. Wang L.J. Zhang Y.L. Single-cell RNA-sequencing combined with bulk RNA-sequencing analysis of peripheral blood reveals the characteristics and key immune cell genes of ulcerative colitis. World J. Clin. Cases 2022 10 33 12116 12135 10.12998/wjcc.v10.i33.12116 36483809
    [Google Scholar]
  32. Newman A.M. Steen C.B. Liu C.L. Gentles A.J. Chaudhuri A.A. Scherer F. Khodadoust M.S. Esfahani M.S. Luca B.A. Steiner D. Diehn M. Alizadeh A.A. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019 37 7 773 782 10.1038/s41587‑019‑0114‑2 31061481
    [Google Scholar]
  33. Sickle-cell anemia and anaesthesia. BMJ 1965 2 5473 1263 1264 10.1136/bmj.2.5473.1263‑a 5849142
    [Google Scholar]
  34. Wu F. Chakravarti S. Differential expression of inflammatory and fibrogenic genes and their regulation by NF-kappaB inhibition in a mouse model of chronic colitis. J. Immun. 2007 179 10 6988 7000 10.4049/jimmunol.179.10.6988 17982090
    [Google Scholar]
  35. Mogilenko D.A. Shpynov O. Andhey P.S. Arthur L. Swain A. Esaulova E. Brioschi S. Shchukina I. Kerndl M. Bambouskova M. Yao Z. Laha A. Zaitsev K. Burdess S. Gillfilan S. Stewart S.A. Colonna M. Artyomov M.N. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 2021 54 1 99 115.e12 10.1016/j.immuni.2020.11.005 33271118
    [Google Scholar]
  36. Lauzurica P. Sancho D. Torres M. Albella B. Marazuela M. Merino T. Bueren J.A. Martínez-A C. Sánchez-Madrid F. Phenotypic and functional characteristics of hematopoietic cell lineages in CD69-deficient mice. Blood 2000 95 7 2312 2320 10.1182/blood.V95.7.2312 10733501
    [Google Scholar]
  37. Chen C.K. Huang S.C. Chen C.L. Yen M.R. Hsu H.C. Ho H.N. Increased expressions of CD69 and HLA-DR but not of CD25 or CD71 on endometrial T lymphocytes of nonpregnant women. Hum. Immunol. 1995 42 3 227 232 10.1016/0198‑8859(94)00105‑Y 7759310
    [Google Scholar]
  38. Peggs K.S. Albon S.J. Oporto Espuelas M. Irving C. Richardson R. Casanovas-Company J. Wallace R. Guvenel A. Ghorashian S. Collura A. Subramaniyam M. Flutter B. Popova B. Castro F. Lopes A. Champion K. Schofield O. Clifton-Hadley L. Taylor T. Farrell M. Adams S. Gilmour K.C. Mackinnon S. Tholouli E. Amrolia P.J. Immunotherapy with CD25/CD71-allodepleted T cells to improve T-cell reconstitution after matched unrelated donor hematopoietic stem cell transplant: a randomized trial. Cytotherapy 2023 25 1 82 93 10.1016/j.jcyt.2022.08.010 36220712
    [Google Scholar]
  39. Hu W. Fang T. Zhou M. Chen X. Identification of hub genes and immune infiltration in ulcerative colitis using bioinformatics. Sci. Rep. 2023 13 1 6039 10.1038/s41598‑023‑33292‑y 37055495
    [Google Scholar]
  40. Haga K. Chiba A. Shibuya T. Osada T. Ishikawa D. Kodani T. Nomura O. Watanabe S. Miyake S. MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis. J. Gastroenterol. Hepatol. 2016 31 5 965 972 10.1111/jgh.13242 26590105
    [Google Scholar]
  41. Yang Y. Li Z. Roles of heat shock protein gp96 in the ER quality control: Redundant or unique function? Mol. Cells 2005 20 2 173 182 10.1016/S1016‑8478(23)13214‑6 16267390
    [Google Scholar]
  42. Wang JM Lin SR Zhu YB Yuan J Wang YM Zhang Q Proteomic analysis of lysine acetylation reveals that metabolic enzymes and heat shock proteins may be potential targets for DSS-induced mice colitis. Int. Immunopharm. 2021 101 Pt B 108336 10.1016/j.intimp.2021.108336 34768127
    [Google Scholar]
  43. Zhao X.Q. Naka M. Muneyuki M. Tanaka T. Ca(2+)-dependent inhibition of actin-activated myosin ATPase activity by S100C (S100A11), a novel member of the S100 protein family. Biochem. Biophys. Res. Commun. 2000 267 1 77 79 10.1006/bbrc.1999.1918 10623577
    [Google Scholar]
  44. Zeng B. Chen Y. Chen H. Zhao Q. Sun Z. Liu D. Li X. Zhang Y. Wang J. Xing H.R. Synergistic inhibition of NUDT21 by secretory S100A11 and exosomal miR-487a-5p promotes melanoma oligo- to poly-metastatic progression. Mol. Oncol. 2023 17 12 2743 2766 10.1002/1878‑0261.13480 37356089
    [Google Scholar]
  45. Shen X. Luo K. Yuan J. Gao J. Cui B. Yu Z. Lu Z. Hepatic DDAH1 mitigates hepatic steatosis and insulin resistance in obese mice: Involvement of reduced S100A11 expression. Acta Pharm. Sin. B 2023 13 8 3352 3364 10.1016/j.apsb.2023.05.020 37655336
    [Google Scholar]
  46. Zhang Y Shui J Wang L Wang F. Serum proteomics identifies S100A11 and MMP9 as novel biomarkers for predicting the early efficacy of sublingual immunotherapy in allergic rhinitis. Int. Immunopharmacol. 2023 124 Pt A 110857 10.1016/j.intimp.2023.110857 37647677
    [Google Scholar]
  47. Zhang X. Chen T. Qian X. He X. Bioinformatics analysis of immune cell infiltration and diagnostic biomarkers between ankylosing spondylitis and inflammatory bowel disease. Comput. Math. Methods Med. 2023 2023 1 9065561 10.1155/2023/9065561 36643579
    [Google Scholar]
  48. Su C. Liu S. Ma X. Yang X. Liu J. Zheng P. Cao Y. Decitabine attenuates dextran sodium sulfate-induced ulcerative colitis through regulation of immune regulatory cells and intestinal barrier. Int. J. Mol. Med. 2020 46 2 583 594 10.3892/ijmm.2020.4605 32468024
    [Google Scholar]
  49. Puga A. Ma C. Marlowe J.L. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways. Biochem. Pharmacol. 2009 77 4 713 722 10.1016/j.bcp.2008.08.031 18817753
    [Google Scholar]
  50. Barouki R. Coumoul X. Fernandez-Salguero P.M. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett. 2007 581 19 3608 3615 10.1016/j.febslet.2007.03.046 17412325
    [Google Scholar]
  51. Okayasu I. Hatakeyama S. Yamada M. Ohkusa T. Inagaki Y. Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990 98 3 694 702 10.1016/0016‑5085(90)90290‑H 1688816
    [Google Scholar]
  52. Takamura T. Harama D. Matsuoka S. Shimokawa N. Nakamura Y. Okumura K. Ogawa H. Kitamura M. Nakao A. Activation of the aryl hydrocarbon receptor pathway may ameliorate dextran sodium sulfate-induced colitis in mice. Immunol. Cell Biol. 2010 88 6 685 689 10.1038/icb.2010.35 20231854
    [Google Scholar]
  53. Alzahrani A.M. Hanieh H. Ibrahim H.M. Mohafez O. Shehata T. Bani Ismail M. Alfwuaires M. Enhancing miR-132 expression by aryl hydrocarbon receptor attenuates tumorigenesis associated with chronic colitis. Int. Immunopharmacol. 2017 52 342 351 10.1016/j.intimp.2017.09.015 29017096
    [Google Scholar]
  54. Rebois R.V. Patel J. Phorbol ester causes desensitization of gonadotropin-responsive adenylate cyclase in a murine Leydig tumor cell line. J. Biol. Chem. 1985 260 13 8026 8031 10.1016/S0021‑9258(17)39558‑3 2989273
    [Google Scholar]
  55. Blumberg P.M. Boutwell R.K. In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: Part 1. CRC Crit. Rev. Toxicol. 1980 8 2 153 197 10.3109/10408448009037493 7002476
    [Google Scholar]
  56. Li N. Sun W. Zhou X. Gong H. Chen Y. Chen D. Xiang F. Dihydroartemisinin protects against dextran sulfate sodium-induced colitis in mice through inhibiting the PI3K/AKT and NF-κB signaling pathways. BioMed Res. Int. 2019 2019 1 12 10.1155/2019/1415809 31781591
    [Google Scholar]
  57. Jackson T.R. Patterson S.I. Thastrup O. Hanley M.R. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells. Biochem. J. 1988 253 1 81 86 10.1042/bj2530081 3138987
    [Google Scholar]
  58. Thastrup O. Cullen P.J. Drøbak B.K. Hanley M.R. Dawson A.P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc. Natl. Acad. Sci. USA 1990 87 7 2466 2470 10.1073/pnas.87.7.2466 2138778
    [Google Scholar]
  59. Martín-Adrados B. Wculek S.K. Fernández-Bravo S. Torres-Ruiz R. Valle-Noguera A. Gomez-Sánchez M.J. Hernández-Walias J.C. Ferreira F.M. Corraliza A.M. Sancho D. Esteban V. Rodriguez-Perales S. Cruz-Adalia A. Nakaya H.I. Salas A. Bernardo D. Campos-Martín Y. Martínez-Zamorano E. Muñoz-López D. Gómez del Moral M. Cubero F.J. Blumberg R.S. Martínez-Naves E. Expression of HMGCS2 in intestinal epithelial cells is downregulated in inflammatory bowel disease associated with endoplasmic reticulum stress. Front. Immunol. 2023 14 1185517 10.3389/fimmu.2023.1185517 37457727
    [Google Scholar]
  60. Qiao D.J. Liu X. Zhang Y. Zhang Z. Tang Y. Chen Q. Jianpi-Qingchang decoction alleviates ulcerative colitis by modulating endoplasmic reticulum stress-related autophagy in intestinal epithelial cells. Biomed. Pharmcother. 2023 158 114133 10.1016/j.biopha.2022.114133
    [Google Scholar]
  61. Solà Tapias N. Denadai-Souza A. Rolland-Fourcade C. Quaranta-Nicaise M. Blanpied C. Marcellin M. Edir A. Rolland C. Cirillo C. Dietrich G. Alric L. Portier G. Kirzin S. Bonnet D. Mas E. Burlet-Schiltz O. Deraison C. Bonnart C. Vergnolle N. Barreau F. Colitis linked to endoplasmic reticulum stress induces trypsin activity affecting epithelial functions. J. Crohn’s Colitis 2021 15 9 1528 1541 10.1093/ecco‑jcc/jjab035 33609354
    [Google Scholar]
  62. Florea A.M. Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers 2011 3 1 1351 1371 10.3390/cancers3011351 24212665
    [Google Scholar]
  63. Siddik Z.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003 22 47 7265 7279 10.1038/sj.onc.1206933 14576837
    [Google Scholar]
  64. Jamieson E.R. Lippard S.J. Structure, recognition, and processing of cisplatin−DNA adducts. Chem. Rev. 1999 99 9 2467 2498 10.1021/cr980421n 11749487
    [Google Scholar]
  65. Liu S.V. Giaccone G. Refining standard practice and admitting uncertainty. Nat. Rev. Clin. Oncol. 2014 11 2 69 70 10.1038/nrclinonc.2013.251 24445519
    [Google Scholar]
  66. Netea-Maier R.T. Plantinga T.S. van de Veerdonk F.L. Smit J.W. Netea M.G. Modulation of inflammation by autophagy: Consequences for human disease. Autophagy 2016 12 2 245 260 10.1080/15548627.2015.1071759 26222012
    [Google Scholar]
  67. Liu X. Zhou M. Dai Z. Luo S. Shi Y. He Z. Chen Y. Salidroside alleviates ulcerative colitis via inhibiting macrophage pyroptosis and repairing the dysbacteriosis-associated Th17/Treg imbalance. Phytother. Res. 2023 37 2 367 382 10.1002/ptr.7636 36331009
    [Google Scholar]
  68. Geremia A. Biancheri P. Allan P. Corazza G.R. Di Sabatino A. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 2014 13 1 3 10 10.1016/j.autrev.2013.06.004 23774107
    [Google Scholar]
  69. Cheng C. Hu J. Li Y. Ji Y. Lian Z. Au R. Xu F. Li W. Shen H. Zhu L. Qing-Chang-Hua-Shi granule ameliorates DSS-induced colitis by activating NLRP6 signaling and regulating Th17/Treg balance. Phytomedicine 2022 107 154452 10.1016/j.phymed.2022.154452 36150347
    [Google Scholar]
  70. Balagopalan L. Kortum R.L. Coussens N.P. Barr V.A. Samelson L.E. The linker for activation of T cells (LAT) signaling hub: From signaling complexes to microclusters. J. Biol. Chem. 2015 290 44 26422 26429 10.1074/jbc.R115.665869 26354432
    [Google Scholar]
  71. Biswas S.K. Metabolic reprogramming of immune cells in cancer progression. Immunity 2015 43 3 435 449 10.1016/j.immuni.2015.09.001 26377897
    [Google Scholar]
  72. Wu M.M. Wang Q.M. Huang B.Y. Mai C.T. Wang C.L. Wang T.T. Zhang X.J. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharmacol. Res. 2021 172 105796 10.1016/j.phrs.2021.105796 34343656
    [Google Scholar]
  73. Watanabe N. Ikuta K. Okazaki K. Nakase H. Tabata Y. Matsuura M. Tamaki H. Kawanami C. Honjo T. Chiba T. Elimination of local macrophages in intestine prevents chronic colitis in interleukin-10-deficient mice. Dig. Dis. Sci. 2003 48 2 408 414 10.1023/A:1021960401290 12643623
    [Google Scholar]
  74. Yang Z. Lin S. Feng W. Liu Y. Song Z. Pan G. Zhang Y. Dai X. Ding X. Chen L. Wang Y. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front. Pharmacol. 2022 13 999179 10.3389/fphar.2022.999179 36147340
    [Google Scholar]
  75. Sun X. Yang J. Deng X. Wei Y. Wang C. Guo Y. Yang H. Yang L. Miao C. Lv J. Xiao Y. Zhang H. Yao Z. Wang Q. Interactions of bacterial toxin CNF1 and host JAK1/2 driven by liquid-liquid phase separation enhance macrophage polarization. MBio 2022 13 4 e01147-22 10.1128/mbio.01147‑22 35766380
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303355042241208171133
Loading
/content/journals/emiddt/10.2174/0118715303355042241208171133
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test