Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Liquid-Liquid Phase Separation (LLPS) is a process involved in the formation of established organelles and various condensates that lack membranes; however, the relationship between LLPS and Ulcerative Colitis (UC) remains unclear.

Aims

This study aimed to comprehensively clarify the correlation between ulcerative colitis (UC) and liquid-liquid phase separation (LLPS).

Objectives

In this study, bioinformatics analyses and public databases were applied to screen and validate key genes associated with LLPS in UC. Furthermore, the roles of these key genes in UC were comprehensively analyzed.

Methods

Based on the single-cell transcriptomic data of UC obtained from the Gene Expression Omnibus (GEO) database, differences between patients with UC and their controls were compared using the limma package. The single-cell data were then filtered and normalized by the ‘Seurat’ package and subjected to dimension reduction by the Uniform Manifold Approximation and Projection (UMAP) algorithm. The LLPS-related genes (LLPSRGs) were searched on the DrLLPS website to obtain cross-correlated genes, which were scored using the ssGSEA algorithm. Next, functional enrichment, interaction network, immune landscape, and diagnostic and drug prediction of the LLPSRGs were comprehensively explored. Finally, the results were validated using external datasets and quantitative real-time PCR (qRT-PCR).

Results

A total of eight cell types in UC were classified, namely, fibroblasts, macrophages, endothelial cells, neutrophils, NK cells, B cells, epithelial cells, and T cells. The intersection between differently expressed genes (DEGs) among the eight cell types identified 44 key genes, which were predominantly enriched in immune- and infection-related pathways. According to receiver operating characteristic (ROC) curves, , , , , and reached an AUC value of 0.94, 0.95, 0.86, 0.89, and 0.93, respectively. Drug prediction revealed that decitabine, tetrachlorodibenzodioxin, tetradecanoylphorbol acetate, thapsigargin, and cisplatin were the potential small molecular compounds for , , , , and . Immune cell infiltration analysis demonstrated that the infiltration of CD4 memory T cell activation, macrophage M1, T macrophage M0, neutrophils, and mast cell activation was higher in the UC group than in the normal group.

Conclusion

The LLPSRGs play crucial roles in UC and can be used as prognostic and diagnostic markers for UC. The current findings contribute to the management of UC.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303355042241208171133
2025-01-08
2026-01-01
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/14/EMIDDT-25-14-03.html?itemId=/content/journals/emiddt/10.2174/0118715303355042241208171133&mimeType=html&fmt=ahah

References

  1. AnanthakrishnanA.N. Epidemiology and risk factors for IBD.Nat. Rev. Gastroenterol. Hepatol.201512420521710.1038/nrgastro.2015.3425732745
    [Google Scholar]
  2. LoftusE.V.Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences.Gastroenterology200412661504151710.1053/j.gastro.2004.01.06315168363
    [Google Scholar]
  3. ShinY. BrangwynneC.P. Liquid phase condensation in cell physiology and disease.Science20173576357eaaf438210.1126/science.aaf438228935776
    [Google Scholar]
  4. BananiS.F. LeeH.O. HymanA.A. RosenM.K. Biomolecular condensates: organizers of cellular biochemistry.Nat. Rev. Mol. Cell Biol.201718528529810.1038/nrm.2017.728225081
    [Google Scholar]
  5. ZhangH. JiX. LiP. LiuC. LouJ. WangZ. WenW. XiaoY. ZhangM. ZhuX. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases.Sci. China Life Sci.202063795398510.1007/s11427‑020‑1702‑x32548680
    [Google Scholar]
  6. PengP.H. HsuK.W. WuK.J. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology.Am. J. Cancer Res.20211183766377634522448
    [Google Scholar]
  7. LiuZ. QinZ. LiuY. XiaX. HeL. ChenN. HuX. PengX. Liquid‒liquid phase separation: Roles and implications in future cancer treatment.Int. J. Biol. Sci.202319134139415610.7150/ijbs.8152137705755
    [Google Scholar]
  8. SuX. DitlevJ.A. HuiE. XingW. BanjadeS. OkrutJ. KingD.S. TauntonJ. RosenM.K. ValeR.D. Phase separation of signaling molecules promotes T cell receptor signal transduction.Science2016352628559559910.1126/science.aad996427056844
    [Google Scholar]
  9. DuM. ChenZ.J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling.Science2018361640370470910.1126/science.aat102229976794
    [Google Scholar]
  10. ZengM. ShangY. ArakiY. GuoT. HuganirR.L. ZhangM. Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity.Cell2016166511631175.e1210.1016/j.cell.2016.07.00827565345
    [Google Scholar]
  11. ZengM. ChenX. GuanD. XuJ. WuH. TongP. ZhangM. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity.Cell2018174511721187.e1610.1016/j.cell.2018.06.04730078712
    [Google Scholar]
  12. MolliexA. TemirovJ. LeeJ. CoughlinM. KanagarajA.P. KimH.J. MittagT. TaylorJ.P. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization.Cell2015163112313310.1016/j.cell.2015.09.01526406374
    [Google Scholar]
  13. RibackJ.A. KatanskiC.D. Kear-ScottJ.L. PilipenkoE.V. RojekA.E. SosnickT.R. DrummondD.A. Stress-triggered phase separation is an adaptive, evolutionarily tuned response.Cell2017168610281040.e1910.1016/j.cell.2017.02.02728283059
    [Google Scholar]
  14. FericM. VaidyaN. HarmonT.S. MitreaD.M. ZhuL. RichardsonT.M. KriwackiR.W. PappuR.V. BrangwynneC.P. Coexisting liquid phases underlie nucleolar subcompartments.Cell201616571686169710.1016/j.cell.2016.04.04727212236
    [Google Scholar]
  15. SabariB.R. Dall’AgneseA. BoijaA. KleinI.A. CoffeyE.L. ShrinivasK. AbrahamB.J. HannettN.M. ZamudioA.V. ManteigaJ.C. LiC.H. GuoY.E. DayD.S. SchuijersJ. VasileE. MalikS. HniszD. LeeT.I. CisseI.I. RoederR.G. SharpP.A. ChakrabortyA.K. YoungR.A. Coactivator condensation at super-enhancers links phase separation and gene control.Science20183616400eaar395810.1126/science.aar395829930091
    [Google Scholar]
  16. StromA.R. EmelyanovA.V. MirM. FyodorovD.V. DarzacqX. KarpenG.H. Phase separation drives heterochromatin domain formation.Nature2017547766224124510.1038/nature2298928636597
    [Google Scholar]
  17. NozawaR.S. YamamotoT. TakahashiM. TachiwanaH. MaruyamaR. HirotaT. SaitohN. Nuclear microenvironment in cancer: Control through liquid-liquid phase separation.Cancer Sci.202011193155316310.1111/cas.1455132594560
    [Google Scholar]
  18. LarsonA.G. ElnatanD. KeenenM.M. TrnkaM.J. JohnstonJ.B. BurlingameA.L. AgardD.A. ReddingS. NarlikarG.J. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin.Nature2017547766223624010.1038/nature2282228636604
    [Google Scholar]
  19. Sheu-GruttadauriaJ. MacRaeI.J. Phase transitions in the assembly and function of human miRISC.Cell20181734946957.e1610.1016/j.cell.2018.02.05129576456
    [Google Scholar]
  20. ZhangG. WangZ. DuZ. ZhangH. mTOR Regulates phase separation of PGL granules to modulate their autophagic degradation.Cell2018174614921506.e2210.1016/j.cell.2018.08.00630173914
    [Google Scholar]
  21. SunD. WuR. ZhengJ. LiP. YuL. Polyubiquitin chain-induced p62 phase separation drives autophagic cargo segregation.Cell Res.201828440541510.1038/s41422‑018‑0017‑729507397
    [Google Scholar]
  22. GuoL. KimH.J. WangH. MonaghanJ. FreyermuthF. SungJ.C. O’DonovanK. FareC.M. DiazZ. SinghN. ZhangZ.C. CoughlinM. SweenyE.A. DeSantisM.E. JackrelM.E. RodellC.B. BurdickJ.A. KingO.D. GitlerA.D. Lagier-TourenneC. PandeyU.B. ChookY.M. TaylorJ.P. ShorterJ. Nuclear-import receptors reverse aberrant phase transitions of RNA-binding proteins with prion-like domains.Cell20181733677692.e2010.1016/j.cell.2018.03.00229677512
    [Google Scholar]
  23. HofweberM. HuttenS. BourgeoisB. SpreitzerE. Niedner-BoblenzA. SchiffererM. RueppM.D. SimonsM. NiessingD. MadlT. DormannD. Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation.Cell20181733706719.e1310.1016/j.cell.2018.03.00429677514
    [Google Scholar]
  24. YoshizawaT. AliR. JiouJ. FungH.Y.J. BurkeK.A. KimS.J. LinY. PeeplesW.B. SaltzbergD. SoniatM. BaumhardtJ.M. OldenbourgR. SaliA. FawziN.L. RosenM.K. ChookY.M. Nuclear import receptor inhibits phase separation of FUS through binding to multiple sites.Cell20181733693705.e2210.1016/j.cell.2018.03.00329677513
    [Google Scholar]
  25. ChenZ. ZhaoM. LiM. SuiQ. BianY. LiangJ. HuZ. ZhengY. LuT. HuangY. ZhanC. JiangW. WangQ. TanL. Identification of differentially expressed genes in lung adenocarcinoma cells using single-cell RNA sequencing not detected using traditional RNA sequencing and microarray.Lab. Invest.2020100101318132910.1038/s41374‑020‑0428‑132327726
    [Google Scholar]
  26. ShahrajabianM.H. SunW. Survey on multi-omics, and multi- omics data analysis, integration and application.Curr. Pharm. Anal.202319426728110.2174/1573412919666230406100948
    [Google Scholar]
  27. LiangL. YuJ. LiJ. LiN. LiuJ. XiuL. ZengJ. WangT. WuL. Integration of scRNA-Seq and bulk RNA-Seq to analyse the heterogeneity of ovarian cancer immune cells and establish a molecular risk model.Front. Oncol.20211171102010.3389/fonc.2021.71102034621670
    [Google Scholar]
  28. ZulibiyaA. WenJ. YuH. ChenX. XuL. MaX. ZhangB. Single-Cell RNA sequencing reveals potential for endothelial- to-mesenchymal transition in tetralogy of fallot.Congenit. Heart Dis.202318661162510.32604/chd.2023.047689
    [Google Scholar]
  29. JiangA. WangJ. LiuN. ZhengX. LiY. MaY. ZhengH. ChenX. FanC. ZhangR. FuX. YaoY. Integration of single-cell RNA sequencing and bulk RNA sequencing data to establish and validate a prognostic model for patients with lung adenocarcinoma.Front. Genet.20221383379710.3389/fgene.2022.83379735154287
    [Google Scholar]
  30. HeZ. ZhouQ. DuJ. HuangY. WuB. XuZ. WangC. ChengX. Integrated single-cell and bulk RNA sequencing reveals CREM is involved in the pathogenesis of ulcerative colitis.Heliyon2024106e2780510.1016/j.heliyon.2024.e2780538496850
    [Google Scholar]
  31. DaiY.C. QiaoD. FangC.Y. ChenQ.Q. QueR.Y. XiaoT.G. ZhengL. WangL.J. ZhangY.L. Single-cell RNA-sequencing combined with bulk RNA-sequencing analysis of peripheral blood reveals the characteristics and key immune cell genes of ulcerative colitis.World J. Clin. Cases20221033121161213510.12998/wjcc.v10.i33.1211636483809
    [Google Scholar]
  32. NewmanA.M. SteenC.B. LiuC.L. GentlesA.J. ChaudhuriA.A. SchererF. KhodadoustM.S. EsfahaniM.S. LucaB.A. SteinerD. DiehnM. AlizadehA.A. Determining cell type abundance and expression from bulk tissues with digital cytometry.Nat. Biotechnol.201937777378210.1038/s41587‑019‑0114‑231061481
    [Google Scholar]
  33. Sickle-cell anemia and anaesthesia.BMJ1965254731263126410.1136/bmj.2.5473.1263‑a5849142
    [Google Scholar]
  34. WuF. ChakravartiS. Differential expression of inflammatory and fibrogenic genes and their regulation by NF-kappaB inhibition in a mouse model of chronic colitis.J. Immun.2007179106988700010.4049/jimmunol.179.10.698817982090
    [Google Scholar]
  35. MogilenkoD.A. ShpynovO. AndheyP.S. ArthurL. SwainA. EsaulovaE. BrioschiS. ShchukinaI. KerndlM. BambouskovaM. YaoZ. LahaA. ZaitsevK. BurdessS. GillfilanS. StewartS.A. ColonnaM. ArtyomovM.N. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging.Immunity202154199115.e1210.1016/j.immuni.2020.11.00533271118
    [Google Scholar]
  36. LauzuricaP. SanchoD. TorresM. AlbellaB. MarazuelaM. MerinoT. BuerenJ.A. Martínez-AC. Sánchez-MadridF. Phenotypic and functional characteristics of hematopoietic cell lineages in CD69-deficient mice.Blood20009572312232010.1182/blood.V95.7.231210733501
    [Google Scholar]
  37. ChenC.K. HuangS.C. ChenC.L. YenM.R. HsuH.C. HoH.N. Increased expressions of CD69 and HLA-DR but not of CD25 or CD71 on endometrial T lymphocytes of nonpregnant women.Hum. Immunol.199542322723210.1016/0198‑8859(94)00105‑Y7759310
    [Google Scholar]
  38. PeggsK.S. AlbonS.J. EspuelasM.O. IrvingC. RichardsonR. Casanovas-CompanyJ. WallaceR. GuvenelA. GhorashianS. ColluraA. SubramaniyamM. FlutterB. PopovaB. CastroF. LopesA. ChampionK. SchofieldO. Clifton-HadleyL. TaylorT. FarrellM. AdamsS. GilmourK.C. MackinnonS. TholouliE. AmroliaP.J. Immunotherapy with CD25/CD71-allodepleted T cells to improve T-cell reconstitution after matched unrelated donor hematopoietic stem cell transplant: a randomized trial.Cytotherapy2023251829310.1016/j.jcyt.2022.08.01036220712
    [Google Scholar]
  39. HuW. FangT. ZhouM. ChenX. Identification of hub genes and immune infiltration in ulcerative colitis using bioinformatics.Sci. Rep.2023131603910.1038/s41598‑023‑33292‑y37055495
    [Google Scholar]
  40. HagaK. ChibaA. ShibuyaT. OsadaT. IshikawaD. KodaniT. NomuraO. WatanabeS. MiyakeS. MAIT cells are activated and accumulated in the inflamed mucosa of ulcerative colitis.J. Gastroenterol. Hepatol.201631596597210.1111/jgh.1324226590105
    [Google Scholar]
  41. YangY. LiZ. Roles of heat shock protein gp96 in the ER quality control: Redundant or unique function?Mol. Cells200520217318210.1016/S1016‑8478(23)13214‑616267390
    [Google Scholar]
  42. WangJM LinSR ZhuYB YuanJ WangYM ZhangQ Proteomic analysis of lysine acetylation reveals that metabolic enzymes and heat shock proteins may be potential targets for DSS-induced mice colitis.Int. Immunopharm.2021101Pt B10833610.1016/j.intimp.2021.10833634768127
    [Google Scholar]
  43. ZhaoX.Q. NakaM. MuneyukiM. TanakaT. Ca(2+)-dependent inhibition of actin-activated myosin ATPase activity by S100C (S100A11), a novel member of the S100 protein family.Biochem. Biophys. Res. Commun.20002671777910.1006/bbrc.1999.191810623577
    [Google Scholar]
  44. ZengB. ChenY. ChenH. ZhaoQ. SunZ. LiuD. LiX. ZhangY. WangJ. XingH.R. Synergistic inhibition of NUDT21 by secretory S100A11 and exosomal miR-487a-5p promotes melanoma oligo- to poly-metastatic progression.Mol. Oncol.202317122743276610.1002/1878‑0261.1348037356089
    [Google Scholar]
  45. ShenX. LuoK. YuanJ. GaoJ. CuiB. YuZ. LuZ. Hepatic DDAH1 mitigates hepatic steatosis and insulin resistance in obese mice: Involvement of reduced S100A11 expression.Acta Pharm. Sin. B20231383352336410.1016/j.apsb.2023.05.02037655336
    [Google Scholar]
  46. ZhangY ShuiJ WangL WangF. Serum proteomics identifies S100A11 and MMP9 as novel biomarkers for predicting the early efficacy of sublingual immunotherapy in allergic rhinitis.Int. Immunopharmacol.2023124Pt A11085710.1016/j.intimp.2023.11085737647677
    [Google Scholar]
  47. ZhangX. ChenT. QianX. HeX. Bioinformatics analysis of immune cell infiltration and diagnostic biomarkers between ankylosing spondylitis and inflammatory bowel disease.Comput. Math. Methods Med.202320231906556110.1155/2023/906556136643579
    [Google Scholar]
  48. SuC. LiuS. MaX. YangX. LiuJ. ZhengP. CaoY. Decitabine attenuates dextran sodium sulfate-induced ulcerative colitis through regulation of immune regulatory cells and intestinal barrier.Int. J. Mol. Med.202046258359410.3892/ijmm.2020.460532468024
    [Google Scholar]
  49. PugaA. MaC. MarloweJ.L. The aryl hydrocarbon receptor cross-talks with multiple signal transduction pathways.Biochem. Pharmacol.200977471372210.1016/j.bcp.2008.08.03118817753
    [Google Scholar]
  50. BaroukiR. CoumoulX. Fernandez-SalgueroP.M. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein.FEBS Lett.2007581193608361510.1016/j.febslet.2007.03.04617412325
    [Google Scholar]
  51. OkayasuI. HatakeyamaS. YamadaM. OhkusaT. InagakiY. NakayaR. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice.Gastroenterology199098369470210.1016/0016‑5085(90)90290‑H1688816
    [Google Scholar]
  52. TakamuraT. HaramaD. MatsuokaS. ShimokawaN. NakamuraY. OkumuraK. OgawaH. KitamuraM. NakaoA. Activation of the aryl hydrocarbon receptor pathway may ameliorate dextran sodium sulfate-induced colitis in mice.Immunol. Cell Biol.201088668568910.1038/icb.2010.3520231854
    [Google Scholar]
  53. AlzahraniA.M. HaniehH. IbrahimH.M. MohafezO. ShehataT. Bani IsmailM. AlfwuairesM. Enhancing miR-132 expression by aryl hydrocarbon receptor attenuates tumorigenesis associated with chronic colitis.Int. Immunopharmacol.20175234235110.1016/j.intimp.2017.09.01529017096
    [Google Scholar]
  54. ReboisR.V. PatelJ. Phorbol ester causes desensitization of gonadotropin-responsive adenylate cyclase in a murine Leydig tumor cell line.J. Biol. Chem.1985260138026803110.1016/S0021‑9258(17)39558‑32989273
    [Google Scholar]
  55. BlumbergP.M. BoutwellR.K. In vitro studies on the mode of action of the phorbol esters, potent tumor promoters: Part 1.CRC Crit. Rev. Toxicol.19808215319710.3109/104084480090374937002476
    [Google Scholar]
  56. LiN. SunW. ZhouX. GongH. ChenY. ChenD. XiangF. Dihydroartemisinin protects against dextran sulfate sodium-induced colitis in mice through inhibiting the PI3K/AKT and NF-κB signaling pathways.BioMed Res. Int.2019201911210.1155/2019/141580931781591
    [Google Scholar]
  57. JacksonT.R. PattersonS.I. ThastrupO. HanleyM.R. A novel tumour promoter, thapsigargin, transiently increases cytoplasmic free Ca2+ without generation of inositol phosphates in NG115-401L neuronal cells.Biochem. J.19882531818610.1042/bj25300813138987
    [Google Scholar]
  58. ThastrupO. CullenP.J. DrøbakB.K. HanleyM.R. DawsonA.P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase.Proc. Natl. Acad. Sci. USA19908772466247010.1073/pnas.87.7.24662138778
    [Google Scholar]
  59. Martín-AdradosB. WculekS.K. Fernández-BravoS. Torres-RuizR. Valle-NogueraA. Gomez-SánchezM.J. Hernández-WaliasJ.C. FerreiraF.M. CorralizaA.M. SanchoD. EstebanV. Rodriguez-PeralesS. Cruz-AdaliaA. NakayaH.I. SalasA. BernardoD. Campos-MartínY. Martínez-ZamoranoE. Muñoz-LópezD. Gómez del MoralM. CuberoF.J. BlumbergR.S. Martínez-NavesE. Expression of HMGCS2 in intestinal epithelial cells is downregulated in inflammatory bowel disease associated with endoplasmic reticulum stress.Front. Immunol.202314118551710.3389/fimmu.2023.118551737457727
    [Google Scholar]
  60. QiaoD.J. LiuX. ZhangY. ZhangZ. TangY. ChenQ. Jianpi-Qingchang decoction alleviates ulcerative colitis by modulating endoplasmic reticulum stress-related autophagy in intestinal epithelial cells.Biomed. Pharmcother.202315811413310.1016/j.biopha.2022.114133
    [Google Scholar]
  61. Solà TapiasN. Denadai-SouzaA. Rolland-FourcadeC. Quaranta-NicaiseM. BlanpiedC. MarcellinM. EdirA. RollandC. CirilloC. DietrichG. AlricL. PortierG. KirzinS. BonnetD. MasE. Burlet-SchiltzO. DeraisonC. BonnartC. VergnolleN. BarreauF. Colitis linked to endoplasmic reticulum stress induces trypsin activity affecting epithelial functions.J. Crohn’s Colitis20211591528154110.1093/ecco‑jcc/jjab03533609354
    [Google Scholar]
  62. FloreaA.M. BüsselbergD. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects.Cancers2011311351137110.3390/cancers301135124212665
    [Google Scholar]
  63. SiddikZ.H. Cisplatin: mode of cytotoxic action and molecular basis of resistance.Oncogene200322477265727910.1038/sj.onc.120693314576837
    [Google Scholar]
  64. JamiesonE.R. LippardS.J. Structure, recognition, and processing of cisplatin−DNA adducts.Chem. Rev.19999992467249810.1021/cr980421n11749487
    [Google Scholar]
  65. LiuS.V. GiacconeG. Refining standard practice and admitting uncertainty.Nat. Rev. Clin. Oncol.2014112697010.1038/nrclinonc.2013.25124445519
    [Google Scholar]
  66. Netea-MaierR.T. PlantingaT.S. van de VeerdonkF.L. SmitJ.W. NeteaM.G. Modulation of inflammation by autophagy: Consequences for human disease.Autophagy201612224526010.1080/15548627.2015.107175926222012
    [Google Scholar]
  67. LiuX. ZhouM. DaiZ. LuoS. ShiY. HeZ. ChenY. Salidroside alleviates ulcerative colitis via inhibiting macrophage pyroptosis and repairing the dysbacteriosis-associated Th17/Treg imbalance.Phytother. Res.202337236738210.1002/ptr.763636331009
    [Google Scholar]
  68. GeremiaA. BiancheriP. AllanP. CorazzaG.R. Di SabatinoA. Innate and adaptive immunity in inflammatory bowel disease.Autoimmun. Rev.201413131010.1016/j.autrev.2013.06.00423774107
    [Google Scholar]
  69. ChengC. HuJ. LiY. JiY. LianZ. AuR. XuF. LiW. ShenH. ZhuL. Qing-Chang-Hua-Shi granule ameliorates DSS-induced colitis by activating NLRP6 signaling and regulating Th17/Treg balance.Phytomedicine202210715445210.1016/j.phymed.2022.15445236150347
    [Google Scholar]
  70. BalagopalanL. KortumR.L. CoussensN.P. BarrV.A. SamelsonL.E. The linker for activation of T cells (LAT) signaling hub: From signaling complexes to microclusters.J. Biol. Chem.201529044264222642910.1074/jbc.R115.66586926354432
    [Google Scholar]
  71. BiswasS.K. Metabolic reprogramming of immune cells in cancer progression.Immunity201543343544910.1016/j.immuni.2015.09.00126377897
    [Google Scholar]
  72. WuM.M. WangQ.M. HuangB.Y. MaiC.T. WangC.L. WangT.T. ZhangX.J. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization.Pharmacol. Res.202117210579610.1016/j.phrs.2021.10579634343656
    [Google Scholar]
  73. WatanabeN. IkutaK. OkazakiK. NakaseH. TabataY. MatsuuraM. TamakiH. KawanamiC. HonjoT. ChibaT. Elimination of local macrophages in intestine prevents chronic colitis in interleukin-10-deficient mice.Dig. Dis. Sci.200348240841410.1023/A:102196040129012643623
    [Google Scholar]
  74. YangZ. LinS. FengW. LiuY. SongZ. PanG. ZhangY. DaiX. DingX. ChenL. WangY. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization.Front. Pharmacol.20221399917910.3389/fphar.2022.99917936147340
    [Google Scholar]
  75. SunX. YangJ. DengX. WeiY. WangC. GuoY. YangH. YangL. MiaoC. LvJ. XiaoY. ZhangH. YaoZ. WangQ. Interactions of bacterial toxin CNF1 and host JAK1/2 driven by liquid-liquid phase separation enhance macrophage polarization.MBio2022134e01147-2210.1128/mbio.01147‑2235766380
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303355042241208171133
Loading
/content/journals/emiddt/10.2174/0118715303355042241208171133
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test